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Abstract

In this paper we present a method for converting general nonlinear programming (NLP) problems into separable programming (SP)

problems by using feedforward neural networks (FNNs). The basic idea behind the method is to use two useful features of FNNs: their ability

to approximate arbitrary continuous nonlinear functions with a desired degree of accuracy and their ability to express nonlinear functions in

terms of parameterized compositions of functions of single variables. According to these two features, any nonseparable objective functions

and/or constraints in NLP problems can be approximately expressed as separable functions with FNNs. Therefore, any NLP problems can be

converted into SP problems. The proposed method has three prominent features. (a) It is more general than existing transformation

techniques; (b) it can be used to formulate optimization problems as SP problems even when their precise analytic objective function and/or

constraints are unknown; (c) the SP problems obtained by the proposed method may highly facilitate the selection of grid points for piecewise

linear approximation of nonlinear functions. We analyze the computational complexity of the proposed method and compare it with an

existing transformation approach. We also present several examples to demonstrate the method and the performance of the simplex method

with the restricted basis entry rule for solving SP problems.

q 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Consider the following nonlinear programming (NLP)

problem (Luenberger, 1989)

Minimize tðXÞ for X [ Rn ð1Þ

Subject to
giðxÞ $ 0 for i ¼ 1; 2;…;m;

hiðxÞ ¼ 0 for j ¼ 1; 2;…; s:

(

where tðxÞ is called the objective function, giðxÞ is called

the inequality constraint and hjðxÞ is called the equality

constraint.

NLP problems are widespread in the mathematical

modeling of engineering design problems such as VLSI

chip design, optimal plastic design of structures, and

optimum design of chemical processing equipment and

plants (Rao, 1996). For general NLP problems, however,

computer programs are not available for the problems of

very large size. For a class of NLP problems known as

separable (Bazaraa, Sherali, & Shetty, 1993; Miller, 1963),

some variation of the simplex method, a well-developed and

efficient method for solving large-scale linear programming

(LP) problems, can be used as a solution procedure. A

separable programming (SP) problem refers to an NLP

problem where both the objective function and the

constraints can be expressed as the sum of single-variable

functions, i.e. the sum of separable functions. An SP
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problem can be stated as

Minimize
Xn

k¼1

tkðxkÞ ð2Þ

subject to

Xn

k¼1

gikðxkÞ $ 0 for i ¼ 1; 2;…;m;

Xn

k¼1

hikðxkÞ ¼ 0 for j ¼ 1; 2;…; s:

8>>>><
>>>>:

where both the objective function and the constraints are

separable functions.

The assumption of separability of the objective function

and the constraints in SP problems is a serious restriction in

practical optimization problems. In order to generalize the

simplex method to solve general NLP problems, we need to

convert nonseparable objective function and/or the con-

straints into separable forms. The existing approach to

transforming nonseparable functions into separable func-

tions is to use appropriate substitutions (Rao, 1996).

Unfortunately, this approach cannot be used to convert

nonseparable functions whose concise expression are

unknown and some given nonseparable functions.

In this paper we propose an alternative method for

converting general NLP problems into SP problems by

using feedforward neural networks (FNNs) (Lu & Ito,

1997). The basic idea behind the method is to use two useful

features of FNNs: their ability to approximate arbitrary

continuous nonlinear functions with a desired degree of

accuracy and their ability to express nonlinear function in

terms of parameterized compositions of functions of single

variables. According to these two features, the nonseparable

objective functions and/or the nonseparable constraints in

NLP problems can be approximately expressed as separable

functions with FNNs, and therefore, any NLP problems can

be transformed into SP problems. The proposed method has

three prominent features. (a) It is more general than the

existing transformation technique; (b) it can be used to

formulate optimization problems as SP problems even when

their precise analytic objective function and/or constraints

are unknown; (c) the SP problems obtained by the proposed

method may highly facilitate the selection of grid points for

piecewise linear approximation of nonlinear functions.

The remainder of this paper is organized as follows:

Section 2 introduces the idea of approximately expressing

nonseparable functions as separable ones by using a class of

FNNs, Section 3 presents a method for transforming

nonseparable NLP problems into SP problems, Section 4

discusses the piecewise approximation of separable func-

tions and analyze the complexity of approximation LP

problems, Section 5 compares the proposed method with the

existing transformation approach, Section 6 presents four

examples to demonstrate the method and the performance of

the simplex method with the restricted entry rule for solving

large-scale SP problems, and finally Section 7 gives the

conclusions.

2. Transformation of nonseparable functions

In this section we show that a class of FNNs including

multilayer perceptrons (MLPs) (Haykin, 1999), radial basis

function (RBF) neural networks (Bishop, 1995), and

multilayer quadratic perceptrons (MLQPs) (Lu, Bai, Kita,

& Nishikawa, 1993), can be used to transform nonseparable

functions into separable forms.

2.1. Normalization

Let T be the training set for approximating a non-

separable function in an NLP problem

T ¼ {ðxi; yiÞ}
M
i¼1 ð3Þ

where xi [ Rn is the ith training input vector, yi [ R is the

ith desired output, and M is the number of training data.

Without loss of generality and for simplicity of descrip-

tion, we assume that the same ranges, (Xmin; Xmax;) and (ymin;

ymax), are respectively used to normalize the training inputs

and desired outputs for all of the nonseparable functions in an

NLP problem. Before learning, both training inputs and

desired outputs are usually scaled to some ranges because the

original training inputs and desired outputs may contain both

small and large values. The original training inputs for a

nonseparable function can be normalized according to the

following formula (Smith, 1993)

�xik ¼Xmin þ
xik 2 xk;min

xk;max 2 xk;min

ðXmax 2XminÞ ¼ak þbkxik; ð4Þ

where xik [R is the kth element of the ith training input,

xk;min ¼min{xikli¼ 1;2;…;M}; xk;max ¼max{xikli¼
1;2;…;M}; �xik is the kth element of the ith normalized

training input, ak ¼Xk
min 2 xk;minðXmax 2XminÞ=ðxk;max 2

xk;minÞ; and bk ¼ðXmax 2XminÞ=ðxk;max 2 xk;minÞ:

Following the same way mentioned above, the original

desired outputs can be normalized by

�yi ¼ Ymin þ
yi 2 ymin

ymax 2 ymin

ðYmax 2 YminÞ ¼ fþ cyi; ð5Þ

where yi [ R is the ith desired output, ymin ¼ min{yili ¼
1; 2;…;M}; ymax ¼ max{yili ¼ 1; 2;…;M}; �yi is the ith

normalized desired output, f ¼ Ymin 2 yminðYmax 2

YminÞ=ðymax 2 yminÞ; and c ¼ ðYmax 2 YminÞ=ðymax 2 yminÞ:

2.2. Approximations of nonseparable functions

It is known that multilayer FNNs such as three-layer

MLPs can be trained to approximate arbitrary continuous

functions with a desired degree of accuracy if a sufficient

number of hidden units is provided (Cybenko, 1989;

Funahashi, 1989; Hornik, Stinchcombe, & White, 1989).
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Two kinds of function approximation problems are

considered in this paper: (a) approximation of an unknown

function from training data, and (b) approximation of a

given function which has a precise analytic expression.

Let sðxÞ be a unknown function or a given nonseperable

function. Suppose a set of training data as defined by Eq. (3)

are obtained from the environment of the unknown function

sðxÞ or sampled over the given function sðxÞ: Also suppose

that before learning the training inputs and desired outputs

are normalized by Eqs. (4) and (5), respectively. By Using

the function approximation capability FNNs, we can train a

multilayer feedforward network to approximate sðxÞ: After

successfully learning, ~sðxÞ; the approximation of sðxÞ; can be

expressed as follows

sðxÞ < ~sðxÞ ¼
Fðaþ bxÞ2 f

c
ð6Þ

where Fð·Þ denotes the forward mapping realized by the

trained multilayer FNN, a ¼ ½a1;a2;…;an�; b ¼

½b1;b2;…;bn�; f; and c; are constants which are deter-

mined by Eqs. (4) and (5). In the following, we will discuss

how to convert nonseparable functions into separable

functions by using MLPs, RBF networks, and MLQPs.

2.2.1. Multilayer perceptrons

For simplicity of description, we consider only three-

layer MLPs. The results can be extended to L-layer ðL . 3Þ

MLPs easily. After successfully learning, the forward

mapping Fðx̂Þ realized by a three-layer MLP can be

expressed as follows

Fðx̂Þ ¼ f
XN2

j¼1

w31j f
XN1

i¼1

w2jix̂i þ u2j

 !
þ u31

0
@

1
A ð7Þ

where x̂i is the input of the ith unit in the input layer, wkji the

weight connecting the ith unit in the layer ðk 2 1Þ to the jth

unit in the layer k; ukj is the bias of the jth unit in the layer k;

f is the sigmoidal activation function, and Nk is the number

of units in the layer k; and k ¼ 1,2.

Introducing auxiliary variables b31; b2i for i ¼ 1; 2;…;N2

into Eq. (7), we can express ~sðxÞ as the following

simultaneous equations

~sðb31Þ ¼
f ðb31Þ2 f

c

b31 2
XN2

j¼1

w31jf ðb2jÞ ¼ u31

b21 2
XN1

i¼1

w21ix̂i ¼ u21

..

.

b2N2
2
XN1

i¼1

w2N2ix̂i ¼ u2N2;

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

ð8Þ

where b31; b2j for j ¼ 1; 2;…;N2; and x̂i for i ¼ 1; 2;…;N1;

are variables. We see that all of the functions in Eq. (8) are

separable functions.

2.2.2. RBF networks

In general, only three-layer RBF networks with a single

hidden layer are considered in neural network literature

(Bishop, 1995; Haykin, 1999). The forward mapping Fðx̂Þ

realized by a RBF network can be expressed as follows

Fðx̂Þ ¼
XN2

j¼1

wjwjðx̂Þ þ u ð9Þ

where wj is the weight connecting the jth unit in the hidden

layer to the output unit, u is the bias of the output unit, and wj

denotes the RBF.

For the case of Gaussian basis function we have

wjðxÞ ¼ exp 2
kx̂ 2 rjk

2

2s2
j

 !
ð10Þ

where sj is the width parameter of wj; and rj is the vector

determining the center of wj:

Introducing auxiliary variables ai for i ¼ 1; 2;…;N2 into

Eqs. (9) and (10), we can express ~sðxÞ as the following

simultaneous equations

~sðbÞ ¼
b 2 f

c

b 2
XN2

j¼1

wjaj ¼ u

ln a1 2
XN1

i¼1

ðx̂i 2 r1iÞ
2

2s2
1

¼ 0

..

.

ln aN2
2
XN1

i¼1

ðx̂j 2 rN2iÞ
2

2s2
N2

¼ 0

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

ð11Þ

where b; ai for i ¼ 1; 2;…;N2; and x̂i for i ¼ 1; 2;…;N1 are

variables, and rij for i ¼ 1; 2;…;N2; j ¼ 1; 2;…;N1 and si

for i ¼ 1; 2;…;N2 are constants. Clearly, each of the

functions in Eq. (11) is a separable function.

2.2.3. Multilayer quadratic perceptrons

In order to improve the learning performance of MLPs,

various multilayer FNN architectures having higher-order

connectivity have been proposed in neural network

literature (Giles & Maxwell, 1987; Lu et al., 1993). Here,

we consider the following higher-order network for

transforming nonseparable functions

x̂kj ¼ f
XNk21

i¼1

XH
h¼1

wijkhx̂h
k21;i þ biasij

 !

for k ¼ 2;…; L and j ¼ 1;…;Nk

ð12Þ
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where H is the order of the connectivity, wkjih the hth weight

connecting the ith unit in the layer k 2 1 to the jth unit in the

layer k; f ð·Þ is the sigmoidal activation function. When H ¼

2; Eq. (12) expresses the characteristic of the unit of MLQP

(Lu et al., 1993).

For simplicity of description, we consider three-layer

MLQPs. Following the similar way as described in Section

2.2.1, we can express ~sðxÞ as the following simultaneous

equations

~sðb31Þ ¼
f ðb31Þ2 fp

cp

b31 2
XN2

j¼1

w31j1f ðb2jÞ2
XN2

j¼1

w31j2f 2ðb2jÞ ¼ u31

b21 2
XN1

i¼1

w21i1x̂i 2
XN1

i¼1

w21i2x̂2
i ¼ u21

..

.

b2N2
2
XN1

i¼1

w2N2ix̂i 2
XN1

i¼1

w2N2i2x̂2
i ¼ u2N2;

8>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>:

ð13Þ

where b31; b2j for j ¼ 1; 2;…;N2; and x̂i for i ¼ 1; 2;…;N1;

are variables. We see that all of the functions defined by Eq.

(13) are separable functions.

The importance of Eqs. (8), (11) and (13) lies in the fact

that they provide us with a general approach to approxi-

mately expressing nonseperable functions as seperable

forms.

3. Transformation of NLP problems

According to the locations of nonseparable functions in

NLP problems, NLP problems can be classified into three

types:

I: only the objective function is a nonseparable

function;

II: only the constraints are nonseparable functions; and

III: both the objective function and the constraints are

nonseparable functions.

3.1. Nonseparable objective function

For Type I nonseparable NLP problems, we only need

to transform the objective function into separable

function. Replacing the objective function with its

approximation such as the form defined by Eq. (8), we

can transform a Type I nonseparable NLP problem into

an SP problem as follows:

Minimize
f ðbo

31Þ2 fo

co
ð14Þ

subject to

bo
31 2

XNo
2

j¼1

wo
31jf ðb

o
2jÞ ¼ uo

31

bo
21 2

XN1

i¼1

wo
21iða

o
i þ bo

i xiÞ ¼ uo
21

..

.

bo
2No

2
2
XN1

i¼1

w2No
2
iða

o
i þ bo

i xiÞ ¼ uo
2No

2

Xn

k¼1

gikðxkÞ $ 0 for i ¼ 1; 2;…;m;

Xn

k¼1

hjkðxkÞ ¼ 0 for j ¼ 1; 2;…; s:

8>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>:

where bo
31; bo

2j for j ¼ 1; 2;…;No
2 ; and xi for i ¼

1; 2;…;N1 are variables, and the ‘o’ superscript refers

to quantities on the objective function.

3.2. Nonseparable constraint function

For the sake of clarity, we define two sets:

U ¼ {ilgiðxÞ is a nonseparable function};

and

V ¼ {jlhjðxÞ is a nonseparable function}:

Then for each i [ U and j [ V ; giðxÞ and hjðxÞ should

be transformed into separable functions. By the defi-

nition, giðxÞ and hjðxÞ for i [ �U and j [ �V2 are separable

functions. Hence, no transformation needs to be carried

out. Replacing the nonseparable constraints with their

approximations such as the form defined by Eq. (8), we

can transform a Type II nonseparable NLP problem into

an SP problem as follows:

Minimize
Xn

k¼1

tkðxkÞ ð15Þ

2 �U ¼ {1; 2; · · ·;m} 2 U and �V ¼ {1; 2; · · ·; r} 2 V :
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subject to

Xn

k¼1

glkðxkÞ $ 0 for l [ �U

Xn

k¼1

hlkðxkÞ ¼ 0 for l [ �V

f ðbG;u
31 Þ2 fG;u

cG;u
$ 0

bG;u
31 2

XNG;u
2

j¼1

wG;u
31j f ðbG;u

2j Þ ¼ uG;u
31

bG;u
21 2

XN1

i¼1

wG;u
21i ða

G;u
i þ bG;u

i xiÞ ¼ uG;u
21

..

.

bG;u

2NG;u
2

2
XN1

i¼1

w
2N

G;ui
2

ðaG;u
i þ bG;u

i xiÞ ¼ uG;u

2NG;u
2

for u [ U

f ðbH;v
31 Þ2 fH;v

cH;v
¼ 0

bH;v
31 2

XNH;v
2

j¼1

wH;v
31j f ðbH;v

2j Þ ¼ uH;v
31

bH;v
21 2

XN1

i¼1

wH;v
21i ða

H;v
i þ bH;v

i xiÞ ¼ uH;v
21

..

.

bH;v

2NH;v
2

2
XN1

i¼1

w
2N

H;vi
2

ðaH;v
i þ bH;v

i xiÞ ¼ uH;v

2NH;v
2

for v [ V

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

where the ‘G; u’ and ‘H; v’ superscripts refer to quantities

on the nonseparable constraints guðxÞ for u [ U and hvðxÞ

for v [ V ; respectively.

Using the similar approach mentioned above, we can

transform Type III nonseparable NLP problems into SP

problems and deal with unconstrained nonlinear program-

ming problems.

3.3. Network size

For converting NLP problems into SP problems, each of

the nonseparable functions in NLP problems should be

approximated with an FNN. Therefore, one may ask: how

many hidden units of an FNN are satisfactory for

approximating a nonseparable function? In this section,

we first introduce some related theoretical results, then we

present an approach to cope with the curse of dimensionality

in approximation of given functions.

3.3.1. Optimum number of hidden units

For any 0 , d , 1; with probability greater than 1 2 d;

Niyogi and Girosi (1996) have derived a bound on the

generalization error generated by a Gaussian network as

follows:

O
1

r

 �
þ O

nr lnðrMÞ2 ln d

M

� �1=2
 !

ð16Þ

where r is the number of hidden units, n is the input

dimension of the function, and M the number of training

data.

From the bound of Eq. (16), we may identify the

following relationship between the optimum number of

hidden units rp and a given data size M:

rpðMÞ / M1=3 ð17Þ

Note that there are various choices of r p and M for a certain

confidence parameter d and for a fixed error bound (Niyogi

& Girosi, 1996).

The importance of Eq. (17) lies in the fact that it provides

us with the theoretical basis for selecting suitable network

size for good generalization. It has been shown that MLPs

require smaller number of parameters than RBF networks

for the same degree of accuracy for function approximation

(Haykin, 1999). In addition, experimental studies show that

MLQPs can approximate functions with fewer number of

hidden units than MLPs (Lu et al., 1993).

3.3.2. Practical considerations

As described earlier, two kinds of function approxi-

mation problems are considered in the transformation: (a)

approximation of a given function which has precise

analytic expression, and (b) approximation of an unknown

function from training data. From the transformation’s point

of view, the first approximation problem is easier to be

solved than the second problem. The main reason is that

some given functions hðxÞ can be expressed as the sum of

several components as

hðxÞ ¼ h1ðx1Þ þ h2ðx2Þ þ · · · þ hKðxKÞ ð18Þ

where x [ Rn; xi [ Rni ; and ni , n for i ¼ 1; 2;…;K: For

example, the objective function for minimizing the weight

of speed reducer (Golinski, 1973) is stated as

f ðxÞ¼0:79x1x2
2ð3:33x2

3þ14:93x3243:09Þ21:51x1ðx
2
6þx2

7Þ

þ7:48ðx3
6þx3

7Þþ0:79ðx4x2
6þx5x2

7Þ ð19Þ

If a given nonseparable objective function or a given

nonseparable constraint in NLP problems can be expressed

as the form as defined by Eq. (18), then by using at most K

relatively smaller FNNs, this nonseparable function can be

B.-L. Lu, K. Ito / Neural Networks 16 (2003) 1059–1074 1063



transformed into a separable function as follows:

~hðb
h1

31;…;b
hK

31 Þ¼
f ðb

h1

31Þ2fh1

ch1

þ ···þ
f ðb

hK

31 Þ2fhK

chK

b
h1

312
XNh1

2

j¼1

w
h1

31jf ðb
h1

2j Þ¼u
h1

31

b
h1

212
XNh1

1

i¼1

w
h1

21ix̂i¼u
h1

21

..

.

b
h1

2N2
2
XNh1

1

i¼1

w
h1

2N2ix̂i¼u
h1

2N2

..

.

b
hk

312
XNhK

2

j¼1

w
hK

31jf ðb
hK

2j Þ¼u
hK

31

b
hK

21 2
XNhK

1

i¼1

w
hK

21ix̂i¼u
hK

21

..

.

b
hK

2N2
2
XNhK

1

i¼1

w
hK

2N2ix̂i¼u
hK

2N2

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð20Þ

where hkðxkÞ is approximated by a three-layer MLP with N
hk

1

(¼nk) input units, N
hk

2 hidden units, and one output unit, b
hk

31;

b
hk

2j for j¼1;2;…;N
hk

2 ; k¼1;2;…;K; and x̂i for i¼1;2;…;N
hk

1 ;

are variables.

In comparison to approximating hðxÞ directly with a

single FNN, the approach to approximating the components

of hðxÞ with relatively smaller FNNs has several merits. (a)

It can circumvent the curse of dimensionality if ni p n for

large n; (b) approximating hiðxiÞ might much easier than

approximating hðxÞ because hkðxkÞ is always simpler than

hðxÞ; and therefore, we can use a relatively smaller FNN to

approximate each component of hðxÞ; (c) for isomorphic

components of hðxÞ; only one of them needs to be

approximated and the approximating result can be adapted

to the transformations of the others because the tasks of

approximating the isomorphic components are the same

from learning’s point of view. Consequently, to approxi-

mate hðxÞ needs at most K relatively smaller FNNs. For

example, the four components of the objective function

defined by Eq. (19), i.e. 21:51x1x2
6; 21:51x1x2

7; 0:79x4x2
6;

and 0:79x5x2
7; are isomorphic to each other mathematically.

3.4. Accuracy of transformation

The accuracy of transforming NLP problems into SP

problems by using the proposed method largely depends

upon the performance of the trained FNNs for approximat-

ing the nonseparable functions in NLP problems. That is,

their approximation errors on training data and their

generalization errors on test data. Therefore, to achieve a

high accuracy of transformation, both the approximation

error and generalization error should be small.

It is known that the approximation and generalization

errors of FNNs are affected by several factors such as the

learning algorithms, the structure of FNNs, the complexity

of the nonseparable functions, and the number of the

training data. In recent years, many fast learning algorithms

such as natural gradient learning (Amari, 1998; Amari, Park

& Fukumizu, 2000) and new network architectures such as

constructive neural networks (Choi & Choi, 1994) have

been developed in order to avoid local minima encountered

in training FNNs and improve generalization. As a result,

we can combine these new techniques with the proposed

method to achieve a good accuracy of transformation.

Although the existing learning algorithms for FNNs are not

guaranteed to produce a desired accuracy to approximate a

complicated function, FNNs have become a popular tool for

function approximation in high dimensions and are clearly

recognized as a useful member of the toolbox of methods

that one might use (Cherkassky, Gehring, & Mulier, 1996).

3.5. Problem size versus network size

Suppose that each nonseparable function is approxi-

mated by an FNN such as an MLP, an RBF network, or an

MLQP with the same number of hidden units K: Also

suppose that there are c1 (c1 # m) nonseparable inequality

constraints and c2 (c2 # r) nonseparable equality con-

straints in Types II and III nonseparable NLP problems.

From Eqs. (8), (11) and (13), we see that MLPs, RBF

networks, and MLQPs lead to the same numbers of new

variable and constraints for converting a nonseparable

function to a separable function. The numbers of variables

and constraints in the original NLP problems and the

equivalent SP problems are shown in Table 1.

From Table 1 we see that as the number of hidden units

grows both the number of variables and the number of

constraints in theequivalentSPproblems increase. Therefore,

it isdesirable thateachnonseparable function isapproximated

by an FNN with as few a number of hidden units as possible.

Table 1

The number of variables and constraints in the original NLP problems and

the equivalent SP problems transformed by using MLPs, RBF networks, or

MLQPs

Problem No. of

variables

No. of

constraints

Original n m þ r

I n þ K þ 1 m þ r þ K þ 1

II n þ c1K þ c2K

þðc1 þ c2Þ

ðm 2 c1Þ þ ðr 2 c2Þ

þc1K þ c2K þ c1 þ c2

III n þ K þ c1K þ c2K

þð1 þ c1 þ c2Þ

ðm 2 c1Þ þ ðr 2 c2Þ

þK þ c1K þ c2K

þð1 þ c1 þ c2Þ
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But, on the other hand, it may become more difficult for

an FNN with fewer number of hidden units to approximate a

nonseparable function with a desired degree of accuracy.

Therefore, there exists a trade-off between the complexity of

the equivalent SP problems and the size of FNNs.

4. Approximations of SP problems

In this section, we firstly introduce how to approximate

SP problems by replacing each of separable nonlinear

functions with their approximations using piecewise linear

functions. Then we discuss the relationship between the

accuracy of the solutions to NLP problems and the accuracy

of two different kinds of approximations used for transform-

ing NLP problems into approximating LP (ALP) problems.

Finally, we analyze the complexity of the ALP problems.

4.1. Piecewise approximation

In order to use the simplex method with some variation to

solve SP problems, we need to define a new problem that

approximates the original SP problem. The new problem is

obtained by replacing each nonlinear function with a

piecewise linear approximation.

Suppose that we are interested in the values of the

nonlinear function e over the interval ½ra; rb�; and we wish to

define a piecewise linear function ~e that approximates e: The

interval ½ra; rb� is partitioned into several subintervals, via

the grid points ra ¼ m1;m2;…;mp ¼ rb: The nonlinear

function e can be approximated over the interval ½ra; rb�

via the grid points m1;m2;…;mp by the piecewise linear

function ~e; defined by

~eðmÞ ¼
Xp

i¼1

lieðmiÞ

Xp

i¼1

li ¼ 1

li $ 0 for i ¼ 1; 2;…; p;

8>>>>>>><
>>>>>>>:

ð21Þ

where, at most, two adjacent lis are positive.

According to the definition of êðmÞ; the SP problems can be

restated in equivalent more manageable forms. For example,

the SP problem defined by Eq. (14) can be restated as

Minimize

Xp

r¼1
lo

31;rf ðm
o
31;rÞ2 fo

co
ð22Þ

subject to

Xp

r¼1

lo
31;rm

o
31;r 2

XNo
2

j¼1

wo
31j

Xp

r¼1

lo
2j;rf ðm

o
2j;rÞ ¼ uo

31

Xp

r¼1

lo
21;rm

o
21;r 2

XN1

i¼1

wo
21iða

o
i þ bo

i

Xp

r¼1

lx
21i;rm

x
irÞ ¼ uo

21

..

.

Xp

r¼1

lo
2No

2
;rm

o
2No

2
;r 2

XN1

i¼1

w2No
2
iða

o
i þ bo

i

Xp

r¼1

lx
2No

2
i;rm

x
irÞ ¼ uo

2No
2

Xn

k¼1

Xp

r¼1

l
g
ik;rgikðm

g
ik;rÞ $ 0 for i ¼ 1;…;m

Xn

k¼1

Xp

r¼1

lh
jk;rhjkðm

h
jk;rÞ ¼ 0 for j ¼ 1;…; s

Xp

r¼1

lo
31;r ¼ 1

Xp

r¼1

lo
2j;r ¼ 1 for j ¼ 1; 2;…;No

2

Xp

r¼1

lx
2ji;r ¼ 1 for j ¼ 1; 2;…;No

2 and i ¼ 1; 2;…;N1

Xp

r¼1

l
g
ik;r ¼ 1 for i ¼ 1; 2;…;m and k ¼ 1; 2;…; n

Xp

r¼1

lh
jk;r ¼ 1 for j ¼ 1; 2;…; s and k ¼ 1; 2;…; n

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:
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l $ 0 for all l mentioned in the above constraints

where, at most, two adjacent l’s are positive.

With the exception of the constraint that, at most, two

adjacent l’s are positive, the problem defined by Eq. (22) is

a LP problem, and hence it is called approximating LP

problem. It has been shown that the ALP problems can be

solved by means of the simplex method with the restricted

basis entry rule (Miller, 1963).

4.2. Accuracy of optimal solutions

For transforming nonseparable NLP problems into ALP

problems, we need to carry out two different kinds of

approximations: (a) each nonseparable function in NLP

problem should be approximated by a FNNs, and (b) each

nonlinear function in the SP problem should be approxi-

mated by piecewise linear functions. One may ask a

question: What is the relationship between the optimal

solutions to the original nonseparable NLP problems and the

corresponding ALP problems ? In the rest of this subsection,

we will answer this question.

Consider the first approximation. Suppose that the

trained FNN of a nonseparable function has a small

approximation error and small generalization error. The

SP problems obtained by the proposed method are

equivalent to their original nonseparable NLP problems

because the transformation only changes the expression

forms of the objective function and/or constraints.

The accuracy of the second approximation largely

depends upon the number of grid points for each variable.

For example, Fig. 2 shows the relationship between the

number of grid points for each variable and the accuracy of

the values of the objective function for the corresponding

ALP problems. From this figure, we can see that the

accuracy of the optimal solutions can be improved by

increasing the number of grid points. However, as the

number of grid points increases, the number of variables and

the number of constraints in the ALP problems also

increase. It has been shown that if the objective function

is strictly convex and all the constraints are convex, by

choosing a small grid, the solution obtained from the ALP

problem can be sufficiently close to the global optimal

solution of the original NLP problem (Bazaraa et al., 1993).

In the non-convex case, even though optimality cannot be

claimed with the restricted basis entry rule, good solutions

are produced (Bazaraa et al., 1993). In addition, the value of

each grid point is another factor that may largely affect the

accuracy of the second approximation.

4.3. Complexity of ALP problems

For simplicity of analyzing the complexity of ALP

problems and comparison of MLPs with RBF networks and

MLQPs, we classify NLP problems defined by Eq. (1) into

the following three types

A. Only the objective function or one constraint is a

nonseparable function, and all of the rest functions are linear

functions;

B. Among the objective function and the constraints,

there are only Lð1 , L , m þ s þ 1Þ nonseparable func-

tions, and there are nlð0 # nl , nÞ input variables which are

not involved in any nonlinear functions;

C. Both the objective function and the constraints are

nonseparable functions.

Suppose that each of the nonseparable functions in NLP

problems is transformed into a separable function by using an

MLP, a RBF network, and an MLQP with the same number

of hidden units (K). Also suppose p grid points are used for

each of the variables involved in the nonlinear functions.

Considering Eqs. (8), (11), (13), (21), and the definition of

ALP problems as stated by Eq. (22), we see that MLPs and

other two networks (i.e. RBF networks and MLQPs) result in

different number of new variables and new constraints in

ALP problems. Tables 2 and 3 show the number of variables

and the number of constraints in each of three types of ALP

problems, whose original NLP problems belong to Type A
Type B, and Type C NLP problems, respectively.

From Tables 2 and 3, we see that the numbers of

variables and constraints in an ALP problem not only

depend upon the numbers of variables and constraints in the

corresponding SP problem, but also depend upon the types

of the neural networks used for converting the nonseparable

functions in the original NLP problem. RBF networks and

MLQPs cause the same numbers of new variables and new

constraints. On the other hand, MLPs require fewer number

of new variables and new constraints than both RBF

networks and MLQPs in all of the ALP problems. The

reason is that all of the functions involving the variables x̂i

for i ¼ 1; 2;…;N1 in Eq. (8) are linear functions, while all of

the functions involving the variables x̂i for i ¼ 1; 2;…;N1 in

both Eqs. (11) and (13) are nonlinear functions. From

computational complexity’s point of view, MLPs are more

suitable for converting nonseparable functions than RBF

network and MLQPs.

5. Comparison with the existing approach

In this section, we compare the proposed transformation

method with the existing approach and discuss the merits

and demerits of each of the methods. To our best knowl-

edge, only one transformation technique which is called

the substitution approach is known in optimization literature

(Rao, 1996).

Table 2

The number of variables in each of the three types of ALP problems

Type MLP RBF or MLQP

A n þ pðK þ 1Þ pðn þ K þ 1Þ

B nl þ pðK þ 1ÞL þ n 2 nlÞ pðn þ ðK þ 1ÞLÞ

C N þ pðm þ r þ 1ÞðK þ 1Þ pðn þ ðm þ r þ 1ÞðK þ 1ÞÞ
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5.1. The substitution approach

For converting a nonseparable function to a separable

form, the following two kinds of basic substitutions are used

in the substitution approach.

Substitution 1. Replace any nonseparable function of the

form

p1ðx1Þ·p2ðx2Þ ð23Þ

by

y2
1 2 y2

2 ð24Þ

where two new variables y1 and y2 are defined as

y1 ¼
p1ðx1Þ þ p2ðx2Þ

2
ð25Þ

y2 ¼
p1ðx1Þ2 p2ðx2Þ

2
ð26Þ

Substitution 2. Replace any nonseparable function of the

form

p1ðx1Þ·p2ðx2Þ· · ·pMðxMÞ ð27Þ

by y along with the constraint

ln y ¼ ln p1ðx1Þ þ ln p2ðx2Þ þ · · · þ ln pMðxMÞ ð28Þ

where piðxiÞ for i ¼ 1; 2…;M are separable functions and

piðxiÞ . 0:

5.2. Generality

Although many nonseparable functions can be trans-

formed into separable forms by the substitution approach,

this approach suffers the following two deficiencies that

limit its usefulness. One is that it cannot convert some

nonseparable functions. For example, it cannot convert the

nonseparable function pðxiÞ
qðxjÞ into a separable function

when pðxiÞ # 0: The other one is that it is not capable of

transforming the functions whose concise mathematical

descriptions are unknown.

In some practical optimization problems, the objective

function and/or the constraints may be complex ‘black

boxes’ of implicit unknown forms. In such cases, it is

impossible to formulate the optimization problems as NLP

problems by using the exact system models. Fortunately,

from Eqs. (8), (11), and (13), we can see that the proposed

transformation method may provide an efficient technique

for dealing with this difficulty. Suppose that a set of

training data for an unknown function is given. By

training a multilayer FNN, the following two tasks can be

performed at the same time: (a) the unknown function is

approximated, and (b) the unknown function is trans-

formed into a separable function. That is, training FNNs

succeed in doing both the system identification and

function transformation.

From optimization’s point of view, the importance of the

proposed method is that it may provide us a new way for

formulating complex optimization problems as SP pro-

blems. As a result, the simplex method can be applied to

solving large-scale and complex optimization problems,

whose solutions are hard to be found by using the

conventional NLP techniques.

5.3. Selection of grid points

In order to accurately approximate each nonlinear

function in SP problems by using piecewise linear functions,

it is important to choose an appropriate number of grid

points and suitable grid points.

From Eq. (8), we can see that the separable functions

transformed by MLPs have two useful features for

selection of grid points. (a) All of the nonlinear

components of the separable functions, i.e. f ðb31Þ and

f ðb2jÞ for j ¼ 1; 2;…;N2; are the same type of sigmoid

functions; (b) all of the nonlinear components are

completely independent of the training data and the

parameters of MLPs. According to the first feature, we

need only to select one set of grid points for all of the

variables. From the second feature, one set of suitable grid

points can be used for any nonlinear components in any

separable functions transformed by MLPs. In a word,

these features lead to an important advantage of easily

selecting grid points for piecewise linear approximation.

For example, the grid points ^16, ^8, ^5, ^4, ^3, ^2,

and ^1 are used for all of the corresponding variables to

approximate the sigmoid function in four different

problems as illustrated in Examples 1–4 in Section 6.

In addition, these features may highly facilitate automatic

transformation of SP problems into ALP problems and its

software implementation.

From Eq. (13), we can see that the separable functions

transformed by MLQPs have the same features as MLPs

mentioned above. However, some nonlinear components of

Table 3

The number of constraints in each of the three types of ALP problems

Type MLP RBF or MLQP

No. of Eq. No. of Ineq. No. of Eq. No. of Ineq.

A 2(K þ 1) m þ r þ pðK þ 1Þ n þ 2(K þ 1) m þ r þ p(K þ 1 þ n)

B 2ðK þ 1ÞL þ n 2 nl m þ r þ pððK þ 1ÞL þ n 2 nl n þ 2(K þ 1)L m þ r þ p((K þ 1)L þ n)

C 2ðK þ 1Þðm þ rÞ m þ r þ pðK þ 1Þðm þ rÞ n þ 2(K þ 1)(m þ r) m þ r þ p þ ((K þ 1)(m þ r) þ n)
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the separable functions transformed by RBF networks, i.e.

ðx̂i 2 r1iÞ
2=2s2

1 for i ¼ 1; 2;…;N1; do not possess the second

useful feature since they largely depend on r1i which is

determined by training data. Consequently, different grid

points should be selected for each of the variables.

Generally speaking, the separable functions converted by

the substitution approach do not possess the two useful

features given above. Therefore, we should carefully select

the grid points for each variable. In some cases, one variable

might included in different types of nonlinear functions. If

their inflection points are located at different intervals, then

more number of grid points are required for each variable

because the grid lengths should be smaller in the neighbor-

hood of the inflection points than other places in the

interesting interval. For example, three inflection points of

sinðx2Þ are distributed at 2 1.3, 0 and 1.3, while four

inflection points of cosðx2Þ are distributed at 21.8, 20.6,

0.6, and 1.8. So that, a large number of grid points are

required for x in order to approximate sinðx2Þ and cosðx2Þ

accurately.

From the point of view of selecting grid points, the

proposed method based on MLPs or MLQPs is superior to

the substitution technique because it can avoid the problem

of selecting miscellaneous sets of grid points and it may use

fewer number of grid points.

5.4. Computational complexity and accuracy

The transforming mechanisms used in the substitution

approach and the proposed method are completely distinct.

The transformation realized by the substitution approach is

to directly replace the nonseparable components of a

function with separable ones. The advantages of this

approach are that (a) the transformation procedure is simple

and straightforward, and (b) no errors exist between the

nonseparable functions and separable functions. The

transformation performed by the proposed method is to

approximate nonseparable functions through learning. In

comparison with the substitution approach, the proposed

method might require more computer memories and times.

In addition, there might exist small errors between the

nonseparable functions and separable functions.

In summary, the advantages of the substitution approach

over the proposed method are its simplicity and its

transformation accuracy. However, its disadvantages are

that (a) it cannot transform the functions whose concise

expressions are unknown and some given nonseparable

functions, and (b) it needs to select miscellaneous sets of

grid points for different types of nonlinear functions.

6. Simulation results

In this section four examples are presented. The

first example is used to illustrate how to transform

a nonseparable NLP problem into an SP problem by the

proposed method, and how to solve the SP problem by

the simplex method with the restricted basis entry rule. The

second example is simulated to demonstrate how to improve

the accuracy of the solutions to NLP problems by

increasing the number of training data and the number of

grid points. The third example is used to demonstrate how to

formulate a practical optimization problem as an SP

problem, in which the constraints have no precise analytic

expression. The last example is used to show the

performance of the simplex method with the restricted

basis entry rule for solving large-scale SP problems.

In the following simulations, Xmin; Xmax; Ymin; and Ymax

were set to 0.001, 0.9999, 0.1, and 0.9, respectively. All of

the MLPs were trained by the standard backpropagation

algorithm (Rumelhart, Hinton, & Williams, 1986).

6.1. Example 1

Consider the following NLP problem

Minimize 2 2 sin2x1 sin2x2 ð29Þ

subject to
0:5 # x1 # 2:5

0:5 # x2 # 2:5

(

Clearly, the above problem is a Type I nonseparable NLP

problem.

In order to transform the problem into an SP problem, the

nonseparable objective function was approximated by a

three-layer MLP with two input, five hidden, and one output

units. The training data set consists of 625 (25 £ 25) input–

output data which were created by sampling the original

objective function over the input space ½0:5; 2:5� £ ½0:5; 2:5�

in a uniform grid. The training inputs and the desired outputs

were normalized by Eqs. (4) and (5), respectively, where

x1
min ¼ x2

min ¼ 0:5; x1
max ¼ x2

max ¼ 2:5; ymin ¼ 1:000314; and

ymax ¼ 1:94717: In the simulation, the learning is considered

complete when the sum of the squared error between the

target and actual outputs becomes less than 0.025. The

parameters of the trained network are as follows

W2 ¼

25:101386; 20:650895

23:985364; 23:489580

24:685999; 3:113827

22:336488; 4:702585

1:291487; 5:230563

2
6666666664

3
7777777775

W3¼½25:129751;5:657458;5:074175;25:235262;4:964876�

u2¼½4:106874;2:906349;20:301974;20:217906;24:580654�T

u3¼½1:881747�

According to Eq. (14), by replacing the nonseparable

objective function with its approximation realized by
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the trained network, we obtain the corresponding SP

problem as follows

Minimize
f ðb31Þ2 f

c
ð30Þ

subject to

where f ¼ 0:881957; c ¼ 1:18357; a1 ¼ a2 ¼ 20:24985;

b1 ¼ b2 ¼ 0:4999; and f ð·Þ denotes the following sigmoidal

activation function

f ðzÞ ¼
1

1 þ expðzÞ
ð31Þ

Approximating the sigmoidal activation function in the SP

problem over the interval ½216; 16� via 14 grid points ^16,

^8, ^5, ^4, ^3, ^2, and ^1, as shown in Fig. 1, the SP

problem can be stated as an ALP problem as defined by Eq.

(22). Solving the ALP problem by the simplex method with

the restricted basis entry rule (Miller, 1963), we obtain an

optimal solution: bp
31 ¼ 21:791901; xp1 ¼ 1:583305 and

xp2 ¼ 1:556218: The corresponding value of the objective

function for the SP problem is 1.051018, whereas the value

of the objective function for the original NLP problem is

1.000369. Solving the original NLP problem directly by the

Powell (1978) method, we obtain an optimal solution: xp1 ¼

1:570801 and xp2 ¼ 1:570801: The corresponding optimal

value is 1.0.

It should be noted that the solutions of the ALP problems

will be slightly different from the solutions of the original

NLP problems since the nonseparable functions and the

nonlinear functions in the original problems are replaced

with their approximations. In the following example, we

will show that this difference can be improved by increasing

the number of training data and the number of grid points.

6.2. Example 2

Consider the following NLP problem (McCormick,

1983)

Minimize

x2
1 2 x2

2 2 2x1x2 þ 8x1 2 3x2 þ expð2x1Þ þ 16

ð32Þ

subject to

26x2
1 þ 9x1x2 2 4x2

2 þ 5x2 þ 6 $ 0

2x1 2 2x2 þ 3 $ 0

22 # x1 # 2

22 # x2 # 2

8>>>>><
>>>>>:

Obviously, this problem is a Type III nonseparable NLP

problem since the objective function and one constraint are

nonseparable functions.

In order to convert the nonseparable objective function

and the nonseparable constraint into separable forms, two

three-layer MLPs were selected each of which has two

input, five hidden and one output units. In the following two

comparative simulations, different numbers of training data

were used. The learning is considered complete when the

sum of the squared error was smaller than 0.01.

In the first simulation, two training data sets were created

by sampling the nonseparable objective function and the

nonseparable constraints over the input space ½22; 2� £

½22; 2� in a uniform grid, respectively. Each of the two

training sets consists of 100 (10 £ 10) training data. After

successfully training of the networks, the original NLP

problem was converted into an SP problem by replacing the

nonseparable objective function and the nonseparable

constraint with their approximations realized by the trained

networks. Approximating the nonlinear functions in the SP

problem with 14, 28, 40, 62, 72, and 100 grid points,

respectively, we obtain six related ALP problems. Solving

the ALP problems by the simplex method with the restricted

basis entry rule, we obtain six optimal solutions, which are

shown in Table 4 (left part) and plotted in Fig. 2. From

Fig. 2, we can easily see that the accuracy of the optimal

solutions is improved as the number of grid points increases.

In the second simulation, the number of training data in

each of the two training sets was largely increased in order

to improve the accuracy of approximating the nonseparable

objective function and the nonseparable constraint. Here,

each of the two training sets consists of 1600 (40 £ 40)

training data. Following the same way as described in the

first simulation, we obtain six optimal solutions, which are

bO
31 þ 5:12975f ðb21Þ2 5:657458f ðb22Þ2 5:074175f ðb23Þ þ 5:235262f ðb24Þ2 4:964867f ðb25Þ ¼ 1:881747

bO
21 þ 5:101386ða1 þ b1x1Þ þ 0:650895ða2 þ b2x2Þ ¼ 4:106874

bO
22 þ 3:985364ða1 þ b1x1Þ þ 3:489580ða2 þ b2x2Þ ¼ 2:906349

bO
23 þ 4:685999ða1 þ b1x1Þ2 3:113827ða2 þ b2x2Þ ¼ 20:301974

bO
24 þ 2:336488ða1 þ b1x1Þ2 4:702585ða2 þ b2x2Þ ¼ 20:217906

bO
25 2 1:291487ða1 þ b1x1Þ2 5:230563ða2 þ b2x2Þ ¼ 24:580654

0:5 # x1 # 2:5

0:5 # x2 # 2:5

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

B.-L. Lu, K. Ito / Neural Networks 16 (2003) 1059–1074 1069



also shown in Table 4 (right part) and plotted in Fig. 2. From

Fig. 2, we see that better solutions than those of the first

simulation were obtained by increasing the number of

training data for approximating the nonseparable functions.

McCormick (1983) solved the original NLP problem by

using the variable-reduction method, and reported the

following optimal solution: xp1 ¼ 21:014423; xp2 ¼

20:044096: The corresponding optimal value is tðxpÞ ¼

11:712723: Fig. 3 shows the NLP problem and its four

different solutions.

The simulation results mentioned above indicate that, in

order to get good solutions, not only a sufficient number of

training data are required for approximating the nonsepar-

able functions in NLP problems, but also a sufficient number

of grid points are necessary for approximating the nonlinear

functions in the corresponding SP problems.

6.3. Example 3

Consider the inverse kinematics problem of a redundant

manipulator (Schilling, 1994). If its precise analytic forward

kinematic function is given, the inverse kinematics problem can

be formulated as the following NLP problem (Lu &Ito, 1996)

Minimize tðqÞ ð33Þ

Subject to
�p ¼ zðqÞ

G # q # V;

(

where q is the joint-angle variables, �p is the desired end-effector

position, zðqÞ is the forward kinematic function, G and V are

joint-angle limits, respectively, and tðqÞ is the objective

function.

It has been shown that the NLP problem stated by Eq. (33)

can be transformed into an SP problem by introducing

auxiliary variables (Lu & Ito, 1996). For some complex

redundant manipulators, however, their precise analytic

forward kinematic functions are usually unknown. In such

cases, it is difficult to formulate the inverse kinematicsproblem

as an NLP problem defined by Eq. (33). In the following

simulation, we demonstrate that the proposed method

provides a useful approach to dealing with this difficulty.

Fig. 1. (a) Shows the piecewise linear approximation of the sigmoidal

activation function over the interval ½216; 16� via 14 grid points ^16;^8;

^5; ^4; ^3; ^2; ^1; (b) and (c) show the errors between the original

sigmoidal activation function and its piecewise linear approximations with

14 and 40 grid points, respectively.

Table 4

Comparison of the solution of the NLP problem, whose nonseparable functions were approximated with different numbers of training data, and the nonlinear

functions in the corresponding SP problems were approximated under different numbers of grid points

Grid points No. of training data ¼ 100 No. of training data ¼ 1600

Optimal solution Optimal value t(x p) Optimal solution Optimal value t(x p)

xp1 xp2 xp1 xp2

14 20.648782 0.010571 13.125986 20.708971 20.025542 12.903833

28 20.926872 20.156283 12.174273 20.981604 20.189123 12.011294

40 21.011951 20.207331 11.924760 21.055762 20.233617 11.804844

62 21.022869 20.213881 11.894318 21.057518 20.234671 11.800164

72 21.024989 20.215154 11.888444 21.059833 20.23609 11.794005

100 21.036463 20.222038 11.856924 21.070795 20.242637 11.765095
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Fig. 2. Values of the objective function vs. number of grid points for two data sets with different numbers of training data used for approximating the

nonseparable objective function and the nonseparable constraint. The dashed line shows the case where 100 training data were used. The solid line shows the

case where 1600 training data were used.

Fig. 3. Graphical representations of the NLP problem stated by Eq. (32) and its four different solutions. The small open circle denotes the optimal solution

obtained by solving the NLP problem with the variable-reduction method. Three filled disks denote the optimal solutions obtained by solving the corresponding

ALPs problem by means of the simplex method with the restricted basis entry rule, where 1600 training data and three different numbers of grid points were

used. The disks from right to left correspond to the solutions of the ALP problems with 14, 28 and 100 grid points for each variable, respectively.
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Without loss of generality and for simplicity of

illustration, let us consider a three-angle planar manipulator

shown in Fig. 4. Suppose that the precise analytic forward

kinematic function of the manipulator is unknown, and the

motion of the joints q1; q2; and q3 are restricted to the

intervals ½2p=6; 2p=3�; ½0; 5p=6�; and ½2p=6;p=6�; respect-

ively. For approximating the forward kinematic function by

using FNNs, 1331 training data were collected. Each of the

training data consists of a pair of joint-angle and end-

effector position.

In order to speed up the training process for approxi-

mating the forward kinematic function and to reduce the

computational cost for finding inverse kinematics solutions,

a modular network architecture was used (Lu & Ito, 1995).

According to this architecture, the learning task was divided

into eight subtasks by partitioning the configuration space

Q into eight overlapping subregions via the grid points:

ð2p=6; 3p=12; 2p=3Þ; ð0; 5p=12; 5p=6Þ; and ð2p=6; 0;p=6Þ:

Over each of the subregions, about 200 training data were

used. Eight network modules were selected for approximat-

ing the forward kinematic function. Each of them is a three-

layer MLP with 3 input, 10 hidden, and 2 output units.

From network inversion’s point of view, if the feedfor-

ward kinematic function is precisely approximated by all the

network modules, solving the inverse kinematic problem is

equivalent to inverting the corresponding trained network

modules. The inverse problem for MLPs can be formulated

as the following NLP problem (Lu, Kita, & Nishikawa, 1999)

Minimize tðqÞ ð34Þ

Subject to

�b3 2 W3f2ðb2Þ ¼ u3

b2 2 W2ðaþ bq ¼ u2

G # q # V

8>><
>>:

where W3; W2; u3; u2; �b3;a;b; G; and V are constants, q and

b2 are variables. It has been shown that the NLP problem

defined by Eq. (34) is an SP problem (Lu et al., 1999),

provided that tðqÞ is a separable function.

Comparing Eq. (33) with Eq. (34), we see that the MLPs

play two important roles in formulating the inverse

kinematics problem. One is to approximate the forward

kinematic function from data, and the other is to transform

the forward kinematic function into a separable function. To

compute multiple inverse kinematic solutions, we select the

objective function tðqÞ of Eq. (34) as: tðqÞ ¼ ^qi for i ¼

1; 2; 3: This objective function allows us to minimize and

maximize the movement of the ith link. For example, let us

compute the inverse kinematic solutions for the desired end-

effector position �p ¼ ð20:4; 0:2Þ: According to the partition

Fig. 5. Four different inverse kinematic solutions obtained by solving the SP

problem defined by Eq. (34). Note that two of solutions are quite near and

overlapped in the figure.

Fig. 4. A three-joint planar manipulator.

Fig. 6. Ten handwritten digits whose actual outputs were selected as the

given outputs.

Table 5

Comparison of the sizes of the ALP problems and CPU times

No of grid points No of variables No of constraints CPU time (s)

14 676 576 841

28 1096 576 1521

40 1456 576 2323
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of the configuration space, four network modules were

selected for inverting. By approximating the sigmoidal

activation functions including in the SP problems over the

interval ½216; 16� via 14 grid points ^16;^8;^5;^4;^3;

^2; ^1; we solve the corresponding ALP problems by the

simplex method with the restricted basis entry rule, and

obtain four inverse kinematic solutions shown in Fig. 5. The

results demonstrate that even if we have no precise analytic

forward kinematic function, we can formulate the inverse

kinematic problem as an SP problem by the proposed

method and obtain the inverse kinematic solutions

successfully.

6.4. Example 4

One of the most important aims of transforming NLP

problems into SP problems is to generalize the simplex

method to solve large-scale NLP problems, because of the

lack of reliable and efficient computer-implemented

algorithms for solving large-scale NLP problems. In order

to show the performance of the simplex method with the

restricted basis entry rule for solving large-scale SP

problems, we consider a relatively larger SP problem in

the following simulations.

Consider the problem of inverting the trained three-layer

MLP for handwritten ZIP code recognition (Le Cun et al.,

1989). The network has 256 input, 30 hidden and 4 output

units. It has been shown that this inverse problem can be

formulated as the following SP problem (Lu et al., 1999):

Minimize
xi ;b2i

^
X256

i¼1

xi ð35Þ

Subject to

�b3i 2
X30

j¼1

w3ijf ðb2jÞ ¼ u3i; i ¼ 1;…; 4

b2i 2
X256

j¼1

w2ijxj ¼ u2i; i ¼ 1;…; 30

0:01 # xi # 0:99; i ¼ 1;…; 256;

8>>>>>>>><
>>>>>>>>:

where �b3i ¼ f21ð�yiÞ; w3ij; u3i; w2ij; and u2i are constants, b2i

and xi are variables, and f ð·Þ denotes the sigmoidal

activation function stated by Eq. (31).

In the simulation, the actual outputs of the network

corresponding to the ten handwritten digits shown in Fig. 6

were selected as the given outputs �y: Thus, solving the

inverse problem means to find some typical inputs which will

give rise to the given outputs. Approximating the sigmoidal

functions with 14, 28, and 40 grid points, we obtain the

corresponding three ALP problems. The number of variables

and the number of constraints3 in each of the ALP problem

are shown in Table 5. Solving the ALP problems by the

simplex method with the restricted entry rule, we get 60

network inversions corresponding to the ten given outputs.

Fig. 7. Network inversions corresponding to the actual outputs of the handwritten digits ‘0’ through ‘9’ shown in Fig. 6. The 10 panels in the top two rows and

the 10 panels in the bottom two rows show the inversions obtained by minimizing
P256

i¼1 and maximizing
P256

i¼1 xi; respectively.

3 In this example, all of the inequivalent constraints l $ 0 were omitted

in the simulations.
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The average CPU time on a SUN Ultra2 workstation for

solving each of the ALP problems is also shown in Table 5.

Fig. 7 illustrates 20 network inversions corresponding to the

actual outputs of the 10 handwritten digits shown in Fig. 6,

which were obtained by solving the SP problem with 28 grid

points. Presenting the 60 network inversions to the trained

network as novel inputs, we see that the outputs produced by

the trained network are almost the same as the given outputs.

This shows that the 60 network inversions are reasonable

optimal solutions of Eq. (35).

7. Conclusions

We have shown that how FNNs such as MLPs, RBF

networks, and MLQPs can be used to convert nonseparable

functions into separable functions. Applying this useful

feature and their universality of function approximation to

nonlinear programming problems, we have presented a

new method for transforming nonseparable nonlinear

programming problems into separable programming pro-

blems. We have compared the proposed method with

existing transformation techniques. The most important

advantage of the proposed method is that it can be used to

convert the functions whose concise expressions are

unknown by training a network on a set of data. As a

result, complex optimization problems can be formulated

as separable programming problems even when their exact

models are unknown. We have demonstrated the method

and its applications through four examples. The simulation

results show that our method might largely broaden the

applicability of the simplex method to solving nonlinear

programming problems and open up a new area of

applying FNNs to mathematical programming and system

optimization.
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