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Abstract- The min-max modular support vector machines
(M3-S Ms) have been proposed for solving large-scale and
complex multiclass classification problems. In this paper, we
apply the M3-S Ms to multilabel text categrization and introduce
a new task decomposition strategy into M3-S Ms. A multilabel
classification task can be split up into a set of two-class clas-
sification tasks. These two-class tasks are to discriminate the C
class from non-C class. If these two class tasks are still hard to be
learned, we can further divide them into a set of two-class tasks as
small as needed and fast training of S Ms on massive multilabel
texts can be easily implemented in a massively parallel way.
Furthermore, we proposed a new task decomposition strategy
called hyperplane task decomposition to improve generalization
performance. The experimental results on the RC l-v2 indicate
that the new method has better generalization performance than
traditional S Ms and previous M3-S Ms using random task
decomposition, and is much faster than traditional S Ms.

I. INTRODUCTION

With the rapid growth of online information, text classi-
fication has become one of the key techniques for handling
and organization of text data. Various pattern classification
methods have been applied to text classification for the need.
Due to their powerful learning ability and good generalization
performance, Support Vector Machines (SVMs) [1][2] have
been successfully applied to various pattern classification
problems. Joachims (1997) [3] and Yang (1999) [4] made
experiments on the same text data set respectively. Both
experimental results showed that SVMs yield lower error rate
than many other classification techniques, such as Naive Bayes
and K-Nearest Neighbors. However, to train SVMs on large-
scale problems is a time-consuming task, since their training
time is at least quadratic to the number of training samples.
Therefore, it is a hard work to learn a large-scale text data set
using traditional SVMs.
On the other hand, Lu and Ito (1999) [5] proposed a

min-max modular (M3) network for solving large-scale and
complex multiclass classification problems effortlessly and
efficiently. And the network model has been applied to
learning large-scale, real world multiclass problems such as
part-of-speech tagging and classification of high-dimensional,
single-trial electroencephalogram signals. Recently, Lu and
his colleagues [61 have proposed a part-versus-part task de-
composition method and a new modular SVM, called min-
max modular support vector machine (M3-SVM), which was
developed for solving large-scale multiclass problems.

In this paper, we will apply M1-SVMs to multilabel text
classification and adopt several new strategies of dividing a
large-scale sample data set into many small sample data sets to
try to investigate the influence of different task decomposition
methods on the generalization performance and training time.

This paper is structured as follows. In the section II,
M3-SVMs are introduced briefly. In the section III, several
different task composition strategies are listed. Then in the
section IV, we designed a set of experiments on a large-scale
multilabel text classification. And the training time and the
performance of text classification using SVMs and different
M3-SVMS will be compared. In Section V, conclusions are
outlined.

II. MIN-MAX MODULAR SUPPORT VECTOR MACHINES
The min-max modular support vector machine [6] is a

method that divides a complex classification problem into
many small independent two-class classification problems and
then integrates these small SVMs according to two module
combination rules, namely the minimization principle and the
maximization principle [5].

For a two-class problem T, let X+ denote the positive
training data set belonging to a particular category C and X
denote the negative training data set not belonging to C.

X+ -I(X+ ±11i, X = { (xi I (1)
where xi e R'1 is the input vector, and + and are the total
number of positive training data and negative training data of
the two-class problem, respectively.

According to [6], X+ and X can be partitioned into N+
and N subsets respectively,

(2)

(3)

where UNX+ - X+, 1 < N+ < +, and _=lxj
X ,1<N <

After decomposing the training data sets X+ and X
the original two-class problem T is divided into N+
N relatively smaller and more balanced two-class subprob-
lems T(Lj) as follows:

(T(ij)) =X= +, (T(i j)) = X

0-7803-9048-2/05/$20.00 ©2005 IEEE

(4)

1) I t-I

,vi+ = t (X+j + 1) ii'+= for j 1, . . . I N+
iXi = f(xll I 1) I' , for j II ... N
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TABLE I
RESULTS ON CCAT,WHERE C=0.5

method # CPU time (s.) Speed up performance
SVMs parallel serial parallel serial P R F1

I1 1 898 898 - - 94.9 91.3 93.0
4 290 989 3.10 0.91 94.9 90.7 92.8

2 9 125 934 7.2 0.96 94.9 90.2 92.5
16 56 670 16.0 1.34 94.8 89.9 92.3
30 32 667 28.1 1.35 93.6 90.9 92.2
4 373 839 2.41 1.07 94.4 91.6 93.0

a 9 178 688 5.04 1.31 94.6 91.7 93.1
16 84 540 10.7 1.66 94.5 91.7 93.1
30 47 563 19.1 1.60 93.5 92.7 93.1
4 379 930 2.37 0.97 94.5 91.6 93.1

b 9 178 854 5.04 1.05 94.8 91.6 93.2
16 85 621 10.56 1.45 94.6 91.6 93.1
30 48 647 18.71 1.39 93.7 92.6 93.2
4 379 978 2.37 0.92 94.6 91.5 93.0

3 c 9 177 929 5.07 0.97 94.8 91.5 93.2
16 85 677 10.56 1.33 94.7 91.5 93.1
30 52 707 17.27 1.27 93.8 92.6 93.2
4 374 1023 2.40 0.88 94.7 91.5 93.1

d 9 179 1009 5.02 0.89 94.9 91.5 93.2
16 87 781 10.32 1.15 94.7 91.6 93.1
30 53 754 16.94 1.19 93.9 92.6 93.2
4 426 1260 2.11 0.71 94.8 91.5 93.1

e 9 214 1003 4.20 0.90 95.0 91.3 93.1
16 110 975 8.16 0.92 94.9 91.5 93.2
30 60 894 14.97 1.00 94.0 92.6 93.3

TABLE 11
RESULTS ON ECAT,wHERE C=0.5

method # CPU time (s.) Speed up performance
SVMs parallel serial parallel serial P R F1

1 607 607 - - 92.7 64.1 75.8
3 186 531 3.26 1.14 84.7 74.7 79.4

2) 7 53 347 11.45 1.75 73.8 82.5 77.9
20 21 365 28.90 1.66 78.5 78.3 78.4
26 16 365 37.94 1.66 74.5 81.1 77.7
3 234 461 2.59 1.32 87.9 71.0 78.6

a 7 66 307 9.20 1.98 80.4 78.9 79.6
20 34 300 17.85 2.02 82.6 77.5 80.0
26 26 310 23.35 1.96 79.0 80.6 79.8
3 233 501 2.61 1.21 88.7 70.3 78.4

b 7 68 334 8.93 1.82 81.5 78.0 79.7
20 34 343 17.85 1.77 83.4 77.2 80.2
26 27 353 22.48 1.72 79.8 80.1 79.9
3 233 519 2.61 1.17 89.1 70.0 78.4

3 c 7 72 350 8.43 1.73 82.0 77.5 79.7
20 36 363 16.86 1.67 83.8 76.9 80.2
26 28 373 21.68 1.63 80.2 79.9 80.0
3 254 579 2.39 1.05 89.4 69.6 78.3

d 7 79 379 7.68 1.60 82.6 77.1 79.7
20 38 391 15.97 1.55 83.8 76.9 80.2
26 30 402 20.23 1.51 80.5 79.8 80.1
3 239 590 2.54 1.03 89.9 68.9 78.0

e 7 85 428 7.14 1.42 83.7 76.3 79.8
20 42 451 14.45 1.35 84.1 76.7 80.3
26 34 473 17.85 1.28 81.2 79.7 80.4

where (T('ij))+ and (T(i,j)) denote the positive and negative
training data set of subproblem T(L,j) respectively.

In the learning phase, all the two-class subproblems are
independent from each other and can be efficiently learned
in a massively parallel way.

After training, the N+ N smaller SVMs are integrated
into an M3-SVM with N+ MIN units and one MAX unit
according to two combination principles [5][6] as follows,

Ti(x) = mninT(i'j)(x) and T(x) = maxTf(x) (5)
j=1 i=1

for i = 1,..., N+

where T(iJ))(x) denotes the transfer function of the trained
SVM corresponding to the two-class subproblem Tf(,J), and
fi(x) denotes the transfer function of a combination of N
SVMs integrated by the MIN unit.

III. Two TYPES OF TASK DECOMPOSITION STRATEGIES

Task decomposition is one of the two key problems in
the M3-SVM. In this section, we will introduce two types
of task decomposition methods. One is the random task
decomposition strategy, and the other is the hyperplane task
decomposition strategy [7].

A. Random Task Decomposition Strategy
The random task decomposition method is a simple and

straightforward strategy. It means that we randomly pick up
samples to form a new smaller and more balanced training data
set. We refer to the M3-SVM using random decomposition as
M3-SVM (R). Though the strategy can be implemented easily,
it might lead to partial loss of statistical properties of original
training data and thus result in the decrease in the performance
of text classification.

B. Hyperplane Task Decomposition Strategy
An ideal decomposition method is the one doing no damage

to generalization performance. In order to achieve this goal,
we hope to maintain the structural properties of the smaller
data sets as those of original data set after task decomposition.
Based on the idea, we first introduce a specific hyperplane,
and then divide original training set into smaller training set
using a series of hyperplanes which are parallel with the
hyperplane introduced. We refer to the M3-SVM using the
proposed hyperplane task decomposition strategy as M3-SVM
(H).
Now our problem is whether the hyperplane task decom-

position strategy is the most reasonable. In order to get
a more balanced training set, we also tentatively let some
training samples in the neighborhood of these hyperplanes
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TABLE III
RESULTS ON GCAT,WHEREC=0.5

method # CPU time (s.) Speed up performance
SVMs parallel serial parallel serial P R F1

11 785 785 - - 95.5 89.1 92.2
3 309 805 2.54 0.98 90.8 93.9 92.3

2 8 126 675 6.23 1.16 92.7 91.9 92.3
18 44 511 17.84 1.54 92.5 91.7 92.1
24 35 522 22.43 1.50 90.1 93.3 91.7
3 374 750 2.10 1.05 92.8 91.7 92.2

a 8 141 552 5.57 1.42 93.5 91.0 92.2
18 55 448 14.27 1.75 93.2 90.9 92.1
24 45 474 17.44 1.66 91.1 92.4 91.8
3 375 789 2.10 0.99 93.1 91.4 92.3

b 8 142 658 5.53 1.19 93.7 90.9 92.3
18 55 519 14.27 1.51 93.3 91.0 92.1
24 45 532 17.44 1.48 91.3 92.4 91.9
3 378 807 2.08 0.97 93.3 91.3 92.3

3 c 8 141 719 5.57 1.09 93.7 90.9 92.3
18 55 552 14.27 1.42 93.3 91.1 92.2
24 46 572 17.07 1.37 91.3 92.4 91.9
3 387 872 2.03 0.90 93.4 91.1 92.3

d 8 151 825 5.20 0.95 93.7 90.9 92.3
18 58 609 13.53 1.29 93.4 91.1 92.2
24 47 635 16.70 1.24 91.5 92.4 91.9
3 393 923 2.00 0.85 93.7 90.9 92.3

e 8 182 937 4.31 0.84 93.9 90.9 92.4
18 64 691 12.27 1.14 93.4 91.2 92.3
24 51 708 15.39 1.11 91.7 92.4 92.0

TABLE IV
RESULTS ON MCAT,WHERE C=0.5

method # CPU time (s.) Speed up performance
SVMs parallel serial parallel serial P R F1

I1 1 636 636 - - 94.5 87.2 90.7
4 184 663 3.46 0.96 87.9 93.7 90.7

2 12 49 411 12.98 1.55 89.6 91.7 90.6
24 25 419 25.44 1.52 90.4 90.8 90.6
40 15 462 42.40 1.38 90.7 89.8 90.3
4 179 571 3.55 1.11 89.5 92.1 90.7

a 12 53 350 12.00 1.82 90.5 91.4 91.0
24 31 355 20.52 1.79 91.2 90.8 91.0
40 22 396 28.91 1.61 91.4 90.2 90.8
4 194. 614 3.28 1.04 90.2 91.6 90.9

b 12 58 394 10.97 1.61 90.8 91.4 91.1
24 32 408 19.88 1.56 91.5 90.8 91.1
40 23 449 27.65 1.42 91.6 90.4 91.0
4 204 639 3.12 0.99 90.5 91.4 90.9

3 c 12 61 418 10.43 1.52 91.0 91.4 91.2
24 34 438 18.71 1.45 91.5 90.8 91.2
40 23 471 27.65 1.35 91.7 90.4 91.0
4 224 694 2.84 0.92 90.8 91.1 91.0

d 12 67 477 9.49 1.33 91.0 91.4 91.2
24 37 479 17.19 1.33 91.6 90.8 91.2
40 25 537 25.44 1.18 91.8 90.4 91.1
4 239 737 2.66 0.86 91.3 90.7 91.0

e 12 73 561 8.71 1.13 91.3 91.1 91.2
24 39 540 16.31 1.18 91.7 90.8 91.3
40 28 595 22.71 1.07 91.8 90.3 91.1

simultaneously belong to two smaller and more balanced
training set divided by hyperplanes, since massive data set
in the real world could be fuzzy. We refer to the part of small
training set simultaneously belonging to adjacent training set
as overlap of the small training set.

Suppose we divide the training data set of class Ci into Ni
subsets. According to the above discussions, the M3-SVM (H)
method can be described as follows.

Step 1 Compute the distance between each training sample
x of class Ci and hyperplane H: Az = 0 as follows,

dist(x, H) = hAll (6)

where x = [xi, ...,xn] is sample vector, A = [ai,..., an] is
the normal vector of hyperplanes, and z = [Z1, ..., Zn] is any
point in hyperplane H.

Step 2 Sort the training data according to the value of
dist(x, H).

Step 3 Divide the ordered sequence of training data to Ni
parts equally, and then we can get more balanced subsets
whose sizes are almost the same.

Step 4 Construct M3-SVMs according to section II
From the above decomposition procedure, we can see that

the hyperplane task decomposition can be easily implemented.

However, a problem remained is how to determine the nor-
mal vector A of hyperplane. Experimentally, we take A =
[1,1, ..., 1]. There are two reasons that we choose this value of
A. Firstly, in most cases of text categorization, the dimensions
of sample vectors are very sparse. Therefore, in order to validly
separate those samples mostly in every coordinates axis or
planes, hyperplanes we used had better not be parallel with
the coordinates axis or planes. The most effective way is to
set their normal vector be 45 degree against all coordinates
axis or planes, which leads to the results of setting a normal
vector in which all elements are 1. Secondly, a hyperplane
decomposition is equally a sorting operation of all input data
according to all dimensional elements under a specified weight
vector, which is just the normal vector A. Since we don't
often own much prior knowledge of text data sets, and it
is hard to determine which dimensional element is more
important, therefore, it is natural to give the same weights
on each dimension of all data. An illustration of hyperplane
decomposition for sparse vectors in a two-dimension space is
given in Fig. 1.

IV. EXPERIMENTS
In this section, we present experimental results for a text

classification problem to indicate that the proposed hyperplane
task decomposition method for M3-SVMs is effective. We
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Normal Vector
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Fig. 1. Hyperplane in a two-dimension space where most sample vectors
are sparse vectors. Forks and circles belong to one class. The dashed ellipses
denote that the samples in it are clustered into a subproblem data set. HP is
the so-called hyperplane, since this is a two-dimension space.

use the revised edition of Reuters Corpus Volume I (RCVI-
v2) [8], for this study. There is an archive of over 800,000
manually categorized newswire stories in the full collections.
In the simulations, we selected the top four classes, namely
CCAT, ECAT, GCAT and MCAT, as given classes. CCAT
denotes corporate/Industrial class, ECAT economics class,
GCAT government/social class and MCAT markets class. Our
training set has a size of 23,149 samples, and our testing set
has a size of 199,328 samples from the first of four test data
sets . The number of features for representing texts in the
simulations is 47,152.
Now, the data set falls into the multilabel setting. Here we

adopt the "one-versus-rest" strategy. Namely, a multilabel task
[9] can be split up into a set of two-class classification tasks.
Each category is treated as a separate two-class classification
problem. Such a two-class problem only answers the question
of whether or not a document should be assigned to a
particular category. Therefore our multilabel classification task
can be converted into four two-class classification tasks. Then
we adopt the "part-versus-part" strategy, and each two-class
classification task is decomposed into a series of two-class
subproblems using different decomposition strategies.

After training all individual SVMs employed to solve two-
class subproblems, we use min-max combination strategies to
integrate the trained individual SVMs into a M3:-SVM. The
version of the SVMs package is Libsvm2.4. We reprogram
it into the MPI parallel program, namely M3-SVMs. All the
simulations were performed on an IBM p690 machine. It
totally has 32 CPUs each of which is Power 4, 1.3GHZ.
To compare the performance of M3-SVM(H) with tradi-

tional SVM and M3-SVM(R), the text classification prob-

lem was learned by traditional SVM, MV3-SVM(R) and M13-
SVM(H) respectively. For the reason that, in many text
categorization cases, linear kernel function can get a better
generalization performance than other kernel functions such as
polynomial and radial basis functions. So in our simulations,
we take it as the main kernel function of SVMs. We have also
used RBF kernel function to validate the former judgment.
According to the discussion in Section III-B, we set the
hyperplane H: AZ = 0 with ones normal vector.

In Tables I through IV, '1', '2', and '3' denote that SVM,
M3-SVM(R), and M:3-SVM(H) are used in the simulation
respectively. '#SVMs', 'P' and 'R' refer to the number of
SVM classifiers, precision and recall. 'a', 'b', 'c', 'd', and
'e' respectively stand for no overlapping, 10% overlapping,
15% overlapping, 20% overlapping, and 30% overlapping of
training data of subproblems for M3-SVM(H) method.
We have made four groups of experiments according to

different parameter C, which controls the tradeoff between
complexity of the machine and the number of nonseparable
points. In the simulations, we take C as 0.5, 1, 2 and 4
respectively. However, we only list the detailed results of each
class with C=0.5, since the results are comparatively more
representative than others for almost all methods.

For evaluating the effectiveness of category assignments by
classifiers to documents, we use the standard recall, precision
and F1 measure[l0I]. Recall is defined to be the radio of the
total number of correct assignments to correct assignments by
the system. Precision is the ratio of the total number of the
system's assignments to correct assignments by the system.

R= utp p tpRz=tfn tp±+fp(7
where tp is the number of documents a system correctly
assigns to the category (true positives), fp is the number of
documents a system incorrectly assigns to the category (false
positives), and fn is the number of documents that belong
to the category but which the system does not assign to the
category (false negatives).
The F1 measure corresponds to the harmonic mean of recall

and precision in the following form:

F, = 2tp _ 2RP
2tp+ fp+ fn R+P (8)

where R is recall, and P is precision.
F1 has been widely used in cross-method comparisons. Thus

it is our main interest in the simulations.
From the experimental results shown in Tables I through IV,

we can draw the following conclusions:
a. Even though all of the individual SVMs were trained in

serial, M3-SVMs including M3-SVMs(R) and M3-SVMs(H)
is also much faster than traditional SVMs for four classes on
the whole. And with the increase of classifiers, M3-SVMs need
less and less training time.

b. In most cases, the generalization performance of M3-
SVMs(R) is fluctuant. In some cases, M3-SVMs(R) has better
generalization performance than traditional SVM and in other
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TABLE V
COMPARISON OF GENERALIZATION PERFORMANCE AND TRAINING TIME AMONG METHODS ,WHERE C=0.5

category method # CPU time (s.) Speed up performnance
SVMs parallel serial parallel serial precision recall F1

SVM 1 898 898 - - 94.9 91.3 93.0
M3-SVM(R) 4 290 989 3.10 0.91 94.9 90.7 92.8

no overlap 30 47 563 19.1 1.60 93.5 92.7 93.1
CCAT 10% overlap 30 48 647 18.71 1.39 93.7 92.6 93.2

M3-SVM(H) 15% overlap 30 52 707 17.27 1.27 93.8 92.6 93.2
20% overlap 30 53 754 16.94 1.19 93.9 92.6 93.2
30% overlap 30 60 894 14.97 1.00 94.0 92.6 93.3

SVM 1 607 607 - - 92.7 64.1 75.8
M3-SVM (R) 3 186 531 3.26 1.14 84.7 74.7 79.4

no overlap 20 34 300 17.85 2.02 82.6 77.5 80.0
ECAT 10% overlap 20 34 343 17.85 1.77 83.4 77.2 80.2

M3-SVM (H) 15% overlap 20 36 363 16.86 1.67 83.8 76.9 80.2
20% overlap 20 -38 391 15.97 1.55 83.8 76.9 80.2

-_______ 30% overlap 26 34 473 17.85 1.28 81.2 79.7 80.4
SVM 1 785 785 - - 95.5 89.1 92.2

M3-SVM (R) 8 126 675 6.23 1.16 92.7 91.9 92.3
no overlap 8 141 552 5.57 1.42 93.5 91.0 92.2

GCAT 10% overlap 8 142 658 5.53 1.19 93.7 91.0 92.3
M3-SVM (H) 15% overlap 8 141 719 5.57 1.09 93.7 90.9 92.3

20% overlap 8 151 825 5.20 0.95 93.7 90.9 92.3
30% overlap 8 182 937 4.31 0.84 93.9 90.9 92.4

SVM 1 636 636 - - 94.5 87.2 90.7
M3-SVM (R) 4 184 663 3.46 0.96 87.9 93.7 90.7

no overlap 24 31 355 20.52 1.79 91.2 90.8 91.0
MCAT 10% overlap 24 32 408 19.88 1.56 91.5 90.8 91.1

M3MSVM (H) 15% overlap 24 34 438 18.71 1.45 91.5 90.8 91.2
20% overlap 24 37 479 17.19 1.33 91.6 90.8 91.2
30% overlap 24 39 540 16.31 1.18 91.7 90.8 91.3

cases, the reverse occurs. The experimental results support that
in some case, random task decomposition might damage struc-
tual properties of original training data. However, when the
generalization performance is very bad for some training set,
for example for class ECAT, the generalization performance
of M3-SVM(R) can also be raised by 4.6% at the best case
and still by 1.9% at the worst case.

c. In most cases, M3-SVMs(H) shows better generalization
performance than traditional SVMs and M3-SVMs(R). And
with the increasing number of classifiers, M3-SVMs(H) has
better and better generalization performance. On the other
hand, while the number of the classifiers increases, training
time also is on the decrease.

d. In all cases, M3-SVMs(R) and M3-SVMs(H) need much
less training time than traditional SVMs, and compared with
M3-SVMs(H), M3-SVMs(R) needs a little less training time.
The communication expense in M3-SVMs in the testing phase
focuses on the MIN and MAX procedure, but this time cost
is trivial.

For more clear comparison, we organize experimental re-
sults of different methods with all best generalization perfor-
mance for each particular class into Table V. And we also

give a detailed comparison on the performance of different
methods corresponding to different parameter C in Table VI.
The meanings of 'a', 'b', 'c', 'd' and 'e' are the same as Table
I. We can see that M3-SVMs, especially M3-SVMs(H), is the
best choice for text classification problems.

V. CONCLUSIONS

We have presented a new hyperplane task decomposition
strategy for M3-SVMs for multilabel text classification. The
advantages of the proposed method over traditional SVMs
are its parallelism and scalability. Experimental results proved
this point. And compared with M3-SVM (R), M3-SVMs (H)
has better generalization performance. When overlap ratio of
training set is appropriate, M3-SVMs (H) has better gener-
alization performance. With the increase in the number of
classifiers, the performance of M3-SVMs (H) could reach a
maximum. A future work is to search for breakpoint between
overlapping ratio and the number of classifiers and analyze
the effectiveness of the hyperplane decomposition strategy
theoretically.
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TABLE VI
COMPARISON OF GENERALIZATION PERFORMANCE AMONG DIFFERENT PARAMETER C FOR FOUR CLASSES

category method C=0.5 C= I C=2 C=4
SVMs P R F P R F1 P R F1 P R F1

SVM 1 94.9 91.3 93.0 93.4 92.3 92.8 93.2 90.5 91.8 91.4 88.8 90.1
M3-SVM(R) 4 94.9 90.7 92.8 94.4 90.9 92.6 93.6 90.3 91.9 92.3 89.2 90.7

a 30 93.5 92.7 93.1 93.5 92.4 93.0 92.9 91.3 92.1 91.8 90.2 91.0
CCAT b 30 93.7 92.6 93.2 93.7 92.3 93.0 93.0 91.2 92.1 91.9 90.0 90.9

M3-SVM(H) c 30 93.8 92.6 93.2 93.7 92.3 93.0 93.1 91.1 92.1 92.0 90.0 91.0
d 30 93.9 92.6 93.2 93.7 92.3 93.0 93.0 91.1 92.1 91.9 90.0 90.9
e 30 94.0 92.6 93.3 93.9 92.3 93.1 93.2 91.0 92.1 92.0 89.7 90.8

SVM 1 92.7 64.1 75.8 90.0 67.5 77.2 86.1 69.0 76.6 80.4 68.8 74.2
M3-SVM (R) 3 84.7 74.7 79.4 83.8 75.4 79.1 91.4 73.7 77.4 78.5 71.0 74.6

a 20 82.6 77.5 80.0 82.0 77.7 79.8 80.8 75.8 78.2 79.6 73.1 76.2
ECAT b 20 83.4 77.2 80.2 82.6 77.4 79.9 81.0 75.6 78.2 79.3 73.1 76.1

M3-SVM (H) c 20 83.8 76.9 80.2 82.9 77.2 80.0 81.2 75.5 78.3 78.7 73.8 76.2
d 20 83.8 76.9 80.2 82.9 77.2 80.0 81.2 75.5 78.3 78.7 73.8 76.2
e 26 81.2 79.7 80.4 81.1 78.9 80.0 81.6 75.1 78.2 80.1 72.4 76.1

SVM 1 95.5 89.1 92.2 94.9 89.4 92.0 93.4 88.7 91.0 90.9 86.8 88.8
M3-SVM (R) 8 92.7 91.9 92.3 92.7 91.6 92.1 91.9 90.6 91.2 90.8 89.0 89.9

a 8 93.5 91.0 92.2 93.2 90.6 91.9 92.1 89.3 90.7 90.5 87.6 89.0
GCAT b 8 93.7 91.0 92.3 93.3 90.5 91.9 92.4 89.2 90.8 90.8 87.5 89.1

M3-SVM (H) c 8 93.7 90.9 92.3 93.4 90.5 91.9 92.3 89.3 90.8 90.7 87.4 89.0
d 8 93.7 90.9 92.3 93.4 90.5 91.9 92.4 89.3 90.8 90.8 87.4 89.1
e 8 93.9 90.9 92.4 93.5 90.5 92.0 92.6 89.2 90.9 90.9 87.3 89.0

SVM 1 94.5 87.2 90.7 93.7 88.0 90.7 91.9 88.3 90.1 88.5 87.5 88.0
M3-SVM (R) 4 87.9 93.7 90.7 88.1 93.1 90.5 87.9 91.7 89.7 87.1 89.2 88.1

a 24 91.2 90.8 91.0 91.1 91.1 91.1 90.3 90.4 90.4 89.4 88.9 89.1
MCAT b 24 91.5 90.8 91.1 91.2 91.1 91.1 90.3 90.4 90.3 89.3 88.8 89.0

M3-SVM (H) c 24 91.5 90.8 91.2 91.2 91.1 91.2 90.3 90.4 90.3 89.3 88.8 89.1
d 24 91.6 90.8 91.2 91.2 91.0 91.1 90.4 90.3 90.3 89.4 88.8 89.1
e 24 91.7 90.8 91.3 91.3 91.0 91.2 90.5 90.3 90.4 89.4 88.9 89.2
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