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Abstract— Our previous work shows that traditional random-
ization partition method for min-max modular (M3) classifier
can not ensure stable generalization accuracy when the number
of two-class problems increases. To overcome this drawback,
we consider how to effectively decompose the training data set
for a two-class problem in this paper. We propose four basic
clustering and anti-clustering strategies and their combinations
for partitioning training data sets. These four basic strategies
are hyperplane decomposition, K-means algorithm, anti-K-means
algorithm, and scatter procedure. Our experimental results show
that all the proposed clustering and anti-clustering strategies are
superior to the traditional random partition method.

I. INTRODUCTION

Modular classification is often aimed to process large-scale
data more flexibly and concurrently. However, it is equally
important for combining classifier to keep combining accuracy
stable while the number of modules increases. Thus, there
comes the problem of how to decompose training data set
effectively and to ensure a stable combining accuracy. Cluster-
ing, or another name, unsupervised learning, is a good choice
for such requirements. Actually, related fields have been paid
more and more attention in recent years. Giacinto and Roli
[1] consider a so-called ’overproduced’ scheme for automatic
base classifier production, a clustering method is used for
such scheme. Frosyniotis et al [2]use Fuzzy C-means and
greedy-EM algorithms to improve combining classification.
Chawla et al [3] also use Fuzzy C-means algorithm with a
bagging procedure to decompose training set. These studies
show that clustering-based training set partition often improve
classification performance and is better than the case that a
single classifier is applied.

In this paper, we will consider other helpful constraints for
large-scale classification . One is balanced-loading problem,
which requires each base classifier with similar training or test
cost in order to avoid a bottleneck in systems. The other is
balanced learning for a single base classifier, which not always
but often requires the number of samples in each class keep
close.

Decomposition of two-class classification of min-max mod-
ular classifier (M3) can meet these two requirements [4], which
is our central object of this study. Another combining classifier
technology similar to M3 classifier is “bites” suggested by
Breiman and Chawla [5] [6]. The difference between two
approaches is that the former decomposition performs in all
the samples, while the latter just in single class. Therefore, M3

classifier holds more flexibility on decomposition of training
data set than bites. Distributed Boosting algorithm introduced
by Lazarevic et al [7] is a parallel version of boosting
algorithm, which performs similar decomposition of training
set in samples of all classes just like bites method. In addition,
the algorithm needs much communication among every base
classifiers.

Traditionally, the task decomposition used in M3 classifier is
based on a random strategy [4]. But our previous work pointed
out that such partition procedure is not always effective for
keeping a stable combining accuracy. For example, experimen-
tal study shows k-NN algorithm is very sensitive for small
scale classification [8]. In this paper, we will propose four
basic strategies and their combinations to improve partition
procedure of training data sets.

II. MIN-MAX MODULAR MODULAR CLASSIFIER

Consider a two-class classification problem, whose output
coding of class labels are denoted by C0 and C1(as two values,
C1 > C0), or equally, 0 and 1, which will be concise and not
lose any generality for our algorithm description. Suppose the
training set of class C0 is decomposed into n subsets and
the training set of class C1 is divided into m subsets. By
arranging those m and n training subsets in pairs, we obtain
m×n training set pairs. Each pair is learned by a single binary
sub-classifier. Therefore, a larger-scale two-class problem can
be decomposed into m× n smaller subproblems. We call the
binary sub-classifier as base classifier.

Suppose all produced training set pairs are denoted by Xij ,
for i = 0, 1, ..., m − 1, and j = 0, 1, ..., n − 1. Without
misunderstanding, we also express Xij as the output of the
corresponding base classifier.

Min-max combination defines how the outputs of those m×
n base classifiers are combined into the solution to the original
problem. Before combination, a grouping operation on m×n

base classifiers should be done: these base classifiers, Xij ,
for j = 0, ..., n − 1, are defined as one “C1 group” and i

is defined as its group label, and those base classifiers, Xij ,
for i = 0, ..., m − 1, are defined as one “C0 group” and j is
defined as its group label.

Min-max combination of all base classifiers includes two
stages: Firstly, combination rule Min is applied to each C1

group to make the output of the group. Secondly, the outputs



of all groups are integrated by combination rule Max to make
the final output of the original two-class classification problem.

III. CLUSTERING ALGORITHMS FOR TRAINING SET
PARTITION

Combining accuracies under three partition states of training
set will be compared. The first is randomization partition,
which is the traditional strategy. The second is clustering
partition. The third is so called anti-clustering partition, which
means maximize distances among samples in the same cluster.
Since these three states of partition are typical, it is beneficial
for a comparison study of different decomposition processing.

Four basic clustering and anti-clustering algorithms are
introduced.

A. K-means and Anti-K-means Algorithm

K-means algorithm is a clustering algorithm which contin-
uously adjust K clustering centers to minimize inner-cluster
distance in order to separate samples far away [10]. The
algorithm focuses in finding optimized center for each cluster,
that is, K clustering centers, mj , for i = 1, 2, ..., k, and assign
each sample to the cluster which the nearest cluster center
belongs to. For any sample xi in a cluster and its center mj ,
inner-cluster distance can be written by

E =

K∑

j=1

∑

xi∈ωj

‖xi −mj‖
2 (1)

K-means algorithm is described as the following.
a) Specify the number of clusters, K, and corresponding

center mj . Let δ denote minimum iteration error, and T

maximum iteration times. Let counter t = 1.
b) Assign the sample xi to the cluster which its nearest

center mj belongs to.
c) Compute new center m

(t+1)
j and inner-cluster distance

E(t+1).
d) Repeat steps b) and c) until t = T or ‖E(t+1)−E(t)‖ <

δ.
As for anti-K-means algorithm, it is an inverse version of

original K-means algorithm. To modify b) as, “Assign the
sample xi to the cluster which its farthest center mj belongs
to” will be anti-K-means algorithm, which is to maximize
inner-cluster distance E defined in (1) in order to separate
samples nearby, instead of minimizing E in original K-means
algorithm.

B. Hyperplane Decomposition of Training Set

Hyperplane decomposition we suggest is actually a simple
clustering method, which use a group of hyperplane partition
training set. Two sub-space will be both convex after the whole
space is divided by a hyperplane. Thus, this partition method
may ensure that partitioned subset are still clustered in some
degree.

Suppose hyperplane equation in linear space of n dimen-
sions is A(x−b) = 0, where A = [a1, ..., an] is normal vector

of hyperplane, x = [x1, ..., xn]T is any point in hyperplane and
b = [b1, ..., bn]T is a known point in hyperplane.

Hyperplane decomposition of training set is to meet two re-
quirements. One is to make all used hyperplane parallel, which
reduces partitioned un-convex subsets, the other is that parti-
tioned subsets have any specified number of samples, which
ensures elastic decomposition at most degree. To simplify the
realization of the algorithm, We firstly suppose normal vector
A has been decided (Experimentally, let A = [1, 1, ..., 1]).
Secondly, a base hyperplane, without losing generalization,
hyperplane P : Ax = 0 is specified. Thirdly, vertical distance
between Sample x and P is calculated. Fourthly, a sorting
operation is performed in all samples according to calculated
distances. Finally, Extract samples in turn according to the
sorted order to finish partition of training set. Thus, hyperplane
decomposition is equally a sorting procedure of all samples
under weight vector A.

C. Scatter Procedure after Clustering

Scatter procedure is to extract equal quantity of samples
from each cluster in turn after a clustering procedure has been
done. It is interesting that a scatter procedure will transform
decomposition of clustering into anti-clustering decomposition
on the very big level, or vice versa. In addition, it is used
in another aspect: Though many clustering algorithms are
effective as clustering procedures themselves, they all hold
a shortcoming according to our requirements for partition of
training set, that is, subsets the clustering algorithm yields are
often not of equal sizes. an equal-sized scatter procedure may
partially overcome such difficulty.

In order to avoid the scatter procedure disordering original
clustered data too much, just like hyperplane decomposition
above, we also introduce a weighted sorting operation for each
cluster before scatter procedure is performed. Such scatter
procedure is named after hyperplane scatter. All following
scatter procedures will refer to these ones.

IV. EXPERIMENTS

Two algorithms, k-NN and SVM with RBF kernel function
are taken as base classifiers, respectively. k varies from 1 to
40 under k-NN algorithm, the average combining accuracy is
taken in all values of k. Twelve data sets from STATLOG
benchmark repository [11] are chosen for this study, however,
here we will only demonstrate two of them for space limita-
tion. Data set information and kernel parameters of SVM are
shown in Table I. All kernel parameters are from recommended
ones in the document of STATLOG benchmark repository.

Consider K-means algorithm is sensitive for initial partition
of cluster centers, we take training set processed by hyperplane
sorting as another optional initial partition for K-means algo-
rithm. Correspondingly, A hyperplane scatter initial partition
means that a scatter procedure is performed after a sorting
operation is applied to the training set, it will be set as one
optional initial partition of anti-K-means algorithm, too.

All partition operations are carried out in three optional
steps, which yields ten clustering or anti-clustering algorithms



TABLE I
DISTRIBUTIONS OF SAMPLES IN DATA SETS AND CORRESPONDING KERNEL PARAMETERS OF SVM TRAINING

Data Set Number of Training Samples Number of Test Samples Kernel Parameters
Total Positive Negative Total Positive Negative γ C

Breast cancer 20000 14118 5882 7700 5482 2218 0.2 1.519
Heart 17000 9440 7560 10000 5560 4440 0.008333 3.162

TABLE II
CLUSTERING AND ANTI-CLUSTERING ALGORITHMS TYPES

Algorithm Type First Step Second Step Third Step
Hyperplane Hyperplane Scatter K-means Anti-K-means Hyperplane Scatter

RAN
HP Yes
KM Yes

HPKM Yes Yes
KMHS Yes Yes

HPKMHS Yes Yes Yes
HS Yes

AKM Yes
HSAKM Yes Yes

AKMHS Yes Yes
HSAKMHS Yes Yes Yes

and their combination. Their notations are shown in table II.
The smaller classes in every training sets are divided into 2
to 26 equal-sized subsets, respectively, and the larger classes
in every training sets are decomposed to equal-sized subsets,
correspondingly. SVM program uses LibSVM 2.6 [12]. The
vector e is computed by MATLAB 7.0. All experiments are
performed in a PC with 2.8G CPU and 2G RAM.

The comparative results of combining accuracies and re-
sponse performances under different clustering algorithms are
shown in Fig 1-6, where data of response time are from
mean values of those of all base classifiers, which reflects
the effectiveness of testing procedure under parallel mode. Fig
7-8 show a ratio of CPU time between clustering procedure
and total procedure with clustering and training, where data
of training time are the sum of all base classifiers.

The comparative results of combining accuracies and re-
sponse performances under different anti-clustering algorithms
are shown in Fig 9-14. Data of response time are from mean
values of those of all base classifiers, which reflects the
effectiveness of testing procedure under parallel mode. Fig 15-
16 show a ratio of CPU time between anti-clustering procedure
and total procedure with anti-clustering and training, where
data of training time are the sum of all base classifiers.

A. comments
Experimental results show that traditional randomization

partition of training set can not ensure stable combining
accuracies while partition number increases. Thus it can not
be taken as one credible partition strategy for training set.
All presented clustering or anti-clustering strategies have some
effectiveness on ensuring combining accuracy in various de-
grees. Moreover, response performance of combining classifier
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Fig. 1. Breast cancer data set: average combining accuracies after different
clustering algorithms under k-NN algorithm

after clustering or anti-clustering partition is better than that
after randomization partition, too.

Hyperplane decomposition method gives similar effective-
ness compared to K-means method. However, it costs little on
computation and is easy to realize an equally parallel version
of algorithm for concurrent application [13], [14]. What’s
more, hyperplane decomposition processed data set can be
regarded as a better initial partition of clustering algorithm.

Randomization based anti-K-means partition takes on simi-
lar effectiveness as randomization partition, while hyperplane
scatter method based anti-K-means partition shows much
better effectiveness. This suggests that anti-K-means algorithm
is more sensitive for initial partition than K-means algorithm.
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Fig. 2. Breast cancer data set: combining accuracies after different clustering
algorithms under SVM algorithm
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Fig. 3. Heart data set: average combining accuracies after different clustering
algorithms under k-NN algorithm
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Fig. 4. Heart data set: combining accuracies after different clustering
algorithms under SVM algorithm
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Fig. 5. Breast Cancer data set: combining performance after different
clustering algorithms under SVM algorithm
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Fig. 6. Heart data set: combining performance after different clustering
algorithms under SVM algorithm
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Fig. 7. Breast Cancer data set: the ratio of CPU time between clustering
and total procedure with clustering and training under SVM algorithm
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Fig. 8. Heart data set: the ratio of CPU time between clustering and total
procedure with clustering and training under SVM algorithm
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Fig. 9. Breast cancer data set: average combining accuracies after different
anti-clustering algorithms under k-NN algorithm
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Fig. 10. Breast cancer data set: combining accuracies after different anti-
clustering algorithms under SVM algorithm
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Fig. 11. Heart data set: average combining accuracies after different anti-
clustering algorithms under k-NN algorithm
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Fig. 12. Heart data set: combining accuracies after different anti-clustering
algorithms under SVM algorithm
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Fig. 13. Breast Cancer data set: combining performance after different anti-
clustering algorithms under SVM algorithm
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Fig. 14. Heart data set: combining performance after different anti-clustering
algorithms under SVM algorithm
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Fig. 15. Breast Cancer data set: the ratio of CPU time between anti-clustering
and total procedure with anti-clustering and training under SVM algorithm
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Fig. 16. Heart data set: the ratio of CPU time between anti-clustering and
total procedure with anti-clustering and training under SVM algorithm

V. CONCLUSION

Four basic clustering and anti-clustering strategies and their
combinations are proposed for improving training data set
partition for min-max modular classifier.

Our study show that training data set partition can be
handled from two contrary ways, clustering or anti-clustering.
Experimental results show that the presented strategies may
all ensure combining accuracy in various degrees, which can
be seen as an improvement of traditional random partition
method. A scatter procedure is presented, which can transform
clustering results into anti-clustering ones to a great extent, or
vice versa. Its effectiveness ulteriorly shows clustering and
anti-clustering method should be both the rational directions
of processing on partition of training data set. Except for
improvement of combining accuracy, better response per-
formance is also obtained after clustering or anti-clustering
partition, too.
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