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We introduce a general framework for string kernels. This framework can produce various 
types of kernels, including a number of existing kernels, to  be used with support vector 
machines (SVMs). In this framework, we can select the informative subsequences to  
reduce the dimensionality of the feature space. We can model the mutations in biological 
sequences. Finally, we combine contributions of subsequences in a weighted fashion to  get 
the target kernel. In practical computation, we develop a novel tree structure, coupled 
with a traversal algorithm to speed up the computation. The experimental results on a 
benchmark SCOP data  set show that the kernels produced by our framework outperform 
the existing spectrum kernels, in both efficiency and ROC50 scores. 
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1. Introduction 

Kernel methods and support vector machines (SVMs) have been proved to be highly 
successful in machine learning and pattern classification fields. In computational bi- 
ology community, SVMs have also been widely used to yield valuable insights into 
massive biological data sets. However, since biological data, such as DNA, RNA, 
and protein sequences, are naturally represented as strings, one needs to convert 
string format of biological data into a numerical vector, which is the standard in- 
put format for SVMs. However, this additional conversion could brings additional 
computational cost and even unexpected results. Fortunately, this conversion can 
be avoided by using kernel methods. The key advantage of kernel methods is that 
they depend only on the inner products of the samples. As a result, we can calculate 
the inner products directly from the sequences instead of calculating the numerical 
vectors. In other words, the n x n matrix of inner products between each two sam- 
ples is the so-called kernel of SVMs. We define the kernels of SVMs directly upon 
strings, which are also called “string kernels” .l 

The pioneering work on convolution kernels and dynamic alignment kernels 
for discrete objects, such as strings and trees, was conducted by Haussler’ and 
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W a t k i n ~ , ~  respectively. Thereafter, a number of string kernels have been extensively 
studied. In general, those kernels take the same idea as the convolution kernels. They 
all define some kinds of “sub-structures” and employ recursive calculation over all 
those “sub-structures” to get the kernels. For example, Leslie et al. proposed spec- 
trum string kernels,’ mismatch string  kernel^,^ and a series of inexact matching 
string  kernel^,^ all of which are based on the “sub-structures” called “k-mers” (k- 
length subsequences). The only difference among those kernels relies on the specific 
definition for each mapping function. Moreover, Vishwanathan and Smola6 pro- 
posed another type of fast string kernels based on weighted sum for inner products, 
each of which corresponds to one of the exact matching subsequences. Those above 
two kinds of string kernels were both applied to a protein classification problem, 
called remote homology detection. Besides, string kernels have also been successfully 
applied to natural language processing (NLP)  task^.^-^ 

We introduce a framework to reconstruct string kernels to be used with SVMs. 
This framework is rather general that  the string kernels aforementioned can be 
regarded as specific instances of it. We also develop a tree data structure and an 
algorithm for the computation of these string kernels. 

2. A string kernel framework 

2.1. Notations 

We begin by introducing some notations. Let A be the alphabet and each element 
in A is called character. Then we denote the whole string space as P ( d )  = U k  A‘“, 
where Ak denotes the k-spectrum set containing all the k-length strings produced 
by character concatenation from A. At the next step, we make use of feature groups 
to take the biologically mutation effect into account. Each feature group is a subset 
of the string space, containing certain number of relatively similar strings. Formally, 
we use I = {T, P(A)Il 5 z 5 m} to denote the set of all the feature groups and 
P ( 7 )  = U, T, to  denote all the strings contained in these feature groups. For each 
feature group T,, we use IT,I to denote its size, and t ,  for j = 1 to IT,I to index its 
elements. 

In the following section, “none of two feature groups are identical” means that 
T, # T3 if i # J for all i and j. “All the feature groups cover the set S” means 
U,T, = S. 

1 

2.2 .  Pramework definition 

We propose a string kernel framework as follows. First, we define the sub-kernel 
between strings x and y for each feature group Ti, 
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IT I where numTz (z) = Cj2, numtzJ (z) counts the total numbers of occurrences of Ti's 
members in x. Then we combine all the sub-kernels in a weighted fashion to obtain 
the target kernel, formally, 

m 

k (z, Y) = C wT, kT, (x, Y) (2) 
i= 1 

where each WT, is the weight used to measure the significance for the corresponding 
feature group Ti. Following this construction framework, we can derive various kinds 
of string kernels. Several typical string kernel instances are given below as examples: 

Setting 'WT~ = 1 and ITiI = 1 for all i = 1 to m. None of two feature groups 
are identical and all the feature groups cover the k-spectrum set. I t  yields the 
k-spectrum string kernel.' 
Setting ITiJ = 1 for all i = 1 to m. None of two feature groups are identical and 
all the feature groups cover the string space P(d). It yields the family of kernels 
proposed by Vishwanathan and Smola.G 
All the kernels using inexact matching proposed by Leslie and Kuang5 can be 
regarded as specific cases of ITi I > 1. 
If we can customize the members for each feature group Ti, then we will achieves 
a new family of string kernels which has never been studied. 

2.3.  Relations with existing string kernels 

Roughly speaking, existing string kernels can be divided into two categories, kernels 
using exact matching and using inexact matching. Kernels using exact matching1vG-* 
only take the perfect matching subsequences into account and design optimal algo- 
rithms for the computation. However, the kernels using inexact matching can model 
mismatches, gaps, substitutions and other wildcards. Such kernels are more suitable 
for biological data. Conceptually, it is clear that the kernels using exact matching 
are specific instances of the our string kernel framework. Since we can assign only 
one feature to each feature group then produce those kernels. However practically, 
we note that the kernels using exact matching have been computed using various 
optimal algorithms.G-8 

On the other hand, all the kernels using inexact matching5 can be constructed 
equally by feature re-mapping as follows, 

where R-'(s) = {s' : R(s', s)} defines the set of substrings that have specific rela- 
tions with substring s, for example, at most rn mismatches and at most g gaps. s is 
used to enumerate the k-spectrum set A'". Comparing this definition with Equations 
(1) and (2), we could immediately find that the kernels using inexact matching can 
be constructed by /Ak[ feature groups, each of which corresponds to one k-length 
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substring s, containing the set R-l(s).  Conceptually, the only difference among all 
these kernels depends on the specific relation R. 

3. Efficient computation 

Instead of calculating and storing the feature vectors explicitly, we develop an algo- 
rithm based on a novel tree data structure to efficiently compute the kernel matrix, 
which can be used with the SVM classifier. 

3.1. Tree data structure with leaf links 

This tree data structure shown in Fig. 1 is similar to a suffix tree or mismatch 
tree used b e f ~ r e . ~  The different part is that we add leaf links to generalize the 
algorithm. The calculation of the kernel matrix can be summarized as follows: firstly 
we construct the tree based on given feature groups. Note that the tree structure 
is determined only by the given feature groups. Then we use an essentially sliding 
window to perform lexical traverse of all the substrings occurring in the data set. 
As a result, in each leaf we store the number of the leaf substring occurring in each 
sample string. Finally we calculate the kernel matrix in one traversal for all the 
leaves of the tree. 

3.2. Leaf traversal algorithm 

The leaves of this tree represent all the substrings occurring in the feature groups, 
so the number of these leaves is IP(7)I. Accordingly, all the leaves are indexed by 
s, for i = 1 to IP(7)I. The tree is organized like a trie: the concatenation of the 
edge labels from root to leaf interprets the string of the leaf. Unlike the standard 
tree structure, we add links between two leaves if they are contained in the same 
feature group T, (probably not only one). Formally we define the whole set of links 
as, 

Then we define the set of leaves, with links to leaf si as L [ s i ]  = {jl l i j  E L} .  For 
each linked leaf pair, we can define the weight of that link as 

In the following part, we use wtj  as a shorthand for ~ ( 1 % ~ ) .  The kernel matrix 
calculation within the traversal of all the leaves is summarized in Algorithm 3.1. 

The correctness of this algorithm follows from the analysis of how many times 
the term nums, (x) . numsJ (y) is added up to the kernel value k ( z ,  y). I t  can be 
observed from Equations (1) and (2). 
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w11= w1 t w2 

w22 = w2 
w33 = w3 

w12 = w21= w2 

w34 = w43 = w4 

w44 = w3 + w4 .--’ 
Fig. 1. An example of the tree structure and leaf links: (a) 4 feature groups with weights from 
w1 to w4, respectively; (b) The tree constructed for the given feature groups. Here, a total of 6 
links are connected. Note that for clarity, we omit the self links for each leaf node and only draw 
the leaf links between leaves. 

Algorithm 3.1 The calculation of the kernel value Ic(z, y) 
1: Ic(z,y) +- 0 
2: for all leaf si do 
3: 

5: end for 
6: end for 

for all j E L[si] do 
4: k(z, y) + k ( z ,  y) + wij ‘ nums, (.) ’ numsj (Y) 

4. Selecting feature groups and weights 

The feature group aforementioned is a new concept for string kernels. Immediate 
extension can also be made for other kinds of machine learning methods. Actually 
we extend the notion of “feature” to “feature group” to let string kernels be more 
suitable to biological data. Meanwhile, it makes the construction procedure more 
flexible to  produce various kinds of string kernels. In this section, we will develop 
several new approaches to demonstrate the effectiveness of the proposed framework. 

Existing string kernel methods usually use the whole set of Ic-length subsequences 
as the feature set, and treat them equally in the kernel constructions. Unluckily, 
i t  leads not only to the loss of discriminative ability of significant subsequences, 
but also to the increase of computational cost. Apart from those, we start from 
learning the distribution of subsequences. Then we extracts statistically significant 
subsequences or groups of subsequences, which are then combined in a weighted 
fashion to reconstruct the string kernels. 

To simplify this discussion, we restrict ourselves to two-class classification prob- 
lems. Without loss of generalization, we explain our methods by using the following 

 P
ro

ce
ed

in
gs

 o
f 

th
e 

6t
h 

A
si

a-
Pa

ci
fi

c 
B

io
in

fo
rm

at
ic

s 
C

on
fe

re
nc

e 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 S

H
A

N
G

H
A

I 
JI

A
O

T
O

N
G

 U
N

IV
E

R
SI

T
Y

 o
n 

05
/0

9/
18

. F
or

 p
er

so
na

l u
se

 o
nl

y.



14 

BW criterion, which is based on the ratio of between-class scatter to within-class 
scatter. However, we also note that there are many types of statistical metrics that  
can be used in our proposed method. 

Im+(s) - m-(s) (2  

a + ( s )  + a - ( s )  
BW(s) = 

where m+(s) and a+(s )  denote the mean composition and standard variance for 
subsequence s in the positive class, respectively, and m-(s)  and cr-(s) are for the 
negative class. Usually, the numerator is called between-class scatter and the divisor 
is called within-class scatter. 

To measure the statistical significance of a feature group, we also extend the 
definition of BW(s) in Equation ( 6 )  to BW(Ti), just by naturally defining the 
number of occurrences of feature group Ti as the sum of those of its members. 

By using our framework, we propose two kinds of new string kernels in the 
following sections. Essentially, one is the reduced version of Ic-spectrum string kernel, 
and the other is the reduced version of ( I c ,  m)-mismatch string kernel. 

4.1. Reduction of spectrum string kernel 

We reconstruct the spectrum string kernels in two respects, the number of feature 
groups and the weights. Corresponding to the spectrum string kernel definition in 
Section 2, the number of feature groups is denoted by Idk/ and the weights are 
denoted by WT, for i = 1 to Idkl. For sake of computational efficiency and per- 
formance, we try to reduce feature groups ldkl using two thresholds, minimum 
occurrence Omin and minimum score BWmin. Since we assume that the subse- 
quences with low occurrences are either non-informative for discrimination or not 
influential in global performance. Similarly, the subsequences with low BW scores 
are also regarded with low discriminative ability. 

For a proof of concept, we simply use the power of BW score, WT, = [BW(Ti)]’ 
to weight each of the feature groups, where the exponent X is a parameter used to  
control the scale of weights. 

4.2. Statistically selecting feature groups 

How to choose the most discriminative feature groups and weights is at least as hard 
as the feature selection problem, which has 2n subsets to be tested. This is clear 
since we can regard the feature selection as a specific case of feature group selection. 
Hence, we do not have an optimal solution for it. As an alternative approach, we 
propose a heuristic method to construct feature groups, each of which contains 
multiple members. 

This method can be summarized as two steps: selecting the base subsequences s 
and then using a greedy expansion. The greedy expansion is an iterative process. At 
each iteration, the subsequence s’ that  lets R(s’, s) hold and maximize the BW(T.) 
score among the candidate subsequences, is selected into the feature group. This 
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d( A A A A A ,  C A A A A )  
0.1 

,**I ,I( A A A A A ,  A C A A A )  ,,{AAAAA, A A C A A ,  C A A A A )  
,/' 0.3 * .* 0.2 * .  .. : .*.... 

~ ( A A A A A ,  A A C A A J  A A C A A ,  A C A A A J  
0.8 ..v 

*.A 

( A A A A A )  <: 
0.5 .. 

I *. 
.& '. 

* '. 0.2 . -. 
I .  

'*.% ~ { A A A A A ,  A A A C A )  A A C A A ,  AAACA).>:--------+ 
0.3 0.7 

~ ( A A A A A ,  A A A A C J  * ( A A A A A ,  A A C A A ,  A A A A C J  
0.3 0.5 

T = ( A A A A A )  T'  = ( A A A A A ,  A A C A A )  T" = ( A A A A A ,  A A C A A ,  A C A A A )  

BW(T) = 0.2 BW(T') = 0.5 BW(T") = 0.8 

Fig. 2. An example of the greedy expansion in (5, 1) mismatch set. 

process ends when no such s' is found. We give a simple example in Fig. 2. In 
this figure, for simplicity, we assume that the alphabet contains two letters, 'A' 
and 'C'. At the first iteration, AACAA is selected into the feature group, since it 
increases BW score more than other candidates. Then ACAAA is selected. Finally 
this greedy expansion terminates when there are no any features that let the BW 
score increase. 

5. Experiment 

We report the experiments on a benchmark SCOP data set (SCOP version 1.37) 
designed by Jaakkola et al.," which is widely used to evaluate the methods for 
remote homology detection of protein  sequence^.'?^-^ The data seta consists of 33 
families, each of which has four sets of protein sequences, namely positive training 
and test sets, and negative training and test sets. The target family serves as the 
positive test set. The positive training set is chosen from the remaining families in 
the same superfamily. The negative training and test sets are chosen from the folds 
outside the fold of the target family. 

We use ROC50 score" to evaluate the performance of homology detection. The 
ROC50 score is the area under the receiver operating characteristic curve (the plot 
of true positives as a function of false positives) up to the first 50 false positives. 
A score of one indicates perfect separation of positives from negatives, whereas a 
score of zero indicates that none of the top 50 sequences selected by the algorithm is 
positives. This ROC50 score is the most standard way to evaluate the performance 
of remote homology detection methods in computational biology.1i6i11 

aData is available at www . cse . ucsc . edu/research/compbio/discriminative 
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I 

Fig. 3. Comparison of four kinds of kernels. 

Table 1. The numbers of used subsequences in four kernels. 

3-spectrum 3-spectrum reduced 5-spectrum 5-expanded 
(mean/ f SD) (mean/ f SD) 

8000 27061 f 865 3.2 x lo6 449261 f 20508 

We give a performance overview in Fig. 3 for the four kinds of kernels. Table 
1 shows the number of used subsequence for each kernel. The 3-spectrum and 5- 
spectrum kernels are the existing methods developed by Leslie et al.' We reduce the 
3-spectrum kernel according to reduction techniques of spectrum kernels (see Section 
4). The experimental result shows that better performance could be obtained even 
with much fewer 3-length subsequences, about 33.4% of the 3-spectrum set. This 
result strongly suggests that only a small portion of k-spectrum features could 
hold the discriminative information for remote homology. We would like to  note 
that it is possible to  further reduce the number of subsequences with comparative 
performance, providing that a more powerful feature selection technique is used. 

We compare the kernels based on greedy expansion called 5-expanded kernel 
(see Fig. 2) with the existing 5-spectrum kernel. Our 5-expanded kernel can also be 
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0.8- 

0.6- 

5-expanded kernel 

Fig. 4. Family-by-family comparison of spectrum string kernels and their reduced versions. Here, 
the coordinates of each point are the ROC50 scores for one SCOP family, corresponding to the 
two labeld kernels, respectively 

regarded as a reduced version of (5,l)-mismatch string kernel, since we reduce the 
5-spectrum set and the members of each R-l(s). From the experimental result, we 
can observe that this kind of greedy expansion leads to  a slight improvement upon 
5-spectrum kernel. But our method uses only about 1.4% of 5-spectrum set, which 
is a significant feature reduction. 

We should note that the (5,l)-mismatch kernel proposed by Leslie et  al.4 per- 
forms comparably with 3-spectrum kernel. On one hand, it means that our reduction 
of each R-l(s)  leads to the performance decline compared with (5,l)-mismatch ker- 
nel. On the other hand, we obtain computational efficiency by reducing the feature 
number as a compensation. 

We give in Fig. 4 a family-by-family comparison between the existing spectrum 
string kernels and our methods. I t  is clear that  our methods perform slightly better 
than the existing spectrum kernels, especially for relatively hard-to-recognize fami- 
lies. This result suggests that  carefully selected subsequences benefit hard detection 
tasks. However, for easy-to-recognize families, it seems always relatively easy to  
recognize no matter which kinds of features are used. 

We select Omin from {5,10,20,50}, BWmin from {0.5,0.8,1}, and X from 
{1,2,4,8}, respectively. Then the best results are reported. The 3-reduced kernel 
is obtained by using Omin = 20, BWmin = 0.5, and X = 2. The 5-expanded kernel 
is constructed by using greedy expansion (see Fig. 2) with parameters Omin = 5, 
BWmin = 0.8, and X = 1. 

6. Discussion and future work 

In this research work, we have proposed a general framework for string kernels, 
coupled with a general algorithm to naturally combine string kernels with feature 
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selection techniques. This framework is applicable to  almost all the kernel-based 
methods in biological sequence analysis. We make experiments on a benchmark 
SCOP data set for protein homology detection. The experimental results demon- 
strate that  a large number of features can be reduced without any performance 
reduction, but conversely with improvement. We believe that this kind of string 
kernels, in conjunction with SVMs, will offer a more flexible and extendable ap- 
proach to  other protein classification problems. 

For the further research, we plan to  apply these string kernels to  the prediction 
of protein subcellular locations and other biological problems. Meanwhile, we are 
still interested in developing new approaches to  combining of feature selection and 
string kernels. We hope eventually this method could facilitate protein classification 
problems with both effectiveness and efficiency. 
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