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The problem of selecting a subset of relevant features is classic and found in many branches of science
including—examples in pattern recognition. In this paper, we propose a new feature selection criterion
based on low-loss nearest neighbor classification and a novel feature selection algorithm that optimizes
the margin of nearest neighbor classification through minimizing its loss function. At the same time,
theoretical analysis based on energy-based model is presented, and some experiments are also conducted
on several benchmark real-world data sets and facial data sets for gender classification to show that the
proposed feature selection method outperforms other classic ones.
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1. Introduction

In a great variety of fields, including pattern recognition and ma-
chine learning, the input data are represented by a very large number
of features, but only few of them are relevant for predicting the label.
In addition, many algorithms become computationally intractable
when the dimension is high. On the other hand, once a good small
set of features has been chosen, even the most basic classifiers (e.g.
1-nearest neighbor, 1NN) can achieve desirable performance. There-
fore feature selection, i.e. the task of choosing a small subset of fea-
tures which is sufficient to predict the target labels well, is critical
to minimize the classification error. At the same time, feature selec-
tion also reduces training and inference time and leads to better data
visualization, reduction of measurement and storage requirements.

Roughly speaking, feature selection algorithms have two key
problems: search strategy and evaluation criterion. According to
the criterion, feature selection algorithms can be categorized into
filter model and wrapper model [1,2]. In the wrapper model, the
feature selection method tries to directly optimize the performance
of a specific predictor (classification or clustering algorithm). The
main drawback of this method is its computational deficiency. In
the filter model, the feature selection is done as a preprocessing,
without trying to optimize the performance of any specific predictor
directly. This is usually achieved through an evaluation function and
a search strategy is used to select a feature subset that maximizes
this evaluation function. Refs. [1,3,4] have given a comprehensive
discussion of feature selection methodologies.
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Specifically, in this paper we introduce a feature selection algo-
rithm for nearest neighbor classification using Euclidean distance.
The proposed algorithm takes advantage of the performance increas-
ing of wrapper model whilst avoiding its computational complexity.
k-nearest neighbor (kNN) rule [5], which classifies each unlabelled
example by the majority label among its kNN in the training set, is
one of the oldest and simplest methods for pattern classification and
it is one of the top 10 algorithms in data mining [6]. Nevertheless,
it often yields competitive results. On the other hand, margin [7,8]
is a geometric measure for evaluating the confidence of a classifier
with respect to its decision. Margin already plays a crucial role in
machine learning research, and it is used both for theoretic analy-
sis of generalization bounds and as guidelines for algorithm designs.
In the paper, along with the guidelines of margin, a feature selec-
tion evaluation criterion based on loss function of nearest neighbor
classification is proposed, and it usually can guarantee good perfor-
mance for any feature search strategy. Although we focus on the
nearest neighbor classification, however, most of results are relevant
to other distance-based classifiers (e.g. support vector machine, SVM
[8]) as well.

The novelties of this paper are the use of large margin principle
together with loss function to rank the features, and the presenta-
tion of theoretic proof based on energy-based model (EBM) [12–14].
Feature ranking is a filter method: it is a preprocessing step, indepen-
dent of the choice of the predictor. Still, under certain independence
or orthogonal assumptions, it may be optimal with respect to a
given predictor. Even when feature ranking is not optimal, it may be
preferable to other feature subset selection methods because of its
computational and statistical scalability: In terms of computation, it
is efficient since it requires only the computation of n feature scores
and sorting the scores. With respect to statistic, it is robust against
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over-fitting because it introduces bias but it may have considerably
less variance [3].

The paper is organized as follows: new evaluation criterion
based on loss function of kNN rule are introduced and analyzed in
Section 2. In Section 3, we propose a new feature selection method
with theoretic analysis based on EBM. Experimental results and
analysis are shown in Section 4. The paper ends with conclusions
and discussions in Section 5.

2. Evaluation criterion

Assuming the training set S contains N samples, {xi, yi}Ni=1, and
each sample xi is represented by an n-dimensional feature vector xi=
(xi1, xi2, . . . , xin) ∈ Rn and discrete class labels yi. We first introduce
some definitions as follows.

Definition 1. Binary matrix B, whose element bij ∈ {0, 1} (i =
1, 2, . . . ,N, j=1, 2, . . . ,N) indicates whether the labels yi and yj match.
In other words, 1 denotes xi and xj have the same label and belong
to the same class. 0 shows they are not in the same class.

Definition 2. Target neighbors, kNN with the same label to sample
xi are named as target neighbors of xi [9].

Definition 3. Target matrix T , whose element tij ∈ {0, 1} (i =
1, 2, . . . ,N, j = 1, 2, . . . ,N) indicates whether xj is a target neighbor of
xi. tij = 1 denotes xj is a target neighbor of xi.

The target neighbors can be simply determined by distance be-
tween samples. In this paper, the Euclidean distance is used. Noted
that a sample is not a target neighbor of itself and then tii = 0.

2.1. Loss-based evaluation function

Based on kNN classification rule, which classifies each unlabelled
sample by the majority label among its kNN in the training set.
Then in order to achieve desirable classification performance, feature
subset is selected with the aim that the kNN of any sample always
belong to the same class while samples from different classes are
separated by large margin in the selected feature space. Loss function
is a common technique in machine learning for finding the right
balance between small margin-error and large margin [10]. Once the
loss function is chosen, the goal of learning algorithm is to minimize
it and get large margin. Then feature selection criterion based on
loss function is a natural choice. For a sample xi, the loss function
for nearest neighbor classification can be defined as follows.

Definition 4. Let S be a training set, xi be a sample, the loss function
of xi is

LS(xi) =
∑
j

tij‖xi − xj‖2 + c
∑
jp

tij(1 − bip)hjp(xi)

hjp(xi) = [�i + ‖xi − xj‖2 − ‖xi − xp‖2]+ (1)

where xp (p = 1, 2, . . . ,N) and xj (j = 1, 2, . . . ,N) are samples in S. In
hjp(xi), [z]+ =max(z, 0) denotes the hinge loss, c>0 is some positive
scaling factor (typically set by cross validation). tij and bip are the
elements in target matrix T and binary matrix B, respectively.

It should be noted that the loss function has two competing
terms, the first term penalizes large distance between each sample
and its target neighbors, not between all similarly labelled samples,
while the second term penalizes small distance between each sam-
ple and other samples that do not share the same label. In the second
term, we especially concern the different labelled samples located in

distance from xi to any of its target neighbors plus a predefined mar-
gin �i, which is a positive constant and defined as

�i = |‖xi − nearmiss(xi)‖2 − ‖xi − nearhit(xi)‖2| (2)

where nearhit(xi) and nearmiss(xi) denote the nearest samples to xi
with the same and different label, respectively, [19]. They are easy to
be obtained according to matrix B and T , and the definition of �i as-
sures at least one sample with different label to xi (e.g., nearmiss(xi))
will be computed in the loss function.

Note that the chosen feature subset affects the loss of nearest
neighbor classification through the influence on distance measure.
Then we introduce an evaluation criterion for feature selection based
on low-loss nearest neighbor classification which assigns a weight
to feature. When selecting a set of features, we can identify them
by their weights. Firstly we formulate the loss as a function of the
weighted features based on Definition 4.

Definition 5. Let S be a training set, xi be a sample andw be a weight
vector over the feature set, then the loss function of xi is

LS(w, xi) =
∑
j

tij‖xi − xj‖2w + c
∑
jp

tij(1 − bip)hjp(w, xi)

hjp(w, xi) = [�i + ‖xi − xj‖2w − ‖xi − xp‖2w]+ (3)

where ‖z‖w =
√∑

f w
2
f z

2
f , wf ∈ [0, 1] (f = 1, 2, . . . ,n). Definition 5 con-

siders the weights over features in the distance calculation.
Now we turn to define the evaluation function. A good general-

ization can be guaranteed if many samples have low loss and large
margin [15]. When a training set is available, we sum the loss over
the samples and then:

Definition 6. Given a training set S and weight vector w, the evalu-
ation function is

e(w) =
∑
i

LS(w, xi) (4)

Formally, the evaluation function is well defined for any w and we
utilizes it in our method.

2.2. Evaluation function analysis

Loss function incorporates the idea of margin. Especially, in the
second term of Definition 4, the hinge loss h is incurred by dif-
ferently labelled samples whose distances to xi do not exceed the
distance from xi to any of its target neighbors plus the margin
�i. Therefore the evaluation function supports the feature space in
which differently labelled samples maintain a large margin of dis-
tance and do not threaten to “invade” each other's neighborhoods.
The samples behavior induced by this evaluation function are illus-
trated in Fig. 1 for a sample xi with k=3 target neighbors. The target
neighbors move closer to xi, while the different labelled samples lo-
cated in specific domain move farther to xi. This leads to large mar-
gin nearest neighbor classification and achieve good classification
performance. The target neighbors are represented by circle and the
solid square denotes the differently labelled samples whose distance
to xi does not exceed the distance from xi to any of its target neigh-
bors plus the predefined margin �i represented by green solid lines.
Arrows indicate the gradient directions on distance arising from the
optimization of evaluation function. In addition, the definition of �i
contains the idea of the hypothesis-margin of sample xi for 1-NN
classification [10].

Moreover, the two terms in Eq. (3) are analogous to those in the
loss function for SVMs [9]. In both loss function, one term penal-
izes the parameter (such as weight) vector of the maximum margin
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Fig. 1. Illustration for optimization of evaluation function.

hyperplane, while the other incurs the hinge loss for samples that
violate the condition of predefined margin. On the other hand, just as
the hinge loss in SVMs is only triggered by samples near the decision
boundary, the hinge loss h in the proposed evaluation function is
also only triggered by differently labelled samples that invade each
other's neighborhoods, i.e., the samples near the decision hyperplane.

Finally, on the one hand, the large margin intuitively yields max-
imal robust to perturbation (such as noise and outlier). On the other
hand, in SVMs, the risk of outliers is normally mitigated by using a
soft margin criterion, such as hinge loss is utilized to reduce outlier
sensitivity [16]. In our case, the propose evaluation function is also
a soft margin criterion because of the use of hinge loss, and then it
can efficiently reduce the effect of outliers. At the same time, the
number of target neighbors k is assigned as k>1, then it filters noise
better for nearest neighbor classification [10].

3. Feature selection algorithm

3.1. Loss-margin based algorithm (Lmba)

In order to find the feature subset that minimizes the evaluation
function, many search strategies can be used, such as sequential for-
ward and backward search, plus-l-take-r, sequential floating search,
genetic algorithm, branch and bound, etc. [1,11]. However, they as-
sign the feature weight wf as 1 or 0 to indicate whether the f th fea-
ture is selected or not, and these search strategies at least have time
complexity O(N2n2), where N is the size of training set and n is the
number of features. However, we like to let the feature weight wf
take values [0,1] and rank features based on their weights for the
reasons described in Section 1. Now the question is raised: does the
minimization of the proposed evaluation criterion obtain a weight
vector w that leads to the behavior depicted in Fig. 1? We will give
answer to this question based on the EBM [12–14].

Let xi and xj be a pair of samples, w be the shared parameter
vector, and the energy between samples is defined as

E(w, xi, xj) = ‖xi − xj‖w (5)

which is used to measure the compatibility between xi and xj, and
it is a weighted Euclidean distance.

Given a genuine pair samples (xi, xj) on which xj is a target neigh-
bor of xi, and a heterogeneous pair samples (xi, xp) on which xp is a

Fig. 2. The plane formed by energy model.

differently labelled sample whose distance to xi does not exceed the
distance from xi to any of its target neighbors plus the a margin m.
The samples behave in a desirable manner if the following condition
holds:

Condition 1. ∃m>0, such that E(w, xi, xj) + m<E(w, xi, xp).

For simplicity, notation E(w, xi, xj) is written as Egw and E(w, xi, xp)
as Ehw for the remainder of the paper.

We will consider a training set consists of one genuine pair (xi, xj)
with energy Egw and one heterogeneous pair (xi, xp) with energy Ehw.
Let us define

L(Egw, E
h
w) = Lg(E

g
w) + Lh(E

h
w) (6)

Lg = (Egw)
2 (7)

Lh = h[�i + (Egw)
2 − (Ehw)

2]+ (8)

L is the total loss function for the two pairs. Lg and Lh are the partial
loss function for a genuine pair and heterogeneous pair, respectively.
Then the following proposition is given:

Proposition 1. Minimizing L with respect to w would lead to finding
a w that satisfies Condition 1.

Proof. As depicted in Fig. 2, there exists two half planes Egw+m<Ehw
and Egw +m�Ehw, and they are denoted by LP1 and LP2, respectively.
We like to minimize L over Egw and Ehw for all values ofw in its domain.
Let R be the region inside the plane formed by Egw and Ehw which
correspond to all values in the range of w. In the most common
setting, R could be lied anywhere in the plane. However, in our case,
m is assigned as ‖xi − nearmiss(xi)‖ − ‖xi − nearhit(xi)‖. We surely
can find a sample xt , which is not in the same class with xi, has
larger distance than nearmiss(xi) to xi, and then ‖xi − nearhit(xi)‖w +
m< ‖xi − xt‖w. In other words, there exists a w for a sample such
that Condition 1 is satisfied, and then we can draw a conclusion that
a part of R intersects the LP1. Now we have to show that there exists
at least one point in the intersection of R and LP1, such that the loss
L at this point is less than any points in the intersection of R and LP2.

Let cp be the point on the critical line Egw +m= Ehw, for which L is
minimum. If the energy of cp are Egw(cp) and Ehw(cp), then Ehw(cp) =
Egw(cp) + m and

L(Egw(cp), E
h
w(cp)) = argmin{L(Egw, Egw + m)} (9)
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On the one hand, the gradient of L is

�L
�Egw

=
{
2Egw if (�i + (Egw)

2)< (Ehw)
2

4Egw otherwise
(10)

�L
�Ehw

=
{
0 if (�i + (Egw)

2)< (Ehw)
2

−2Ehw otherwise
(11)

and then the negative of gradient of L at all points on the critical line
is in the direction which is inside the half plane LP1. On the other
hand, it is apparent that L is convex with respect to Egw and Ehw. So
we can conclude that

L(Egw(cp), E
h
w(cp))�L(Egw, E

h
w) (12)

when Egw + m>Ehw.
Now consider a point at a distance � away from cp, and inside

the half plane LP1. The loss of this point can be denoted as

L(Egw(cp) − �, Ehw(cp) + �) (13)

and it can be described as follows using a first-order Taylor
expansion:

L(Egw(cp) − �, Ehw(cp) + �)

= L(Egw(cp), E
h
w(cp)) − �

�L
�Egw

+ �
�L
�Ehw

+ O(�2) (14)

Based on Eqs. (10) and (11), the second and third terms on the right
side of above equation are negative. Then for sufficient small �,

L(Egw(cp) − �, Ehw(cp) + �)�L(Egw(cp), E
h
w(cp)) (15)

Thus there exists a point in the intersection of R and LP1 that the
loss of this point is less than any points in the intersection of R and
LP2. Then the proof is completed. �

L is derived from Definition 5 and L is equal to Definition 5 when
only one genuine pair and one heterogeneous pair is considered.
Then there exists a w that satisfies Condition 1, and we have an-
swered the question described above.

The proof above is based on gradient analysis and e(w) is smooth
almost everywhere, then the gradient descent is a natural choice to
find the weight vector w that minimizes e(w) as defined in Eq. (4).
When a training set S is given, the gradient of e(w) is

�e(w)
�wf

=
∑
i

�LS(w, xi)
�wf

=
∑
i

⎛
⎝2wf

∑
j

tij (xif−xjf )
2+c

∑
jp

tij(1−bip)
�hjp(w, xi)

�wf

⎞
⎠ (16)

and the gradient of hinge loss function hjp(w, xi) with respect to
feature weight wf is defined as follows:

�hjp(w, xi)
�wf

=
{
0 if (�i + ‖xi − xj‖2)< ‖xi − xp‖2
g(wf ) otherwise

g(wf ) = 2wf ((xif − xjf )
2 − (xif − xpf )

2) (17)

Now, the steps of the proposed feature selection algorithm Lmba are
described as follows.

Step 1: Initialize w = (1, 1, . . . , 1).
Step 2: Construct matrix B and T for training set S.

Step 3: For i = 1, 2, . . . , I.

(a) Pick an instance xi.
(b) Find the nearmiss(xi) and nearhit(xi) for sample xi, and get the

value of �i.
(c) For f = 1, 2, . . . ,n calculate

∇f = 2wf

∑
j

tij(xif − xjf )
2 + c

∑
jp

tij(1 − bip)
�hjp(w, xi)

�wf

(d) w = w − �i∇/‖∇‖, where �i is a decay factor.

Step 4: Rank features based on the value of w.
In each iteration we update w only with respect to one sample

xi and it is one term in the sum in Eq. (16). On the one hand, the
weights of feature increase, then the relative effect of the correction
term ∇ decreases. On the other hand, we have proved there exists
a weight vector w that can cause the desired behavior based on the
EBM and gradient analysis, so the algorithm is typical convergent.

The parameters of the algorithm are k (number of target neigh-
bors), c (scaling factor), I (number of iterations) and {�i}Ii=1 (step size
decay factor). The value of k and c can be tuned by cross validation. I
is usually equal to the number of training samples. It always makes
sense to use �i that decay over time to ensure convergence and reg-
ulate the convergence rate. However, on our data, convergence was
also achieved with �i = 1 and the number of iterations equals to the
size of training sample.

The computational time of Lmba mainly contains the calculation
of B, T and w, they have time complexity O(N2), O(N2) and O(N2kn),
respectively, where k is the number of target neighbors. In general,
k is a small constant number. Then the total time complexity is
2O(N2) + O(N2n) ≈ O(N2n).

3.2. Comparison to algorithms based on NN rule

Simba [15,17] is also a feature selection algorithm based on
NN rule, which was shown to be very efficient for estimating fea-
tures quality. The evaluation criterion is to directly maximize the
hypothesis-margin of 1-NN. The complexity of Simba is O(N2n).
There are two major drawbacks for Simba: first, the nearest neigh-
bors are defined in the original feature space, which may not be true
in the weighted feature space; second, it cannot deal with noise and
outlier data. However, note that the proposed algorithm Lmba can
alleviate first issue by considering all the samples whose distances
to xi less than the distance between xi to its k target neighbors
plus the margin �i, not just one nearmiss(xi) and nearhit(xi) as in
Simba. In addition, the value of k in Lmba is more than 1 and the
hinge loss is used, then it filters noise and outlier better. And the
definition of �i in Lmba incorporates the idea of hypothesis mar-
gin of 1-NN. In a word, Lmba is more robust and powerful than
Simba.

Mitra's [18] is to find the feature subset that is highly correlated
based on the kNN rule. The time complexity of Mitra's is O(n2N).
Although Mitra's is based on kNN rule, however, it is an unsuper-
vised feature selection method without using the label information
in training and it focuses on features instead of samples. It only uti-
lizes the kNN rule to cluster the features to find feature having the
most compact subset, i.e. having the largest similarity to its kth near-
est neighbor feature, and discard its k neighbors. The process is re-
peated for the remaining features until all of them are considered.
At the same time, k may be changing over iterations and k controls
the size of selected feature subset. However, it only can eliminate
redundant features. All of these are different from Lmba.

In addition, Relief [19] is another well-known feature selection
algorithm based on nearest neighbor rule, and it was shown to be
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very efficient for estimating features quality. The algorithm holds
a weight vector over all features and updates this vector according
to the sample points presented. Relief was extended to deal with
multi-class problems, noise and missing data in Refs. [20,21]. The
update rule in a single step of Relief is similar to the one performed
by Simba. The time complexity is O(N2n). However, previous work
in Ref. [15] have shown Simba is superior to Relief, and Simba can be
considered as the improvement version of Relief. So in the following
experiments, we only compare the performance among Lmba, Simba
and Mitra's and ignore Relief.

4. Experiments

We empirically evaluate our feature selection method Lmba on
different data sets. First, experiments are conducted on both real-
world and synthetic data sets to check the correctness of the eval-
uation function and to see whether the proposed method can rank
the important features at the top ranking position. Iris is a well-
known real-world benchmark data set and popularly used for test-
ing the performance of clustering and classification algorithms, is
taken from UCI ML repository [22]. It contains 150 examples, and
they are classified into three classes with 50 examples in every class.
Each example is characterized by four numerical features. Out of the
four features, it is known that No. 3 (petal length) and No. 4 (petal
width) features are more important. Two synthetic data sets, S1 and
multi-class, are generated with different numbers of classes and fea-
tures, and they all have 100 samples. For S1, the first six features are
chosen as important features and these features follow Gaussian dis-
tribution. Unimportant features are added which take uniformly ran-
dom values. For multi-class, the value of data set X={x1, x2, . . . , x100}
are random, and the labels Y = {y1, y2, . . . , y100} are generated using
following Matlab function: Y=bin2dec(num2str(X(:, 1: 2)>0)), then
first two features are important. The serial number (SN) of important
features for these data sets is shown in Table 1 in second column
(from left to right).

Other three real-world benchmark data sets taken from UCI ML
repository [22] are also used to evaluate the performance of Lmba,
Simba and Mitra's.

Multi-features: The data set consists of features of handwritten
numerals (“0”–“9”) extracted from a collection of Dutch utility maps.
There are total 2000 patterns, 649 features and 10 classes.

Pima Indian diabetes (DIAB): The data set contains 768 samples
from two classes, where 500 samples are from class 1 and the re-
maining 268 samples are from class 2. Each sample is represented
by eight features. The problem posed is to predict whether a patient
would test positive for diabetes according to World Health Organi-
zation criteria.

Wisconsin diagnostic breast cancer (WDBC): The data set consists
of 357 benign samples and 212 malignant samples, with 30 real-
valued features. The task here is to predict diagnosis results (benign
or malignant).

In addition, some facial data sets are used to show the gender
classification performance of selected feature subsets for different
feature selection algorithms. For gender classification, the gallery
sets used for training include 500 male samples and 500 female sam-
ples, which have the same vector dimension of 1584 gabor filter. The
probe sets used for testing include 15 kinds of facial images, which
consists of various backgrounds, poses, expressions and occlusions,
such as front with blue background (front 1), front with nature back-
ground (front 2), down 10◦, down 20◦, down 30◦, smiling, closed
eyes, opened mouth, front with glasses, right 10◦, right 20◦, right
30◦, up 10◦, up 20◦ and up 30◦. The number of testing face images in
these probe sets are 1278, 1066, 820, 819, 816, 805, 815, 805, 813,
814, 815, 805, 819, 816 and 816, respectively, and these probe sets
are numbered as 1–15, i.e., the SN of 15 probe sets are 1, 2, 3, 4, . . . , 15,

Table 1
Description of benchmark and synthesis data sets with ranking results

Data sets SN of important
features

Lmba ranking
(descending)

Simba ranking

Iris 3,4 {3, 4}, 2, 1 {3, 4}, 2, 1
Multi-class 1,2 {2, 1}, 9, 6, . . . {2, 1}, 9, 10, . . .
S1 1,2,3,4,5,6 {2, 3, 6, 1, 4, 5}, 8, . . . {2, 1, 3, 6, 4, 5}, 9, . . .

Fig. 3. Examples of facial images in probe sets.

respectively. Examples of facial images from these probes sets are
shown in Fig. 3, and these facial sets have been used in [23,24].

4.1. Experimental results on benchmark data sets

Lmba and Simba are used to rank the features, and the results are
listed in the third and fourth column of Table 1, respectively (from
left to right). From this table, we can see that our method Lmba and
Simba are able to rank the relevant features in the top positions.
However, Mitra's cannot rank the features, so the results of Mitra's
are not shown in Table 1.

For other real-world data sets, we compare the classification per-
formance of selected feature subset instead of listing the concrete
selected features. We use the classification accuracy of 1-NN clas-
sifier to evaluate the selected feature subsets and fivefold cross-
validation is adopted. In Lmba, the parameter c and the number of
target neighbors k are set to 1 and 3, respectively, and the same sets
are used in other experiments. The results are shown in Figs. 4, 5
and 6, which are corresponding to Multi-features, WDBC and DIAB,
respectively.

4.2. Gender classification

In this subsection, we present experimental results of gender clas-
sification for different numbers of selected features and various fea-
ture selection algorithms, which are Lmba, Simba and Mitra's. The
number of selected features is chosen as 127, 254, 508 and 1016.
Traditional SVM [25] is adopted, and the parameter C is set to 1. De-
tailed gender classification rates of different algorithms on 15 probe
sets are displayed in Figs. 7–10. The figures are corresponding to
different numbers of selected features, i.e. 127, 254, 508 and 1016,
respectively. The X-axis is the SN of probe sets and Y-axis is the ac-
curacy rate on these probe sets for gender classification. The average
accuracy rates on 15 probe sets for different numbers of selected
features are shown in Table 2.
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Fig. 4. Experimental results for Multi-features.
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Fig. 5. Experimental results for WDBC.
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Fig. 6. Experimental results for DIAB.
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Fig. 7. Experimental results for the number of features 127.
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Fig. 8. Experimental results for the number of features 254.

4.3. Observations

From the experiments on benchmark and facial data sets, we can
obtain the following two observations.

• The proposed evaluation criterion based on loss-margin of nearest
neighbor classification can correctly rank the important features.

• For different data sets, Lmba and Simba often obtain higher per-
formance than Mitra's for different classifiers (e.g. 1-NN and SVM).
At the same time, Lmba gets highest performance in most cases.
For gender classification, the number of probe sets on which Lmba
obtains highest accuracy is more than Simba and gets highest
average accuracy rates for different number of selected features.

For the experimental results, Simba, which is based on large mar-
gin 1-NN classification, works well for 1-NN classifier and data set
without noise. So we conduct experiments to compare Lmba with
Simba under these conditions. Of course, if we adopt kNN classi-
fier (k>1) and experiments are conducted on data set with many
noise, the Lmba will surely get much higher performance than Simba
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Fig. 9. Experimental results for the number of features 508.
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Fig. 10. Experimental results for the number of features 1016.

because kNN rule performs better than 1-NN rule as it filters noise
better [10] and the proposed evaluation function is based on large-
margin of kNN classification. It is well-known if an algorithm selects
a small set of features with large margin, the bound guarantees it
generalizes well [15].

5. Conclusions and discussions

In the paper we used the maximal margin principle together with
loss function to derive algorithm for feature selection. An evaluation
criterion based on the loss function of nearest neighbor classification
is proposed. At the same time, theoretic analysis of the evaluation
function based on margin and EBM is presented. We derive feature
selection algorithm Lmba by using gradient descent to minimize the
evaluation criterion, which indirectly maximizes the margin of near-
est neighbor classification. We have shown that Lmba outperforms
Simba and Mitra's, which are based on hypothesis margin of 1-NN
classification and kNN rule clustering, respectively, on benchmark
data sets and a gender classification task. Although the criterion is
focus on large margin nearest neighbor classification, it is also can

Table 2
The average accuracy rate on 15 probe sets for gender classification

No. selected features Algorithms Average accuracy rate (%)

127 Lmba 74.73
Simba 74.55
Mitra's 72.13

254 Lmba 76.23
Simba 75.26
Mitra's 73.19

508 Lmba 77.72
Simba 75.78
Mitra's 75.00

1016 Lmba 79.08
Simba 77.58
Mitra's 76.59

get better results for other distance-based classifiers (such as SVM)
than Simba and Mitra's. Note that the kNN rule usually performs
better than 1-NN rule as it filters noise better, then Lmba will be
more powerful when applied to data set with noise. Of course, other
optimization algorithm for minimizing our loss-margin based crite-
rion can be utilized and more attention should be paid to reduce the
effects of outlier and noise data.
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