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Abstract— We have shown that the slow eye movements
extracted from electrooculogram (EOG) signals can be used
to estimate human vigilance in our previous work. However,
the traditional method for recording EOG signals is to place
the electrodes near the eyes of subjects. This placement is
inconvenient for users in real-world applications. This paper
aims to find a more practical placement for acquiring EOG
signals for vigilance estimation. Instead of placing the electrodes
near the eyes, we place them on the forehead. We extract
EOG features from the forehead EOG signals using both
independent component analysis and support vector machines.
The performance of our proposed method is evaluated using the
correlation coefficients between the forehead EOG signals and
the traditional EOG signals. The results show that a correlation
of 0.84 can be obtained when the users make 14 different face
movements and for merely eye movements it reaches 0.93.

I. INTRODUCTION

Many studies of vigilance in the past few decades have
shown that alertness monitoring is very useful for many jobs,
especially for vehicle drivers and high accuracy operators [1].
For example, fatigue has been shown to be a serious problem
for high speed railway operators [2]. In this case, it is critical
to develop a practical system for continuously monitoring
operators’ alertness level, without disturbing their normal
activities.

A number of non-contact fatigue detection systems have
emerged in recent years. Most of these systems use image
processing and computer vision techniques, adopting a CCD
video camera fixed in a cab to recognize whether drivers
are tired [3], [4]. The drivers’ alertness level is evaluated
by monitoring their eye states. These systems mainly detect
blink frequency and duration to recognize the drivers’ drowsy
state. Compared to image-based systems, fatigue detection
based on EOG signals can utilize more features of eyelid
movements like the accurate eye closing time, the strength
and speed of each blink and more importantly the eyeball
movements, both slow eye movements (SEMs) and rapid
eye movements (REMs) [5]. With all of these additional
features, alertness level detection based on EOG signals can
offer a more robust and precise estimation. Additionally,
in real-world application scenarios, users can cheat the
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image-based monitor systems by deliberately controlling eye
blinks, however, SEMs are extremely difficult to fake. Hu
and Zheng [6] have successfully developed an EOG based
drowsiness detection model, but it uses only blink features.

In our previous work, we proposed a method using EOG
features, mainly slow eye movements (SEMs), to estimate
human alertness [7]. Since EOG signals are much stronger
than electroencephalogram (EEG) signals, a method based
on EOG is robust and easy applied. In addition, detecting
an EOG signal requires only a few electrodes on the face,
which means lower requirements for the signal gathering in
most cases. The performance evaluation of such method by
the correlation coefficients between the estimated alertness
level and the local error rates of the subjects shows that the
correlation can achieve 0.79 by using EOG features off-line.

This paper introduces a novel electrode placement for
EOG detection. Traditionally we use four electrodes, plus
a ground electrode, to record EOG signals, with two of
them at the outside corners of the eyes to detect horizontal
movement and the other two at the top and bottom of one
eye for vertical movement; these are called horizontal elec-
trooculogram (HEO) and vertical electrooculogram (VEO),
respectively [8]. In practical applications, for instance vehicle
driving, contact electrodes close to the eyes are significantly
inconvenient to users, especially to spectacle wearers. We
rearrange the position of electrodes and gather them all on
the forehead. With this arrangement, the electrodes will not
impact the sight of the users, which makes the whole device
more wearable and users more comfortable.

This paper is organized as follows. Section II describes the
EOG detection experimental setup. Section III presents the
proposed EOG extraction method using ICA and SVM, and
verifies the feasibility of the new placement method. Finally,
section IV gives some discussion and conclusions.

II. MATERIALS AND METHODS

A. Study subjects

Our experiment for obtaining forehead EOG signals is
a monotonous imitation task. The subject sits about two
feet away from an LCD screen in a noise-free room. In
each session, the screen displays 14 different face movement
examples that would evoke various kinds of EOG and
electromyographic (EMG) artifacts. The subject is asked to
perform the same action synchronously. All the 14 move-
ments are chosen to represent possible human behaviors
during vehicle driving; they include bending or shaking the
head, clenching the teeth, blinking, eye rolling, horizontal
or vertical eye movement, swallowing, squinting, eyebrow
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raising, scowling, smiling, cheek scratching, and opening and
closing the mouth.

The stimuli prompting the subjects to perform different
movements are presented in random order. The structure of
one trial is as follows: three seconds of counting down on a
ready screen for preparation, then the instruction generating
the specific movement is presented for 20 seconds. Finally,
each trial ends with a brief black screen for relaxation. One
experiment contains two sessions, each about 12 minutes,
separated by a 5 minute rest.

B. Experimental protocol

Ten sessions of EOG signals and response sequences from
five subjects (four male and one female, all healthy and
between 21 and 29) were recorded using the NeuroScan
System. In order to evaluate the performance of the two
electrode placement methods, both were used at the same
time. That is, in addition to reference and ground electrodes,
four electrodes were used to record HEO and VEO in the
traditional way, and four more were used on the forehead.
More details will be mentioned in section III. The recordings
are sampled at 500Hz, and filtered between 0.1 and 100Hz.

C. Placement methods

Although placing electrodes near the eyes can obtain the
most direct and noise-free EOG signals, this method has
many limitations in practical applications. Thus we try to
find a new placement method based on the following criteria.

First, electrodes cannot affect normal operations or the
sight of subjects. Second, electrodes should be easy to wear,
like wearing a cap or band on the head. Third, given the
electrode placement, the detection system should have a
certain robustness, for example, it should avoid interference
from artifacts or deliberate actions of subjects.

Taking account all of these constraints, we decided that
it is best to put electrodes on the forehead. Among the
facial muscles, the forehead has less motion than most. It
is normally bare so electrodes are not disturbed by hair on
the scalp. It is also close to the eyes. Moreover, in this way
it is really easy to implement all the electrodes on one band
which makes the device quite practicable.

Fig. 1. The far left and far right electrodes on the edge of the forehead
are GND and REF. The other four electrodes in the middle of the forehead
are observation electrodes.

In our design six electrodes are used to detect EOG
signals from forehead. One of them is a reference electrode
(Ref), another is ground (Gnd), and the rest are observation
electrodes.

Our final placement method is depicted in Fig.1. For
easy deployment, the Ref and Gnd were placed on the left
and right edges of the forehead respectively and the four
observation electrodes were placed equidistant horizontally
in the center.

D. Choice of ICA algorithm

The first and most important decision that has to be
made is which ICA algorithm should be used for the source
separation. This is meaningful because an unsuitable source
separation algorithm may lead to poor results like fractions
of artifacts mixed with the desired EOG signals, as well as
confusing HEO and VEO.

We apply two different algorithms: FastICA (an ICA
algorithm) from the EEGLAB toolbox [9] and Amuse (a
blind source separation, BSS algorithm) from the ICALAB
toolbox [10]. The main difference between these two algo-
rithms is that FastICA yields truly statistically independent
components, while Amuse just returns uncorrelated signals.
Fig. 2 illustrates the comparison between the signals sepa-
rated by ICA and the original HEO and VEO signals detected
by the traditional method.

For both FastICA and Amuse, the input data is a matrix
containing data from the four channels of observation sig-
nals from the rearranged placement, and the output is four
channels of signals after separation. We expected that among
the output signal channels, one would represent HEO and
another VEO.

Fig. 2. The signals separated by ICA and the original HEO and VEO
signals. The top left image shows HEO, the top right one shows VEO, and
the other four are the signals separated by ICA.

In order to evaluate the correlation between the separated
signals and the HEO/VEO, FastICA and Amuse are run in
two ways. First we use the full length of the whole recordings
as the input of both algorithms, and calculate the overall
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correlation coefficients between the four separated signals
and HEO or VEO. Second, we divide the recordings into
many segments where each corresponds to a 20 second trial
(the 3 second rest time in each trial is discarded). Then
we run both algorithms independently on each segment and
calculate correlation coefficients. In both cases, we select the
separated channel which has the largest absolute correlation
coefficient with HEO as the representation of HEO, and
similarly for VEO. In this case we know both the overall
performance of our placement method and the performance
for specific movements.

The results show that FastICA can achieve 0.87 overall
correlation off-line while Amuse only gets 0.79. We also
notice that for different trials with different movements, the
correlation values vary a lot. For trials which only involve
eye movements like blinking and eye rolling the correlation
value can reach 0.99, but for other trials, especially those
involving forehead movements like scowling, the correlation
value is only 0.67.

Furthermore, after FastICA processing, in most trials the
first output channel is most similar to HEO and the third
channel to VEO. However, this pattern also changes in some
cases. Moreover, comparing the results of the whole session
test and the single-trial test, we find that they agree; the
channels chosen to represent HEO and VEO are the same in
both tests, during trials of strongly eye-related movements.
On the other hand, during trials of weakly eye-related move-
ments, the result of a single-trial test may be disturbed and
may change to another channel. We will propose a solution
to this problem in the next subsection.

The correlation coefficients between signals separated by
FastICA and original HEO/VEO for each movement are
illustrated in Fig. 3.

Fig. 3. The correlation coefficients for each movement.

These 14 different kinds of movements are: 1) bending the
head; 2) shaking the head; 3) clenching the teeth; 4) blinking;
5) rolling the eyes; 6) horizontal eye movement; 7) vertical
eye movement; 8) swallowing; 9) squinting; 10) raising the
eyebrows; 11) scowling; 12) smiling; 13) scratching a cheek;
and 14) opening and closing the mouth.

E. EOG Extraction

As mentioned above, the representation channels for EOG
may change for different movements. Even if they are
unchanged, in order to correctly extract EOG signal channels
from the output of ICA, we still need to find a method which
can figure out which channel is most similar to HEO or VEO.

As shown in Fig. 4, we solve this problem in two steps.
First, for each output channel, we use a blink detection al-
gorithm to discriminate two possible HEO channels and two
possible VEO channels. Second, for all the channels we use
a support vector machine (SVM) to generate the probability
of belonging to EOG. Then the HEO representation channel
should be the one with larger probability in two possible
HEO channels, and similarly for VEO.

Normally people have about dozen eye blinks in a minute,
and the average interval between two blinks is 4 to 8 seconds.
A blink can cause an obvious waveform in VEO, while much
less affecting HEO. Therefore, according to the detected
number of blinks in signals, we can discriminate possible
HEO and VEO. In our experiment there are four channels
so we simply select two of them which have larger number
of blinks as the VEO candidates, and the other two as the
HEO candidates.

Our automatic blink detection method is mainly based
on Bruno Jammes’s work [11] with some improvements.
The core idea of this method is to set two eyelid veloc-
ity thresholds: one for eye closing and the other for eye
reopening. These two thresholds can be used to locate the
positions of blink waveforms in EOG recordings. Since this
method works on the differential EOG signal, it can resist
the interference of voltage shift caused by muscle movements
and so on.

In the next step, we use an SVM to classify all the four
channels into two classes which are EOG and EMG. The
inputs of the SVM are the features of spectral information
and time-series information extracted from each 20 sec
segment.

Welch’s algorithm is applied to calculate the power spec-
trum density (PSD) of signals from 0.1 to 100Hz. The fre-
quency resolution is 5Hz, which means we divide the signal
into 20 bands in the frequency domain and calculate their
PSD values. We found the PSD of EOG is predominant at 0.1
to 10 Hz, while the PSD of EMG is mainly distributed above
20Hz. In this case, EOG and EMG can be distinguished by
their typical spectrum features.

Autoregressive (AR) coefficients are used to represent the
features of time-series information. EMG differs significantly
from EOG in that sudden high-amplitude changes often occur
in an EMG signal but seldom appear in an EOG signal. With
the help of AR modeling techniques one can detect these
sudden changes [12]. Through a 10-fold cross validation
(CV) to survey the order p of the AR model from 1 to 8,
we finally choose p = 5.

Using the features mentioned above as input, an SVM
classifier with an RBF kernel [13] is applied on each trial
for classifying EOG and EMG. Our SVM classifier was
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Fig. 4. The process of EOG extraction from the signals detected on the forehead.

trained by 2000 randomly selected samples, half EOG and
half EMG. Its classification accuracy is over 90% [14].

III. DISCUSSION

Figure 3 verifies that independent HEO and VEO can
be separated from the signals detected at the forehead. In
order to estimate the performance of our EOG extraction
method made up of SVM and blink detection, we calculated
correlation coefficients between the extracted EOG signals
and EOG signals detected in the traditional way. When the
actual HEO and VEO are already known, the correlation
coefficients between ICA separated components and actual
HEO/VEO during all the 14 kinds of movements were
calculated, and for each trial the channel with the highest
correlation coefficient was selected as the representation of
HEO or VEO. In this case, we obtained a best sequence
of channels representing HEO and VEO, whose correlation
value with HEO and VEO is 0.9036 and 0.7862 on average.
On the other hand, if we assume the actual HEO and VEO
unknown, the representation channels can be selected by our
EOG extraction method. The result is about 90% overlapped
with the best sequence. The average correlation values of all
the 5 subjects and all the data sessions are 0.8457 for HEO,
and 0.7697 for VEO.

The most significant factor causing the decline of corre-
lation values is the EMG interference in some weakly eye-
related movements like teeth clenching and scowling. In such
movements, EMG artifacts still exist in the ICA separated
signals; this interferes with the SVM classifier and makes it
less likely to distinguish EOG from EMG. However, in such
a case, even EOG detected in the traditional way may be
contaminated by EMG artifacts, which means the correlation
value between original EOG and ICA separated EOG may
not be a reasonable measure of performance. In normal
alertness experiments, subjects do not usually make intense
facial muscle movements which continuously generate strong
EMG, so we may expect that the actual performance would
be higher.

IV. CONCLUSIONS

In this paper, we have presented a novel electrode place-
ment for EOG detection. With the ICA algorithm the inde-
pendent HEO and VEO signals can be separated from signals
collected from the forehead. Then using SVM combined with
a blink detection method, it is possible to select the signals
which have the highest correlation with actual HEO or VEO

to be the representations of EOG. The final extracted EOG
signals can be used to estimate alertness level as mentioned
in our previous work. Based on the new electrode placement,
alertness monitoring devices can be designed in a more
convenient and practical way.

In the future, we will incorporate this electrode placement
and EOG extraction method into our real-time alertness
estimation system for driving simulation, and continue to
enhance the performance of the online EOG extraction
algorithm.
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