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This article explores the interdependences between subcellular locations and
incorporates them with support vector machines for prediction of protein
subcellular localisation. Traditional prediction systems utilise a ‘flat’ structure of
classifiers, such as the one-versus-all and one-versus-one schemes, with amino
acid compositions to perform the prediction. Apart from those existing studies
that ignore the interdependences between subcellular locations, we take advan-
tage of a hierarchical structure to organise the subcellular locations and model
their relationships. Here, we propose to use four kinds of hierarchical prediction
methods and make comparative studies on three datasets. Experimental results
show that three of the hierarchical models outperform the traditional ‘flat’ model
in terms of tree loss values. In particular, one hierarchical model outperforms the
traditional ‘flat’ model for all evaluation measures. Moreover, we gained some
valuable insights into the sorting process by using hierarchical structures.

Keywords: protein subcellular localisation; support vector machines; hierarchical
ontology; structured prediction; optimisation

1. Introduction

The number of protein sequences with unknown functions has increased dramatically in
the past decade. As a result, determining the functions of a new protein is a major issue in
proteomics and bioinformatics. One of the key steps towards this long-term initiative is the
prediction of subcellular locations. However, the protein sorting process is very complex
and still not clearly understood. This gives rise to many opportunities for in-depth
exploration of protein subcellular localisation.

Nishikawa, Kubota, and Ooi (1983) have conducted a pioneering investigation into
predicting protein subcellular locations. They performed the prediction based on amino
acid compositions, and found that considerable discriminative ability is contained in the
simple representation. Inspired by their seminal work, many studies have been performed
to incorporate sequence information for predicting subcellular locations. For example,
Reinhardt and Hubbard (1998) used neural networks and constructed a benchmark
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dataset, which has been extensively studied. Chou et al. proposed a battery of methods,
such as a covariant discriminant algorithm (Chou and Elrod 1999), pseudo amino acid
composition (Chou 2001) and a hybrid approach using gene ontology (GO) (Chou and Cai
2005). Hua and Sun (2001) first applied support vector machines (SVMs), one of the most
successful algorithms in machine learning and pattern recognition, to this prediction task.
Park and Kanehisa (2003) constructed another SVM-based prediction system, whose
objective is to predict a wide coverage scope of subcellular locations (12 locations) with
accurate performance. Recently, due to the development of statistical learning theory and
the availability of SVM solvers, various methods use SVMs as base tools to construct new
prediction systems (Yang and Lu 2005; Höglund, Donnes, Blum, Adoplh, and Kohlbacher
2006; Pierleoni, Martelli, Fariselli, and Casadio 2006; Yang, Lu, and Yang 2006).

A potential drawback of all the above methods is that they use a ‘flat’ structure to
perform predictions. The relationships between subcellular locations, which are in fact
highly related to the protein sorting process, are not taken into consideration. In view of
this problem, Nair and Rost (2005) have constructed a prediction system called LOCtree
for protein subcellular localisation. In short, they constructed a tree structure by hand to
mimic the cellular sorting process. Thus, a ‘winner-take-all’ scheme is used to make a hard
decision on each node, down from the root to leaves. They showed that this simple
decision tree scheme performs better than conventional methods. In addition, this
hierarchical structure can provide insights into the sorting process, such as the accurate
distinction between secretory pathway proteins and others. Pierleoni et al. (2006) also
proposed a similar method called BaCelLo to incorporate the relationships between
subcellular locations. They used another tree structure that is slightly different from the
LOCtree and placed more emphasis on balanced performance among all the locations.
They achieved the balanced prediction system by adjusting the separating hyperplane to
maximise a balanced criterion at each node of the tree structure. Both of the two methods
referenced above use SVMs as their node classifiers, and they use a radial basis function
(RBF) kernel with tuned parameters, � and C.

On the basis of these empirical results, there is reason to believe that the relationships
between subcellular locations offer valuable information that prediction methods are able
to capitalise on. However, LOCtree and BaCelLo only employ a decision tree scheme to
incorporate structure information. There are two clear drawbacks for that simple scheme.
First, errors may accumulate from the roots to the leaves. In other words, errors made by
upper level nodes cannot be recovered by lower level nodes. Second, by using a hard
decision in each node, the confidence value of each SVM decision is lost. Considering the
concept of structured learning has recently emerged in the machine learning community, in
this article we conduct an in-depth exploration on how to better use relationships between
subcellular locations to improve prediction performance.

2. Methods

2.1. SVMs for subcellular localisation

The SVMs boasts a strong theoretical underpinning, coupled to remarkable empirical
results across a growing spectrum of applications. In machine learning, it has become one
of state-of-the-art supervised learning algorithms. However, directly using SVMs for
predicting protein subcellular locations has one obvious obstacle, as suggested in
the literature, which is that conventional SVMs apparently only handle binary

80 W.-Y. Yang et al.



classification problems. For multi-class problems, such as protein subcellular localisations,
one needs to generalise the original binary SVMs to perform the task. In the following, we
introduce several generalisations that we use to predict protein subcellular locations.

2.1.1. Flat classification

One of the simplest ways to generalise SVMs from the binary case to multi-class case is the
so-called one-versus-all (OVA) scheme (Hsu and Lin 2002). First, we build N SVM
classifiers with real-valued outputs, each of which is trained by using one of the classes as
the positive class and the remaining classes as the negative class. Then, given a new sample,
all N SVMs are run and output N decision values. We select the classifier with the largest
output value (the most positive) and take its corresponding category as the resulting
prediction. In this article, we take the OVA scheme as our flat classification method.

Additionally, a number of more sophisticated multi-class SVM extensions have also
existed, including (OVO) scheme (Hsu and Lin 2002), part-versus-part (PVP) scheme (Lu,
Wang, Utiyama, and Isahara 2004) and error correcting output code (ECOC; Dietterich
and Bakiri 1995).

Previous researchers have utilised these ‘flat’ schemes numerous times to predict
subcellular locations. For example, Hua and Sun (2001) used the OVA scheme to combine
three and four SVMs for the prediction of prokaryotic and eukaryotic proteins,
respectively. Park and Kanehisa (Park and Kanehisa 2003) used the OVO scheme to
combine 66 SVMs for the prediction of 12 subcellular locations. Yang, Chen, Lu, and
Kwok (Chen, Lu, and Kwok 2006; Yang and Lu 2006; Yang and Lu 2007) used the PVP
scheme to combine a number of small SVMs for more balanced and accurate predictions.

2.1.2. Hierarchical classification

As a natural approach to comprehensively organising the data, hierarchical structure
appears to be ubiquitous in information categorisation, browsing, searching and
visualisation. Accordingly, researchers have proposed a number of methods to perform
automated hierarchical classification of texts (Koller and Sahami 1997), web contents
(Dumais and Chen 2000) and patents (Cai and Hofmann 2004). These works showed that
the incorporation of hierarchical relationships between classes can obtain better results
than ‘flat’ classification methods.

Hierarchical classification models present an alternative for multi-class problems.
Conceptually, hierarchical models provide a more comprehensive method for protein
subcellular localisation and simulate the protein sorting process via a top-down
hierarchical structure, which has been shown to improve predictions (Nair and Rost
2005; Pierleoni et al. 2006).

We use two prediction schemes based on a hierarchical structure. The first one is the
basic decision tree scheme, which is the same as LOCtree and BaCelLo. We refer to this as
the DT-SVM in the sequel. The other scheme utilises the probability information
calculated from the SVM outputs (Wu, Lin, and Weng 2004). Instead of making a hard
decision at each node, we calculate the probability for each branch. Thus, we can calculate
the probability of each leaf by combining the probabilities of all its ancestors in a
multiplicative way. Finally, we take the leaf with the largest probability as the resulting
prediction and we refer to this scheme as the PM-SVM in the sequel.
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2.1.3. Structured classification

Maximum margin structured prediction (Taskar, Guestrin, and Koller 2003;

Tsochantaridis, Joachims, Hofmann, and Altun 2005) is a more general SVM learning

algorithm. It is proposed to handle predictions with interdependent outputs, such as those

from a hierarchical structure, label sequences and sequence alignment. Existing structured

predictions hold a consensus on defining a discriminative function F :X �Y!R, from

which a prediction can be derived by maximising F over y2Y. Hence, the predicting

function is

f ðx;wÞ ¼ argy2Y maxFðx, y;wÞ: ð1Þ

As a reasonable assumption, F is usually represented as the following linear form,

F(x, y;w)¼hw,�(x, y)i, where �(x, y) is the so-called joint feature mapping.
The training formulation follows from the maximum margin principle, which is shown

as the following optimisation problem,

min
w, �

1

2
kwk2 þ C

Xn
i¼1

�i

s.t. 8i, 8y 2 Ynyi : hw, ��iðyÞi51� �i,

8i : �i50,

ð2Þ

where we define ��i(y)¼�(xi, yi)��(xi, y), so that the constraint can be written more

concisely.
A reasonable assumption is that we want the cost of mistakes to be as low as possible.

To be more specific, when a mistake is made, it is better to assign the pattern to a class that

is ‘near’ the correct class. Concerning this intuition, we involve loss function D(yi, y), which
relies on the relationship between yi and y. Existing works have proposed two optimisation

forms to incorporate the loss function (Tsochantaridis et al. 2005). We use the one that re-

scales slack variables as follows:

min
w, �

1

2
kwk2 þ C

Xn
i¼1

�i

s.t. 8i, 8y 2 Ynyi : hw, ��iðyÞi51�
�i

Dðyi, yÞ
,

8i : �i50:

ð3Þ

This optimisation problem can be solved by the cutting plane algorithm (Tsochantaridis

et al. 2005), and guaranteed to converge in polynomial time.
The joint feature mapping is one of the key tricks for structured prediction. We define

the joint feature mapping as a tensor product, �(x, y)¼�(y)�x, where �(y) is a vector

encoding the relationships between a label y and other nodes in the hierarchy. Formally,

�ðyÞ ¼ ð�zðyÞÞz2T , ð4Þ

where T denotes the set of all the nodes in the hierarchy, and �z(y) is defined as

�zðyÞ ¼
1, if z � y

0, otherwise:

�
ð5Þ
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Here, the relation a denotes that a node z is a predecessor of a label y. Therefore, we can
write the joint feature mapping �(x, y) in the following form,

�ðx, yÞ ¼ �ðyÞ � x ¼

�z1ðyÞ � x

�z2ðyÞ � x

..

.

�zt ðyÞ � x

0
BBBB@

1
CCCCA: ð6Þ

where zi for i¼ 1 to t enumerate all the elements in T .
We take an example in Figure 1 to clarify how this joint feature mapping is defined.

2.2. Interdependent subcellular locations

2.2.1. Biological perspective

Biological protein sorting is a complicated process that has not been clearly elucidated.
Therefore, it is hard to model all the relationships between locations consistently into one
hierarchical structure. Even in existing works, researchers use different types of hierarchical
structures to perform prediction, such as the hierarchical structures used for plants in
LOCtree (Nair and Rost 2005) and BaCelLo (Pierleoni et al. 2006). However, there are
several general criteria for the hierarchical structure that can be summarised from earlier
works. First, proteins destined for the extracellular space, the ER, theGolgi, endosomes and
lysosomes are targeted via the same secretory pathway. Hence, proteins from the secretory
pathway are regarded as more similar to each other than they are to other intra-cellular
proteins. Second, as suggested in earlier works, the intra-cellular proteins can be roughly
categorised into three groups: nuclear, cytoplasm and organelles. This categorisation was
adopted in both LOCtree (Nair and Rost 2005) and BaCelLo (Pierleoni et al. 2006).

Three hierarchical structures are manually drawn to perform the prediction of
subcellular localisations in our experiments and are shown in Figures 4(a), 4(b), 5(a)
and 5(b).

2.2.2. Machine learning perspective

Note that existing hierarchical structures of subcellular locations are all manually
constructed for only a few locations, such as LOCtree (Nair and Rost 2005) for fewer than
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Figure 1. A simple tree hierarchy. This tree hierarchy has three classes and six nodes. The joint
feature mapping for an input vector x and category 1 is depicted as an example.
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six locations and BaCelLo (Pierleoni et al. 2006) for fewer than five locations. However,

when presented with more subcellular locations, drawing the hierarchy by hand may be

inaccurate or inconsistent with all the relationships between locations. As a result, we are

interested in how to use an automatic method to analyse the distribution of data, thus

assisting human experts into constructing the hierarchical structure for a large number of

subcellular locations. We are also interested in whether the resulting structure is

biologically interpretable.
Here, we propose a clustering-based method for constructing a binary tree. For the

clustering algorithm, we use a toolkit called CLUTO.1 The clustering-based construction

method can be summarised as follows:

(1) According to the used features, cluster all the proteins into N clusters by using the

bisection method repeatedly.
(2) Represent each subcellular location by an N-length vector, which holds the

distribution of the corresponding proteins in all N clusters. Then compute

the similarity between every two subcellular locations using the correlation

coefficient.
(3) Use a graph partition-based clustering algorithm to perform clustering based on

the similarities between every two locations. As a result, the tree structure can be

drawn in a top-down fashion corresponding to the graph partitioning steps.

We use this learning method to construct a hierarchical structure for a dataset, which

has 12 subcellular locations. Note that we only use the learning method as a tool to assist

structure building. In practice, the resulting hierarchical structure should be selected with

biological interpretation by a biological expert from a candidate set.

2.3. Multiple root structure

Hierarchical prediction as presented in the previous section is only used for tree structures

with one single root. These tree structures can only encode the relationships among

proteins from one species. Hence, they cannot capture the relationships among proteins

from different species. In fact, these two types of relationships should be encoded by the

same hierarchical structure. In consideration of this notion, we combine the subcellular

hierarchies of different species together to get a more interpretable structure that has more

than one root. These two types of interdependences are depicted in Figure 2.
The multiple root structure can be constructed in a straightforward manner. In

particular, the leaf nodes represent subcellular locations for different species. We merge

together those leaf nodes belonging to the same subcellular location, but different species.

The edges connected to them are also moved to the newly merged leaf node. In this way,

we get a multiple root structure that encodes two types of relationships.
According to this variant of the tree structure, we need to change the formulation of

structured prediction. First, we must introduce some notations. We denote by Yr the set of

all leaf nodes that are reachable from the rth root, and by �r(x, y) the joint feature

mapping with respect to the tree rooted at the rth root. Since each protein belongs to one

species, i.e., one root, we assume that each sample x belongs to one root, although the leaf

node it belongs to may be reachable by more than one root. Let the root that sample x

belongs to be denoted by r(x).
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A variant of the original structured prediction for multiple root structure is as follows:

min
w, �

1

2
kwk2 þ C

Xn
i¼1

�i

s.t. 8i, 8y 2 YrðxÞnyi :

ð7Þ

hw, ��riðyÞi51�
�i

Dðyi, yÞ
,

8i : xii50,

ð8Þ

where ��ri(y)¼�r(xi, yi)��r(xi, y). An illustrating example of �r(x, y) is depicted in
Figure 3. Similar with the optimisation problem defined in Equation (3), this new

NUC

MIT

SP

NUC

SP

MIT

NUC

CHL

SP

MIT

Interdependence
w

ithin species

Interdependence
among species

PlantsFungiAnimals

Figure 2. Prosaical illustration of two types of interdependences: CHL, chloroplast; MIT,
mitochondrial; NUC, nuclear; SP, secretory pathway.
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Y6(x,1)=
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x

0

0

x
0

x
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Figure 3. A multiple root structure. This multiple root structure has three classes and seven nodes.
The joint feature mapping for an input vector x and category 1 with respect to root 6 is depicted as
an example. Note that the seventh element of the �6(x, 1) is 0, though root 7 is also a predecessor of
category 1.
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optimisation problem can also be solved in polynomial time by the cutting plane algorithm
(Tsochantaridis et al. 2005).

3. Experiments

3.1. Experimental setup

The SVM algorithm and structured prediction algorithm used in our experiment are
modified from the implementation of LibSVM version 2.822 and SVM-struct version 3.03.

In all the experiments, a linear kernel is used, since it is computationally efficient and
achieves competitive performance for high-dimensional inputs. We use the occurrences of
k-mers as features for each protein sequence, since this type of feature could provide
robust and competitive prediction with other complicated feature extraction methods. This
has been empirically proven in Yang et al. (2006). Moreover, as a pre-processing step, the
feature vector is normalised to be of unit length (kxk2¼ 1). For the training parameters, we
follow the heuristic used in SVMlight (Joachims 1998) that sets C to 1 in all SVM runs
(since the input vectors are normalised to unit length). Experiments on text classification
show that this is a good choice (Cai and Hofmann 2004). The tolerance parameter � is set
to 0.01 in all runs for SVM-struct. This value is also used by default in previous works
(Cai and Hofmann 2004).

According to the constant C used in our experiment, it is necessary to normalise the
joint feature mapping as h�(x, y),�(x, y)i¼ 1 so that the heuristic in SVMlight is
applicable. Therefore, instead of using �z(y)¼ 1 in Equation (5), we set �zðyÞ ¼ffiffi

1
d

q
, if z � y, where d is the depth of the tree structure.

3.2. Datasets and evaluations

In the experiment, we use three datasets to measure the effectiveness of our hierarchical
prediction methods. These datasets are constructed by Reinhardt and Hubbard (1998),
Park and Kanehisa (2003) and Pierleoni et al. (2006), respectively. According to the author
names and their prediction systems, we refer to these three datasets as RH, PLOC and
BaCelLo datasets, respectively. The detailed information about these three datasets is
listed in Table 1. The specific locational distributions are shown in Tables 4–6. For the
BaCelLo dataset, we use the same split of training and test sets as in the work by

Table 1. Detailed information of the three used datasets, RH (Reinhardt and Hubbard
1998), PLOC (Park and Kanehisa 2003) and BaCelLo (Pierleoni et al. 2006).

Dataset
No. of
locations

No. of
sequences

SWISSPROT
version Year

RH (prokaryotic) 3 997 33.0 1998
RH (eukaryotic) 4 2427 33.0 1998
PLOC (prokaryotic and eukaryotic) 12 7579 39.0 2003
BaCelLo (plants) 5 491 48.0 2006
BaCelLo (animals) 4 2597 48.0 2006
BaCelLo (fungi) 4 1198 48.0 2006
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Pierleoni et al. (2006). For the RH and PLOC datasets, we use the same fivefolds as in the

earlier works (Hua and Sun 2001; Park and Kanehisa 2003) in order to be consistent.
We use standard recall (R), total accuracy (TA), locational accuracy (LA) (Park and

Kanehisa 2003) and tree loss (D-loss) to measure prediction performance. The standard

recall R is used to measure the prediction of each location. The three measures, TA, LA

and D-loss, are used to measure the overall prediction accuracy across all locations. The

tree loss function used in the experiment is

Dðy, ŷÞ ¼
X

z2T :z�y, z�ŷ

1

2

0
@

1
Aþ X

z2T :z�y, z�ŷ

1

2

0
@

1
A: ð9Þ

This loss function can also be interpreted as the distance between y and ŷ in the tree

structure. We use this same loss function in both training and evaluation.

3.3. Hierarchical structures for subcellular locations

Following the descriptions in Section 2.2, we developed the hierarchical structures for the

three datasets used in our experiments. For the RH and BaCelLo datasets, the structures

are smaller than those of the PLOC dataset. Hence, we directly draw the hierarchical

structures by using the aforementioned biological criteria. However, for the PLOC dataset,

there are 12 different subcellular locations and 7579 protein sequences. Due to the large

numbers of sequences and subcellular locations, we apply the clustering-based method to

produce a hierarchical structure for this dataset. We test about 10 different values for N,

the number of clusters, and report the structure that is more biologically plausible and has

better prediction performance. The hierarchical structure for the PLOC dataset shown in

Figure 6 is produced by N¼ 50.
It is worth mentioning that the hierarchical structure automatically generated

for the PLOC dataset is quite biologically plausible. The left branch from the
root roughly represents the intra-cellular components of cells. Correspondingly, the

right branch stands for the secretory pathway and extracellular components.

Overall, this automatically generated structure coincides with well-known biological

knowledge.
We also constructed for the BaCelLo dataset a more complicated structure called a

multiple root tree, which can be used for structured prediction to incorporate the

relationships between locations, as well as between species. The structure in Figure 4(c) is

constructed and used for training following the steps in Section 2.3. It is produced by

merging the leaf nodes of the three tree structures for BaCelLo animals, fungi and plants

shown in Figure 4(a) and (b). The red, green and blue lines represent the original tree

structures of BaCelLo animals, fungi and plants, respectively. The black lines represent

common edges of the three structures.
In Figures 4–6, the double, solid and dashed circled nodes represent that the

corresponding SVMs perform relatively well, modestly and poorly, respectively. The
abbreviations used are as follows: CHL, chloroplast; CYK, cytoskeleton; CYT, cytoplas-

mic; ER, endoplasmic reticulum; EXT, extracellular; GOL, Golgi apparatus; LYS,

lysosomal; MEM, membrane; MIT, mitochondrial; NUC, nuclear; PER, peroxisomal;

RIP, periplasmic; SP, secretory pathway and VAC, vacuolar.
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Figure 4. Hierarchical structures of BaCelLo dataset: (a) animals and fungi, (b) plants and
(c) multiple root structure for three species.
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Figure 5. Hierarchical structures of RH dataset: (a) eukaryotic and (b) prokaryotic.
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3.4. Comparison with traditional methods

We made comparisons between the traditional ‘flat’ model and four types of ‘hierarchical’
methods. The flat model used in our experiments is the OVA scheme, which is previously
used and empirically proven to be competitive with other SVM-based methods for
multiclass problems (Rifkin and Klautau 2004). The other four ‘hierarchical’ methods are
the aforementioned DT-SVM, PM-SVM, SVM-struct and multiple root SVM-struct. Note
that DT-SVM is essentially the method used in LOCtree (Nair and Rost 2005) and
BaCelLo (Pierleoni et al. 2006).

3.4.1. Comparison with flat SVM and decision tree SVM

We carry out the experiments on four kinds of features: amino acid compositions (1-mers),
amino acid pair compositions (2-mers), 3-mers and 4-mers. These features are extracted in
a similar manner as the n-gram features commonly used in text processing. In our
experiment, these features indeed give robust prediction performance. We depict in
Figure 7 the curves of loss values for the flat model and three types of hierarchical models
with respect to feature sets used. We defer the results of the multiple root SVM-struct to
Table 3 for the BaCelLo dataset since it is not run on all datasets. We observe that PM-
SVM performs better than the flat SVM in nearly all cases, except for two points for the
BaCelLo fungi dataset. SVM-struct also performs better than the flat SVM except for four
out of a total of 24 points. However, the DT-SVM, which is essentially a decision tree
scheme used in LOCtree and BaCelLo, apparently does not perform better than the flat
SVM in our experiments.

3.4.2. Performance of multiple root SVM

We list the best results obtained for the three datasets in Tables 2 and 3. Note that 3-mer or
4-mer features give the best performance for all three datasets. Therefore, we show the
results on the RH and BaCelLo datasets with 3-mer features and the PLOC dataset with

CHL

CYT

GOL

MITNUC

VAC

EXT

MEMCYK

LYS

PERER

Figure 6. Hierarchical structure for PLOC dataset.
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4-mer features. From the comparison, we can observe that PM-SVM and multiple root
SVM-struct perform competitively, and both perform better than the other three methods.
Note that multiple root SVM-struct is trained by using a mixed tree structure and protein
sequences from animals, fungi and plants. In the experiment, it clearly performs better
than the SVM-struct trained independently for each species. This strongly suggests that the
incorporation of two types of interdependences is reasonable and effective in practice.
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Figure 7. Comparison between flat SVM and three hierarchical prediction methods. Flat SVM
refers to traditional OVA SVM. Comparisons are on three datasets (RH, PLOC and BaCelLo) with
varying lengths of the k-mers. The performance is measured by using tree loss value: (a) RH
prokaryotic, (b) RH prokaryotic, (c) PLOC, (d) BaCelLo plants, (e) BaCelLo fungi and (f ) BaCelLo
plants.
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3.4.3. Location-by-location comparison

To clearly show how the PM-SVM and multiple root SVM-struct outperform flat SVM,
we list in Tables 4–6 location-by-location comparisons between them on the three datasets
used. From comparison on the PLOC dataset, we can observe that PM-SVM and the
multiple root SVM-struct perform much better than OVA SVM in most subcellular
locations, especially the locations with fewer protein sequences. In contrast, OVA SVM
favours those subcellular locations with more protein sequences, e.g., the cytoplasmic,
nuclear and membrane, and it performs slightly better in those locations. By sacrificing
slightly in the large class and improving greatly in the small class, those two hierarchical

Table 3. Comparison between different methods for the BaCelLo sets using 3-mer features. The
measures are TA (%), LA (%) and D-loss.

Animals Fungi Plants

Methods TA LA D-Loss TA LA D-Loss TA LA D-Loss

Flat SVM 66.5 48.9 0.82 76.0 51.6 0.49 44.2 23.3 1.09
DT-SVM 65.1 50.5 0.78 71.0 46.3 0.60 41.1 22.3 1.14
PM-SVM 66.8 54.0 0.77 76.0 61.7 0.45 53.5 39.0 0.92
SVM-struct 63.2 47.5 0.87 76.5 57.2 0.46 49.6 25.7 0.98
Multiple root 64.0 51.5 0.86 77.7 63.5 0.44 53.5 36.0 0.89

SVM-struct

Bold denotes p-values5 0.01.

Table 4. Comparison of location recalls on the RH set.

Species Locations (#seq) Flat PM

Prokaryotic Cytoplasm (688) 1.00 0.98
Extracellular (107) 0.74 0.77

Periplasmic (202) 0.58 0.79

Eukaryotic Cytoplasm (684) 0.81 0.81

Extracellular (325) 0.80 0.83

Mitochondria (321) 0.46 0.59

Nuclear (1097) 0.95 0.92

Bold denotes p-values5 0.01.

Table 2. Comparison between different methods for the RH set on 3-mer features and the PLOC set
using 4-mer features. The measures are TA (%), LA (%) and D-loss.

RH prokaryotic RH eukaryotic PLOC

Methods TA LA D-Loss TA LA D-Loss TA LA D-Loss

Flat SVM 88.6 77.3 0.22 82.5 75.4 0.33 79.5 59.8 0.73
DT-SVM 90.9 79.9 0.16 79.7 70.7 0.39 73.5 43.7 0.91
PM-SVM 91.7 84.6 0.14 83.3 78.7 0.31 82.1 67.0 0.64

SVM-struct 90.2 79.1 0.16 82.6 74.5 0.31 79.0 58.8 0.70

Bold denotes p-values5 0.01.
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methods achieve better performance than the flat SVM. This balanced performance also
holds for the other two datasets, RH and BaCelLo. The Flat, PM and MR denote OVA
SVM, PM-SVM and multiple root SVM-struct in Tables 4–6. The #seq denotes the
number of protein sequences in the corresponding subcellular location.

3.5. Diverse performance of node SVMs

One of the advantages of hierarchical prediction is that it can provide valuable insights
into the sorting process. By comparing the performances of the node SVMs in the
hierarchical structure, we pick out those SVMs that perform relatively well or poorly and
show them in Figures 4–6 by double or dashed circles, respectively. Actually, these good
and bad SVMs strongly suggest some relationships between subcellular locations. In other

Table 6. Comparison of location recalls on the BaCelLo set.

Species Locations (#seq) Flat PM MR

Animal Cytoplasm (439) 0.12 0.14 0.19

Mitochondria (188) 0.14 0.29 0.34

Nucleus (1166) 0.82 0.78 0.79
SP (804) 0.87 0.86 0.73

Fungi Cytoplasm (211) 0.07 0.17 0.30

Mitochondria (188) 0.27 0.45 0.45

Nucleus (711) 0.98 0.91 0.91
SP (88) 0.75 0.94 0.88

Plant Chloroplast (204) 0.93 0.87 0.87
Cytoplasm (58) 0.00 0.00 0.17
Mitochondria (67) 0.00 0.00 0.00
Nucleus (121) 0.23 0.41 0.43

SP (41) 0.00 0.67 0.33

Bold denotes p-values5 0.01.

Table 5. Comparison of location recalls on the PLOC set.

Locations (#seq) Flat PM

Chloroplast (671) 0.73 0.77

Cytoplasmic (1241) 0.77 0.77

Cytoskeleton (40) 0.66 0.36
ER (114) 0.60 0.72

Extracellular (861) 0.76 0.86

Golgi apparatus (47) 0.06 0.47

Lysosomal (93) 0.53 0.69
Mitochondrial (727) 0.43 0.64

Nuclear (1932) 0.93 0.89
Peroxisomal (125) 0.39 0.40

Membrane (1674) 0.96 0.95
Vacuolar (54) 0.35 0.56

Bold denotes p-values5 0.01.
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words, the high performing SVM suggests a clear separation between the protein
sequences in its two branches, and vice versa. We note that the work done by Huh et al.
(2003) reflects the fact that some proteins may occur in multiple subcellular locations,
which is, in fact, closely connected with our work. Roughly, a blurry separation suggests
the transfers of proteins between locations.

We can make two main observations based on the SVM performance in Figures 4–6.
First, it is hard to discriminate nuclear proteins from those proteins targeted to the
mitochondria and cytoplasm. This observation coincides with the work done by Huh et al.
(2003) and Chou and Cai (2005), suggesting the existence of ‘multi-location’ proteins
between them. Second, it is relatively easy to separate proteins in the extracellular,
membrane, and secretory pathway from proteins in the other subcellular locations. This
observation coincides with the well-known facts about the secretory pathway and
membrane proteins, since proteins destined for these locations are distinct from the other
proteins, e.g., the membrane proteins have hydrophobic regions.

4. Conclusion

Since traditional prediction methods ignore the inter-location relationships, we have
proposed in this research work to improve the prediction of subcellular locations by
incorporation of hierarchical structures. A total of six structures are constructed by either
hand or automatic methods. Four tree structures for a small number of locations are
drawn by hand, which is in a similar manner with previous methods. One tree structure for
a relatively large number of locations is selected from a set of candidate trees, which are all
automatically generated by a clustering-based method. The last multiple root structure is
put forward to encode another type of relationship between proteins belonging to the same
subcellular location, but different species. In the experiments, two of the proposed
methods outperform traditional methods on nearly all datasets. The best method appears
to be PM-SVM, which picks the leaf node with the highest multiplicative probability.
Another good choice is the SVM-struct, which performs better than the flat SVM in terms
of tree loss values. A variant of the SVM-struct on multiple root structure is proposed and
proven to be better than traditional SVM-struct which is trained on independent tree
structures. Moreover, from the experimental results, we gained some valuable insights into
the protein sorting process, which supports a close connection with earlier research work.
As such, it suggests that using structure in prediction can provide valuable clues for the
exploration of the protein sorting process.
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Notes

1. http://glaros.dtc.umn.edu/gkhome/views/cluto.
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2. http://www.csie.ntu.edu.tw/�cjlin/libsvm/.
3. http://svmlight.joachims.org/svm_struct.html.
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