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Abstract

Scale-invariant feature transform (SIFT) has been well
studied in recent years. Most related research efforts fo-
cused on designing and learning effective descriptors to
characterize a local interest point. However, how to identify
stable local interest points is still a very challenging prob-
lem. In this paper, we propose a set of differential features,
and based on them we adopt a data-driven approach to
learn a ranking function to sort local interest points accord-
ing to their stabilities across images containing the same
visual objects. Compared with the handcrafted rule-based
method used by the standard SIFT algorithm, our algorithm
substantially improves the stability of detected local inter-
est point on a very challenging benchmark dataset, in which
images were generated under very different imaging con-
ditions. Experimental results on the Oxford and PASCAL
databases further demonstrate the superior performance of
the proposed algorithm on both object image retrieval and
category recognition.

1. Introduction
A local interest point (together with the small image

patch around it) is expected to describe informative and
distinctive content in the image, and is stable under both
local and global perturbations. Local interest point has
the advantages of efficiency, robustness, and the ability of
working without initialization; and has been widely uti-
lized in many computer vision applications such as object
retrieval [13], object categorization [7], panoramic stitch-
ing [17] and structure from motion [15].

Research efforts related to local interest point are in two
categories: detector and descriptor. Detector locates an in-
terest point in an image; while descriptor designs features
to characterize a detected interest point.

A comprehensive comparison to existing local inter-
est point detectors has been conducted by Mikolajczyk et
al. [10, 12]. They found that the extremum of the Laplacian-
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of-Gaussian (LoG) operator are the most stable local points
on an image, in comparison of a range of other opera-
tors such as gradient, Hessian, and Harris [4]. Lowe [9]
proposed the Scale-Invariant Feature Transform (SIFT) al-
gorithm to extract maxima/minima of the Difference-of-
Gaussians (DoG) operator as local interest points, since the
DoG operator provides a close approximation to the scale-
normalized LoG. Nowadays SIFT is the most popular de-
tector of local interest point, and has been proven to be ro-
bust in many applications [11]. A typical SIFT algorithm
consists of three major stages: 1) scale-space extremum de-
tection in DoG spaces; 2) interest point filtering and local-
ization; and 3) orientation assignment and descriptor gener-
ation.

Most existing works in the literature focused on the third
stage, i.e., designing better features to reduce dimensional-
ity or improve the description power of the descriptor for a
local interest point. For example, Ke and Sukthankar pro-
posed PCA-SIFT [6], which used the principal components
of gradient patches to construct local descriptors. Abdel-
Hakim and Farag extended the SIFT algorithm to extrac-
t colored local invariant feature descriptor, named Color-
SIFT [1]. Winder and Brown [19] proposed to use discrim-
inative learning method to optimize local descriptors under
matching constrains from a 3D construction.

By contrast, only a few efforts have devoted to solving
problems in the second stage, i.e., selecting robust local in-
terest points from those scale-space extremum. Actually,
the number of extremum points outputted by the first stage
is quite huge. For example, there are usually thousands of
DoG extremum points on an image, many of which are un-
stable and noisy. Moreover, too many interest points on an
image significantly increase the burdens of subsequent pro-
cessing, e.g., enlarge the index size in object retrieval [13].
In order to reject unstable local extremum, Lowe proposed
two handcrafted rules–discarding low-contrast points and
eliminating edge responses [9]. The number of reserved
interest points becomes acceptable after applying these t-
wo rules. We agree these rules are elegant and effective in
practice; however, we still argue that the criteria of “robust”
are too complicated to be described by simple rules. An-
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other drawback of rule-based filtering is that there are some
thresholds to be fine tuned. Unfortunately, it’s unrealistic to
set “magic” thresholds being optimal to any image. In brief,
how to select interest points from local extremum is still an
open problem.

Data driven-based methods have been proven to be com-
plementary to ad-hoc rule-based methods in many research
areas. Rosten and Drummond[16] adopted a machine learn-
ing approach in the detection process of FAST detector for
speeding the detection process in object tracking.In this pa-
per, we introduce a general framework to select stable lo-
cal interest points using supervised learning. Specifically,
we apply this framework on SIFT algorithm and propose a
new algorithm called Rank-SIFT. After carefully investigat-
ing the mechanisms of SIFT and some other local interest
point detectors, we first design a set of differential features
to describe local extremum points. Then, we collect train-
ing samples across images having the same visual objects,
and compute the stability of each local interest point. For
training, we treat the learning process as a ranking problem
instead of a binary classification. Actually, there is no ab-
solutely “good” or “bad” points. It is more reasonable to
judge which point is relatively better than another. Anoth-
er advantage of ranking is that it is convenient to control
the number of interest points on an image, according to the
application requirements on balancing performance and ef-
ficiency.

Elaborate experiments have been carried out to compare
the performance of Rank-SIFT with that of standard SIFT.
First, regard to the stability (in terms of repeatability and
matching score [12]) of detected local interest points, sub-
stantial improvements have been observed on a very chal-
lenging benchmark dataset in which images were generated
under various conditions such as illumination, compression,
rotation, blurring, changing of viewpoints, etc. Rank-SIFT
was also evaluated on real applications. For object image
retrieval, it increased the search performance on the Oxford
database [13]; and for object category recognition, it no-
ticeable improved the recognition accuracy on the PASCAL
2006 dataset [2].

The rest of this paper is organized as follows. In Sec-
tion 2, we briefly review the SIFT algorithm and explain its
drawbacks. Section 3 introduces the algorithm details in-
cluding stability score computation, feature designing, and
model training. Experiment results are discussed in Sec-
tion 4; and conclusions are drawn in Section 5.

2. SIFT Algorithm Review
Standard SIFT, as described in [9], consists of three step-

s. First, a Gaussian pyramid is constructed; and candidate
points are extracted by scanning local extremum in a se-
ries of DoG images. Second, candidate points are localized
to sub-pixel accuracy, and unstable points of low contrast
or strong edge response are eliminated. At last, for each
survived point, its dominant orientation is identified and its

descriptor is generated upon the image gradients in its local
neighborhood.

In the following, we look into more details of the second
step, to provide a clear background for further discussion.

In the second step, the scale-space function D(x, y, σ)
can be approximated by using a second order Taylor expan-
sion, which is

D(x+ δx) = D +
∂D

∂x

T

δx+
1

2
δxT ∂2D

∂x2
δx, (1)

where x = (x, y, σ)T denotes a point whose coordinate is
(x, y) and the scale factor is σ. The local extremum is de-
termined by setting ∂D(x+ δx)/∂(δx) = 0, as

δx̂ = −∂2D

∂x2

−1
∂D

∂x
. (2)

The function value at the extremum, D(x̂) = D(x+ δx̂),
can be obtained by substituting Eq. (2) into (1), giving

D(x̂) = D +
1

2

∂D

∂x
δx̂. (3)

According to Lowe’s study, extremum points with low DoG
value should be rejected as they are with low contrast and
unstable. Consequently, a threshold γ1 = 0.03 (image pix-
el values in the range [0,1]) is adopted to reject extremum
points {∀x̂, |D(x̂)| < γ1} [9].

Another observation from Lowe is that the DoG opera-
tor has a strong response along edges. However, many of
them are unstable points which ”have a large principal cur-
vature across the edge but a small one in the perpendicular
direction” [9]. To remove such fake extremum points, Lowe
suggests to use a Hessian matrix H whose eigenvalues can
estimate the principal curvatures:

H =

[
Dxx Dxy

Dxy Dyy

]
. (4)

Let γ2 ≥ 1 be the ratio between the largest magnitude
eigenvalue and the smaller one. Since the quantity (γ2 +
1)2/γ2 is monotonically increasing when γ2 ≥ 1, to insure
the ratio of principal curvatures is below some threshold γ2,
we just need to reject those points satisfying:

Tr(H)2

Det(H)
≥ (γ2 + 1)2

γ2
. (5)

Lowe also suggested to set γ2 = 10 by default in his exper-
iments [9].

From Eq. (3) and (5), it is clear that the SIFT algorithm
utilizes two thresholds, γ1 and γ2, in the DoG scale space
to filter local interest points.

Discussions
Based on our observations, the SIFT algorithm has three
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Figure 1. Rank a local interest point based on its repeatability in an image sequence.

unavoidable drawbacks:

• The SIFT algorithm is sensitive to the thresholds. In
Section 4, we show such an example in Fig. 5 that s-
mall changes of the thresholds produce quite different
numbers of local interest points on the same image.

• It’s hard to manually tune the thresholds to make the
detection results robust to variant imaging conditions.
For example, thresholds working well for compression
may fail under image blurring. A comprehensive com-
parison is reported in Fig. 4 in Section 4.

• Moreover, in the filtering step SIFT only considers the
differential features (local gradient vector and hessian
matrix) in the DoG scale space, while ignores the in-
formation of each Gaussian scale space. Actually, d-
ifferential characteristics in Gaussian scale space it-
self are also valuable to describe local neighborhood,
and have been proven to be helpful in corner detec-
tors [4]. In the next section, we propose to design
features based on both the DoG and Gaussian scale s-
paces, and demonstrate the effectiveness in Section 4.

3. Learning to Rank Local Interest Points
To overcome the drawbacks of the SIFT algorithm, we

propose to adopt a supervised approach to learn a detec-
tor. The learnt detector is scalable and parameter-free in
comparison with rule-based detectors. To do this, we first i-
dentify stable local points based on a sequence of images
describing the same visual object or scene. In this step,
we demonstrate the limitations of SIFT detector once again
with a vivid example. Then, a series of deferential features,
in both the DoG and the Gaussian scale spaces, are designed
to characterize local interest points. At last, we train a rank-
ing model to sort local points according to the estimation
to their stabilities. We don’t do binary classification (i.e.,
stable point vs. unstable point) as the stability measure is
relative but not absolute.

3.1. Stability of Local Points
In practice, we often expect that an image sequence for

the same object should have common interest points detect-

ed, e.g. panorama image stitching [17]. We study the be-
haviors of SIFT detector via a case study, from which the
proposed approach is inspired. Before that, we define some
measures first.

Suppose an image sequence {Im,m = 0, 1, ...,M} con-
tains the same visual object but with a gradual geometric or
photometric transformation. Let image I0 be the reference
image, and Hm is the homography transformation from I0
to Im. The stability score of an interest point p ∈ I0 (p is a
two-dimensional pixel coordinate) can be therefore defined
as the number of images which contains correctly matching
point of p:

R(p ∈ I0) =
∑
m

I(min
q∈Im

∥Hm(p)− q∥2 < ϵ), (6)

where I(.) is the indicator function and ∥.∥2 denotes Eu-
clidean distance. q is the point with nearest distance from
Hm(p) in image Im, and q is the matching point of p if and
only if the distance is less than a small number which de-
notes with ϵ. Fig. 1 demonstrates an example of calculating
the stability scores. Apparently, we want to obtain interest
points with high R(p ∈ I0) scores.

However, due to the limitations of handcrafted thresh-
olds, the SIFT algorithm is not optimal in selecting interest
points with high stability scores. Fig. 2 (a) shows an image
sequence which contains 5 images with different rotation
and scale changes. The red rectangles denotes the match-
ing regions. Fig. 2 (b) shows all the DoG extremum(i.e. set
γ1 = 0 and γ2 = +∞ of the SIFT detector) detected on
the region of the first image. These points are marked with
different colors according to their stability scores calculated
by Eq. (6). The colors of red, pink, blue and green denote
four score levels in decreasing order. From this figure, we
found that most stable points are near the edges and corners
of the image. Fig. 2 (c) and (d) show the points detected by
the SIFT algorithm using different thresholds. In Fig. 2 (c),
it is observed that many low-contrast unstable points stil-
l remain. While with more strict thresholds, many stable
points are falsely rejected, as shown in Fig. 2 (d). This ex-
ample again indicates that the SIFT algorithm suffers from
the thresholds.
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Figure 2. (a) Five images of the same scene with rotation and scale
changes; (b) The DoG extremum interest points ((γ1 = 0, γ2 =
+∞)); (c) The points left after suppressing edge responses ((γ1 =
0, γ2 = 10)); and (d) The points left after applying low contrast
restriction ((γ1 = 0.03, γ2 = 10)). Points in different colors are
with different stabilities: red points exist in all five images; pink
ones are in four; blue ones are in three; and green ones are in two
or only one image.

Feature Description
Derivative Dx,Dy ,Ds,Dxx,Dyy ,Dss,Dxy,

Dxs,Dys

Hessian λ1,λ2,Det(H),Tr(H)2

Det(H)

Local extremum D(x̂), δx̂ = (δx̂, δŷ, δŝ)T

Table 1. DoG Features

3.2. Local Differential Features
We propose to solve problems in SIFT detector via a

learning based approach. Thus, in this section, we discuss
the features utilized in our approach. These features are
mainly motivated by the scale space theory [8] and existing
detectors [9, 12].

There are two scale spaces used in SIFT algorithm. One
is the Gaussian scale space (GSS), which corresponds to
the multi-scale image representation. Another is the DoG
space, which provides a close approximation to the scale-
normalized LoG. According to properties of Laplacian op-
erator, the value of each point in DoG space can be regarded
as an approximation to the double of the mean curvature.

In additional to the features D(x̂) and Tr(H)2/Det(H)
in the DoG space presented by SIFT, we propose a more
complete set of differential features. As shown in Table 1,
we first extract the first/second derivatives from the DoG s-
paces. Then basing on these derivative features, we further
extract two sets of features. The first set are Hessian fea-
tures, which contains the eigenvalues (λ1, λ2), determinant
Det(H), and the eigenvalue ratio trac(H)2/Det(H) of the
Hessian matrix H in Eq. (4). Another set of features are ex-
tracted around the local DoG extremum, including the esti-

Feature Description
Basic Dx,Dy ,Dxx,Dyy ,Dxy

Hessian λ1,λ2,Det(H),Tr(H)2

Det(H)

Table 2. GSS Features

mated DoG value D(x̂) defined in Eq. (3) and the extremum
shifting vector δx̂ defined in Eq. (2).

Although the local extremum of DoG space provides sta-
ble image features, it inevitably loses the directional gradi-
ent information, which is informative for identifying stable
interest points. In order to address this problem, we further
extract the basic derivative features and Hessian features in
the Gaussian scale space, which is shown in Table 2.

In order to compare the efficiency of features in differ-
ent spaces, three sets of learning strategies are evaluated in
our experiments: 1) DoG feature set: using all DoG fea-
tures described in Table 1, 2) GSS+DoG feature set: using
both DoG features and Gaussian features described in Ta-
ble 1 and 2, 3) GSS feature set: using the Gaussian features
by adding local extremum features described in the third
line of Table 1. The absolute values of these three sets of
features are used to learn ranking functions. Experimental
results in Section 4.1 demonstrate that the third strategy is
consistently better than other strategies.

It is noticeable that our approach builds on DoG ex-
tremum. That is, our approach logically consists of two
steps: 1) compute DoG extremum, and 2) decide which ex-
tremum is stable by computing a stability score for each
extremum. All other points which are not DoG extremum
are not considered. Due to the scale space theory [8] and
arguments in [9], stable interest points are very likely to be
DoG extremum.

3.3. Learning to Rank
To make the paper self-contained, we briefly introduce

the model adopted for ranking stable local interest points.
Suppose xi and xj are the feature vector (DoG or GSS
feature) of two interest points in image I . Based on the
definition in Eq. (6), if R(xi ∈ I) > R(xj ∈ I), we
have the point xi more stable than the point xj , denoted
as xi ≻ xj . In this way, we may obtain many interest points
pairs < xi ≻ xj >. It should be noted that the relation-
ships between points with the same stability scores or from
different images are undefined.

Assume that f(x) = wTx is a linear function, we expect
it to meet with conditions

xi ≻ xj ⇔ f(xi) > f(xj). (7)

A constraint defined on a pair could be converted to

wTxi − wTxj ≥ 1 ⇒ wT (xi − xj) ≥ 1

. The term wT (xi − xj) ≥ 1 is just the constraint of the
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SVM classifier, in which we regard the difference xi − xj

as a feature vector. RankSVM [5] is an algorithm designed
for such a problem, which converts a ranking problem to a
classification problem and optimizes it with existing solver-
s.

4. Experimental Results
We first evaluate the proposed approach on a benchmark

dataset with respect to its stability. Then we apply it to t-
wo typical computer vision applications, i.e. object image
retrieval and category recognition.

4.1. Stability of Local Interest Point
A typical application of local interest points is to match a

sequence of images of the same object or scene, which were
taken with different imaging conditions. Thus, we designed
an experiment to evaluate the stability of our detector under
varying imaging conditions.

4.1.1 Dataset

The training samples were constructed based on the INRIA
Planar Scenes database 1, which contains 449 images un-
der five different geometric and photometric changes (in-
cluding rotation, zoom, rotation and zoom, viewpoint, and
light). Images in the database are organized into sequences,
and each sequence corresponds to one object or scene with
homography as ground truth. However, not all the images
in the database can be leveraged in training. For exam-
ple, some of the images are artwork pictures but not na-
ture scenes or objects; some sequences are short (having
less than 6 images); and some of the images are overlapped
with test set. After removing these unqualified images, fi-
nally the training samples consist of 13 image sequences
(146 images in total).

To evaluate different detectors, we test them on a public
benchmark database with associated ground truth, which is
contributed by Mikolajczky et al. [12]. This dataset con-
tains 8 image sequences, and 48 images in total. It also
covers the five geometric and photometric changes, includ-
ing rotation and scale, compression, viewpoint, blur, and
illumination.

4.1.2 Experiment Setup

As we have mentioned in Section 3, we constructed a train-
ing set by counting the frequencies of DoG extremum ap-
pearing in an image sequence. Here, we choose three pixels
as the minimal distance for repeat judgment (ϵ = 3 in E-
q. (6)). Moreover, We restricted that a point in an image
can only correspond to one point in the other image, and we
only consider interest points in the common regions that ap-
pear in all the images of the sequence. The features for each

1The data set is available at http://www.featurespace.org

Table 3. The Percentage of training data with different rank
Rank 5+ 4 3 2 1 0

Percentage (%) 25.6 3.9 6.5 12.5 22.6 28.9

Table 4. Six configurations of SIFT parameters
Parameters p1 p2 p3 p4 p5 p6
γ1 0.03 0.03 0.03 0.03 0 0
γ2 2 4 6 10 8 10

point were also extracted at the same time. In total, 125,361
points were used for training. The details of the training set
are listed in Table 3.

As introduced in section 3.2, we propose two set of
features, i.e. GSS and DoG features, and three configura-
tions of them. Both of the two features can be used in
the proposed framework effectively. We adopt the rank-
ing SVM with linear kernel to train the ranking model, and
the RankSVM tool is from SVM-light [5]. Three models
were trained based on three feature configurations, i.e. GSS,
DoG, and GSS+DoG. In the training stage, we selected the
optimal parameter ”C” by using cross validation method for
each feature on the training set. The SIFT detector was cho-
sen as a baseline approach.

Similar to [12], we use the same set of measures: re-
peatability and matching score to evaluate the stability of
SIFT and Rank-SIFT detectors. We define the two points
are deemed to repeat if they are nearest neighbors in pix-
el locations and the distance is less than a minimal distan-
t (three pixels); They are ”clear match” if they are near-
est neighbors in descriptor feature space. The repeatability
(matching) score are defined as the ratio between the num-
ber of repeated (both repeated and ”clear match”) pairs and
the minimum of the numbers of interest points in the pair of
images. We adopt L2 distance and SIFT descriptors [9] to
measure the distance. SIFT descriptors are generated by the
VLFeat tool [18] in all our experiments.

4.1.3 Repeatability and Matching Score

Six different parameter configurations for the SIFT algo-
rithm were evaluated, which are listed in Table 4. Since the
repeatability and matching score depend on the number of
points detected, we kept the same number of interest points
as the SIFT detector to setup a fair comparison. The top
ranked interest points obtained by our Rank-SIFT method-
s were kept. For each image sequence, its first image is
deemed as a reference image, and other images conjuncted
as the reference image construct some image pairs. The t-
wo measures are computed based on these image pairs. To
measure the overall performance for a sequence (or say, a
kind of geometric or photometric transformation), we com-
puted an average score over image pairs of this sequence.

Fig. 3 shows average repeatability of the four detectors.
From the figure, we can see that all of our methods per-
form better than SIFT with respect to all types of imaging
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Figure 3. Average repeatability score of three features compared
with the SIFT.

conditions. GSS achieves the best results in the three fea-
ture configurations. Although, the GSS+DoG combination
is a little worse in some cases, it is overall better than the
DoG features. In the figure, the repeatability increases from
left to right. It indicates the difficulties of different geome-
try and photometric changes. Viewpoint change is the most
difficult one for our task. It is remarkable that it is a s-
trange phenomenon that a single feature GSS outperforms
a combined feature GSS+DoG. It shows that DoG doesn’t
bring additional information when combining with GSS. S-
ince DoG features are higher order differentials than GSS
feature, they are likely to be more sensitive to noises in im-
ages. From these results, we tend to conclude that GSS
features are more robust than DoG features in terms of de-
tecting stable interest points.

Since the GSS based model consistently performs the
best in all experiments, we only report results of the GSS
model in the rest of this paper. Fig. 4 shows repeatabili-
ty and matching scores for individual geometric or photo-
metric transformations as a function of the ratio of interest
points. With different parameter configurations (as shown
in Table 4), the numbers of interest points outputted by the
SIFT detector are very different. We compute a value for
each configuration, which is the ratio of the number of de-
tected points to the number of all DoG extremum. We sort
them in an increasing order, and set them to be the ticks
of the x-axes. For each setting, we keep the same number
of interest points for our approach. The y-axes denotes the
average repeatability score and matching score. Our model
significantly outperforms the SIFT detector with different
parameters.

Fig. 5 illustrates an example of interest points detected
by different approaches. Lots of strange points (in the sky)
appear in the results of the SIFT detectors, while seldom
strange points exist in the results of our detector.

4.2. Object Image Retrieval
To evaluate the performance of the proposed Rank-SIFT

in applications, an object image retrieval experiment was
carried out on the Oxford Building database [13]. This

Parameters p1 p2 p3 p4 p5 p6
SIFT 0.424 0.542 0.583 0.605 0.603 0.610
Rank-SIFT 0.449 0.576 0.661 0.633 0.664 0.664

Table 5. Comparison of retrieval accuracy (mAP) on the Oxford
building database

database contains 5063 images with 55 queries of 11 Ox-
ford landmarks. The goal is to compare different detectors
with respect to their retrieval performance.

State-of-the-art approaches on this dataset are main-
ly based on the well known bag-of-features model [13,
14]. However, to avoid the factors involved by the bag-
of-features model, we conducted the retrieval experimen-
t directly on interest points as an algorithm proposed by
Lowe [9]. Given a query image and an image in the
database, it conducts three steps to compute their similar-
ity: 1) compute a list of clear matched interested points, 2)
estimate a transformation matrix between the two images,
and 3) count the number of interest points in the two images
which are matched according to the transformation matrix.
For outlier robustness, the transformation matrix is often es-
timated by the RANSAC algorithm [3]. The matrix is often
termed as homography in literature. The ranking for all im-
ages in the database is based on their numbers of interest
points matched with the query image. Average precision s-
core is computed to measure the retrieval results for each
query. It is defined as the area under the precision-recall
curve for each query. Finally, a mean Average Precision
(mAP) of all the 55 queries is computed. Apparently, the
higher matching score a detector has, the higher mAP value
it will achieve.

We compared SIFT with Rank-SIFT (using the model
based on the GSS features). All the six parameter configura-
tions of SIFT in Table 4 were realized for comparison. And
for a fair comparison, our approach kept the same number
of interest points (those with the top ranking scores) with
the SIFT detectors. The experimental results are shown in
Table 5. From the table, it is noticeable that Rank-SIFT
significantly outperforms the SIFT detector under different
parameter configurations. Some illustrative retrieval results
are shown in Fig. 6.

4.3. Object Category Recognition
We also carried an object category recognition ex-

periment on the PASCAL Visual Object Classes 2006
dataset [2]. The dataset contains 2618 training and 2686
test images in 10 object categories, e.g. cars, animals, and
persons. The goal is to train a classifier to recognize objects
in the test images. To bypass affects of complex algorithm-
s and parameter settings, we only adopt a basic method to
perform the classification task. The method consists of the
following steps: 1) a set of local interest points with de-
scriptors are detected first for each image; 2) a dictionary is
constructed by clustering local interest features into groups;
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(a) SIFT

(b) Rank-SIFT

Figure 5. Examples of comparison between SIFT in different handcrafted parameters and Rank-SIFT with the same number of interest
points. From left to right, the numbers of kept interest points are 149, 381, 509, 573 and 717 respectively. The image is 435× 365 pixels.

(a) SIFT

(b) Rank-SIFT

Query 1

(a) SIFT

(b) Rank-SIFT

Query 2

Figure 6. Two retrieval examples on the Oxford Building dataset.

Parameters p1 p2 p3 p4 p5 p6
SIFT 44.7 45.5 46.7 46.8 49.3 49.4
Rank-SIFT 46.7 50.1 51.6 50.2 50.4 50.8

Table 6. Comparison of recognition accuracy (%) on the VOC
2006 database.

3) local descriptors are quantized by the dictionary to obtain
histogram-based features for images; and 4) a SVM classi-
fier with histogram intersection kernel is trained.

Following the experiment settings in the above sections,
six parameter configurations (p1 ∼ p6) of the SIFT algorith-
m were evaluated. For each configuration, the same number
of interest points were kept for both SIFT and Rank-SIFT.
The dictionary was separately constructed for each config-
uration, as the detected local interest points changed under
different configurations. The dictionary size was chosen as
200, and k-means was adopted to generate the dictionary.
The comparison results are shown in Table 6, from which it
is clear that Rank-SIFT significantly outperform SIFT de-
tectors on recognition accuracy.

5. Conclusion
In this paper, we have proposed a new learning-to-rank

framework to improve local interest point detection. Com-
pared with previous works in the literature, our approach is
parameter free and more scalable. Experimental results on
three benchmark databases show that our approach substan-
tially improves the stability of detected local interest point
as well as the performance for both object image retrieval
and category recognition.

Interestingly, our experimental results also show the dif-
ferential features extracted from Gaussian scale space per-
form better than the DoG scale space features adopted in
SIFT. The proposed framework is general and can be flexi-
bly extended to other interest point detectors such as Harris-
affine detector. This is one of our future work directions.
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(a) Rotation and Scale changes
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(b) JPEG Compression
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(c) Viewpoint changes
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(d) Image Blur
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(e) Illumination changes

Figure 4. Comparison of repeatability and matching score for SIFT
and Rank-SIFT under five geometric and photometric changes.
The x-axes is the ratio (%) between the number of detected points
and the number of all DoG extremum in SIFT parameters (p1 ∼
p6).
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