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Abstract—This study provides a new application of con-
volutional neural networks for drowsiness detection based on
electrooculography (EOG) signals. Drowsiness is charged to be
one of the major causes of traffic accidents. Such application is
helpful to reduce losses of casualty and property. Most attempts at
drowsiness detection based on EOG involve a feature extraction
step, which is accounted as time-consuming task, and it is difficult
to extract effective features. In this paper, an unsupervised
learning is proposed to estimate driver fatigue based on EOG.
A convolutional neural network with a linear regression layer
is applied to EOG signals in order to avoid using of manual
features. With a postprocessing step of linear dynamic system
(LDS), we are able to capture the physiological status shifting. The
performance of the proposed model is evaluated by the correlation
coefficients between the final outputs and the local error rates
of the subjects. Compared with the results of a manual ad-hoc
feature extraction approach, our method is proven to be effective
for drowsiness detection.

I. INTRODUCTION

Drowsiness refers to the state of near-sleep, a strong desire
for sleep, or sleeping for unusually long periods. It is under-
stood that a person in special situations, such as driving a car,
operating a machine, needs to remain alert. Or if not, serious
casualty may occur. According to the resent study performed in
2006 by the National Highway Traffic Safety Administration
(NHTSA) and Virginia Tech Transportation Institute (VTTI)
[1], nearly 80 percent of crashes and 65 percent of near-crashes
involved some form of driver inattention. This study recognizes
driving fatigue as one of the major cases of traffic accidents
in the US. Thus, considering the various application scenarios,
effective drowsiness detection model is in urgent need and has
broad application prospects as well.

Various methods have been proposed to detect drowsiness,
which can be divided into video based, multi-sensor based and
physiological signal based. Among the video based methods,
Dinges et al. proposed a method using the percentage of
eyelid closure over the pupil over time (PERCLOS) [2],
which turns out to be a valid psychophysiological measure
of alertness. However, video based methods are sensitive to
illumination changes and consequently fail to capture the
driver’s eyes. Friedrichs et al. utilized steering and lane data
to monitor drowsiness [3][4]. While both video based methods
and multi-sensor based approaches fail to predict driver fatigue
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in advance, this implicitly signifies physiological signals based
methods would be a better choice.

There are various researches on sleep based on physi-
ological signals. In 1968, Rechtschaffen and Kales divided
sleep into five stages (S1, S2, S3, S4, REM), plus the state
of wakefulness (W), according to the features extracted from
electroencephalogram (EEG), electrooculogram (EOG), and
electromyogram (EMG) [5]. In our previous work, Shi et
al. proposed various drowsiness detection models based on
EEG signals [6][7][8][9]. Their results have shown that EEG
based methods can correctly discriminate between wakefulness
and sleepiness. Therefore, EEG based methods are recog-
nized as golden standard for drowsiness detection. Despite the
high accuracy of EEG based models for characterizing the
drowsiness, EEG signal is regarded to be liable to be affected
by noise and difficult to collect. Thus, by reasons of EOG
signal’s easiness to collect and immunization to slight noise,
EOG based methods are considered as a compromise between
accuracy and facility. Ma et al. used EOG features, mainly
slow eye movements (SEM), to estimate vigilance changes
during a monotonous task [10]. Feature extraction and feature
selection are the key stage in such process. Following their
work, we enhance EOG-based method by incorporating recent
advances in machine learning with deep learning approaches.

Convolutional neural network (CNN) has been widely used
in computer vision. Krizhevsky et al. trained a large deep con-
volutional neural network to classify images in the ImageNet
LSVRC-2010 contest into 1000 different classes and achieved
fantastic results [11]. Martinez et al. successfully built affect
models based on skin conductance and blood volume pulse
[12]. And Cecotti et al. showed that CNN is applicable to
processing EEG signals [13]. In this paper, we followed their
ideas and applied the deep learning approach to drowsiness
detection.

This paper focuses on developing regression models of
drowsiness detection by incorporating CNN based on elec-
trooculography. We emphasize on building an unsupervised
feature learning model for drowsiness detection as opposed
to manual ad-hoc feature extraction process. We employ the
experiments described in [10], collect EOG signals of 22
participants, and preprocess the signals with noise removing
and band pass filter. Then the raw EOG signals are fed up to
the convolutional neural network. The weight matrices in each
layer of convolutional neural network are trained in a layer-
wise greedy fashion with stacked convolutional auto-encoder



[14], using no prior knowledge. Such unsupervised training
method has been proved to reach awesome results in areas
such as object recognition [15] and speech recognition [16].
Once the pre-training is finished, the local error rate is added
to train the last regression layer. The final regression results
are obtained by integrating a linear dynamic system to smooth
the results and improve the performance by capturing a more
reasonable vigilance state switching, and eliminating excessive
or unlikely state transitions. Comparison between CNN and
traditional manual feature extraction shows that CNN yields
models of significantly higher correlation coefficients.

The rest of the paper consists of four parts. We first
give an overview of the state-of-the-art drowsiness detection
model, which is used for comparison, and then details our
methodology. In the third part, experiments setups and label
acquisition are described. Finally, we present our results and
analysis.

II. DROWSINESS DETECTION MODEL

Drowsiness reflects human’s mental and bodily states. The
state-of-the-art methods mainly contain five steps: preprocess-
ing, feature extraction, feature selection, feature processing
and regression (classifier) training and prediction. Part of the
complexity of drowsiness detection model lies in designing the
proper features or feature combination. Although this paper is
only concerned with the deep artificial network model, this
section gives an overview of the state-of-the-art method we
applied for comparison.

A. Preprocessing

Signals from electrodes are down sampled to 125 Hz at
first. With the signals from four electrodes, we can easily
obtain two EOG channels, the horizontal and the vertical, by
substraction between the electrodes of the same color in Fig.
1. Then signals are filtered with a band pass between 0.3 Hz
and 10 Hz. Afterwards, mean value is subtracted. In the final
step, signals are saturated at a saturation constant and scaled to
0 to 1. When the preprocessing is finished, noise is eliminated
and signals are normalized.

Fig. 1. Placement of electrodes. Squares represents electrodes. The two
channel EOG signals, horizontal and vertical, are obtained by differences from
the same color electrodes.

B. Manual ad-hoc feature extraction

The existing manual ad-hoc features extracted from EOG
mainly contain SEM features, blink features and energy fea-
tures. In our previous work, Ma et al. [10] and Wei et al.

[17] employed various extraction techniques to get the EOG
features. Their extraction procedure mainly contains three
steps, eye movement detection, feature extraction, and feature
processing. As is shown in [10][18], slow eye movement
and blink are the most valuable eye movements correlated to
fatigue. We use features from these two eye movements and
energy to detect drowsiness.

Ma et al. applied the automatic detection technique of
SEM developed by Magosso and colleagues [19][20][21]. This
method is based on discrete wavelet transform (DWT) and
includes three steps: wavelet decomposition, energy compu-
tation and discriminant function. Blink detection algorithm
is an improved version of the double thresholds method.
Two thresholds which represent the eyelid’s closing speed
and opening speed, respectively, are utilized to locate blink
waveforms on the differences of vertical EOG.

Once the eye movements are detected, feature extraction
is conducted. Table I is a list of features we extracted for
comparison. Since the energy of different frequency bands in
the EOG can implicitly express the intensity of different kinds
of eye movements, we use wavelet transformation to extract the
ratio of low and high frequency energy on both horizontal and
vertical EOGs. We extracted features from EOG with a time
window of 8 seconds, and the detailed description of features
is shown in Table I.

TABLE I. LIST OF FEATURES EXTRACTED FROM EOG.

feature description

SEM proportion SEM number

Closing time duration of closing phase of blink

Closing PVe peak velocity in closing phase of blink

Opening PVe peak velocity in opening phase of blink

Closing MVe mean velocity in closing phase of blink

Opening MVe mean velocity in opening phase of blink

HEO LF/HF
PSD ratio between low and high frequency

on horizontal channel

VEO LF/HF
PSD ratio between low and high frequency

on vertical channel

C. Feature processing and regression

Due to the existence of noise in features, we introduce a
linear dynamical system (LDS) approach [9], a semisupervised
dynamic model, for smoothing and de-noising. Details of LDS
will be introduced in section III-C.

As features are obtained in the processes above, we employ
a support vector machine for regression. We utilized the library
for support vector machines (LIBSVM) [22] and search the
parameters with grid strategy to ensure the best results. For the
need of comparison, we do a full leave-one-out cross-validation
of the 22 participants.

III. DEEP ARTIFICIAL NETWORK

In the traditional model of pattern recognition, a manual
designed feature extractor gathers relevant information from
the input and eliminates irrelevant variabilities. In order to
bypass the manual ad-hoc feature extraction process, we try
to incorporate a deep artificial neural network that transforms
the raw signals into a set of features as input of a single
linear regression layer. We investigate deep learning models
popular at present and finally choose CNN based on the
following two considerations. First, CNN model has been
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Fig. 2. The structure of a convolutional neural network adopted in this paper. The circles represent neurons and there are three neurons in each convolutional
layers.

reported success in several fields, such as object recognition,
and latest literature [12] shows effectiveness in the domain of
psychophysiology, yielding efficient computational models of
affect. Second, compared with other artificial neural networks,
CNN is probably more suitable for EOG, which has abundant
information in time domain and scarce in frequency domain.
We believe that the automatic feature extraction stage via un-
supervised learning process will yield physiological detectors,
which can hardly be designed in manual ad-hoc methods,
of more relevant to fatigue and thus generate a drowsiness
detection model of higher accuracy. We train the CNN with an
unsupervised learning method and convolutional auto-encoder
in order to capture a distributed representation of its leading
factors of variation. Further process includes a LDS approach
to eliminate the unfavourable state switches.

A. Convolutional neural network

CNN is a hierarchical model with deep architecture that
consists of a number of convolutional and sub-sampling layers
followed by fully connected layers. The CNN scheme elimi-
nates the feature extractor in the traditional model of pattern
recognition, which is fed with ‘raw’ inputs, and relies on
backpropagation learning algorithm to turn the layers into an
appropriate feature extractor.

Figure 2 gives an intuitional description of the convolu-
tional neural network. Convolutional and pooling layers are
alternated to process large input signals into small features
in small resolution. In the convolutional layers, there are a
set of neurons that detect different patterns on a patch of the
input. Each unit of a layer receives inputs from a set of units
located in a small neighborhood in the previous layer. With
local receptive fields, neurons can extract elementary features
of input and these features are then combined by the higher
layers. Each neurons contains a set of trainable weights and a
bias and feature maps are calculated by applying an activation
function to the weighted sum of the inputs plus the bias. With
a pooling layer (max pooling in this paper), the resolution of
the feature maps is reduced. The architecture itself realizes a
form of regularization and keeps sparse by erasing all non-
maximal values. To keep the model simple, we simply choose

the linear regression as the predictor for drowsiness and the
mean squared error as the cost function.

B. Convolutional auto-encoder

An auto-encoder (AE) [23] is an unsupervised learning
method to detect and remove input redundancies and preserve
only essential aspects of the data in robust and discrimina-
tive representations. Generally, AE network converts an input
vector into a code vector, using a set of weights. Then the
code is used to reconstruct the approximate input with a set of
generative weights. Using the stochastic descent method, we
can gradually minimize the reconstruction error and get the
proper codes of the inputs. Once a layer is trained, its code is
fed to the next, to better model highly non-linear dependencies
in the input.

The structure of convolutional auto-encoder (CAE) is simi-
lar to AE. However, the convolutional auto-encoder [14] shares
weights among all locations in the input, preserving spatial
locality, which differs from conventional AEs. The latent
representation of the k-th feature map for an input x given
by

zk = σ(x ∗W k + bk) (1)

where b is the bias, σ is an activation function (sigmoid func-
tion in this paper), and ∗ denotes the convolution operation.
The reconstruction y is given by,

y = σ(
∑

k∈H

zk ∗ W̃ k + c) (2)

where c represents the bias and H identifies the group of latent

feature maps; W̃ is the flip operation over the weights. We
adopted the mean squared error (MSE) as the cost function:

E(θ) =
1

2n

n
∑

i=1

(xi − yi)
2

(3)

We use the backpropagation algorithm to minimize the MSE.
We can easily calculate the gradient of the error function with
respect to the parameters:

∂E(θ)

∂W k
= x ∗ δzk + z̃k ∗ δy. (4)
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where δz and δy are the deltas of the hidden states and
the reconstruction, respectively. Weights are updated using
stochastic gradient descent method.

Auto-encoder serves as an unsupervised learning technique
that makes remarkable improvements to gradient-descent su-
pervised learning.

C. Linear dynamic system

Generally, there are unfavourable status switching in the
prediction value from the linear regression layer. To eliminate
the negative factor, we introduce a linear dynamic system (LD-
S) approach [9], a semi-supervised dynamic model. The LDS
approach is suitable for both off-line and on-line processing,
which is recognised as an advantage over moving average, and
has been successfully used in our previous work [7][24].

The LDS approach is capable to use only previous data to
evaluate the current state without time delay. LDS is a dynamic
model of state space, by making use of the time dependency
of state changes without any labels, to further reduce the
influence of fatigue-unrelated EOG. The structure of the state
space model is shown in Fig. 3, where zi means hidden
variable and xi means observed variable. Arrows in the figure
show the internal relations between hidden variables. However,
the internal relation is recognized weak or nonexistence in
observed variables, due to the noise and unfavourable state
switches. As shown in figure 3, the key idea is to deduce
the probability distribution at the current state based on the
relation among hidden variables and the relation between
hidden variable and current observed variable. We assume that
the noise in observed variable xi and the time transition among
the hidden states are both gaussian. Thus we can calculate the
expectation and variation of these gaussian relations and then
get zi by knowing xi.
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Fig. 3. The structure of state space of LDS. The red circles are hidden states,
and the blue circles are observed states. Arrows mean inferable relations.

According to the assumptions mentioned above, we can
obtain the equations,

xi = zi + wi,

zi = Azi−1 + vi,
(5)

where xi is the observed state, zi is the hidden state, A is
the transition matrix, and wi and vi are independent gaussian
random disturbance with zero mean. Eq. (5) can also be ex-
pressed in an equivalent form in terms of Gaussian conditional
distributions,

p(xi|zi) = N (xi|zi + w̄, Q),

p(zi|zi−1) = N (zi|Azi−1 + v̄, R).
(6)

The initial state is assumed to be,

p(z1) = N (z1|π0, S0). (7)

The LDS model described above can be parameterized by
θ = {A,Q,R, w̄, v̄, π0, S0}. With the observation sequence
xi, θ can be determined using maximum likelihood through
EM algorithm [25]. To inference the hidden states zi from the
observation sequence xi, the marginal distribution, p(zi|X), is
calculated. Then the hidden state can be expressed as,

zi = E(zi|X), (8)

where E means expectation. This marginal distribution can be
achieved by using messages propagation methods [25]. For
on-line inference, X is set as x1, ..., xi, while for off-line
inference, X is set as x1, ..., xn, including the data observed
after xi.

LDS approach is implemented in both manual ad-hoc
feature extraction model and deep artificial model, however,
in different ways. In the manual ad-hoc model, we im-
plement LDS on EOG features for feature processing for
that drowsiness-related parts are slow varying whereas the
drowsiness-unrelated parts change irregularly. In the deep
artificial model, LDS is implemented to smooth the regression
results for that drowsiness-unrelated parts contribute to the
unfavourable disturbance in the regression results. After LDS
process, the drowsiness-related parts are reserved and the
noises corresponding to the drowsiness-unrelated parts are
removed.

IV. EXPERIMENT SETUP

A. experiment description

The whole experiment is about 70 minutes and 22 sessions
are recorded from 22 different subjects. Subjects are required
to get enough sleep at the night before the experiments. We
conducted the experiments after lunch for the purpose that the
subject is awake in the beginning and sleepy after about half
an hour later.

Fig. 4. The subject wearing the electrodes for recording both EEG and EOG
signals.

The subject’s task is to simply push the correct button as
soon as possible according to the color of the image displayed
on the screen in a quiet room with soft lights. We use traffic
signs in four colors which are red, yellow, blue and green.



640 different signs are selected with each color 160. On the
screen, signs are shown for 0.5 seconds and screen turns black
for a 5-7 seconds interval. When the experiment performs, the
system automatically records the correctness of each response
(no response will be considered as incorrect). We suppose to
get higher error rate when the subject is drowsier, and a curve
of error rate is obtained throughout the whole experiment. The
local error rates are calculated by a 2-minute time window with
a step of 8s.

 Amplifier  Camera

Image

stimulus

Button

pad

Fig. 5. The scene of our image identification experiment. The EOG data is
collected by four electrodes on the EEG cap. The subject’s task is to push the
button which shares the same color with image stimulus.

In our experiments, EOG signals are recorded by the
NeuroScan system. As is shown in Fig. 4, four electrodes
on the EEG cap are used to collect the data. The signal of
horizontal channel is the electric potential difference of the
left and right ones and the signal of vertical channel is from
the top and the bottom ones. The signals are recorded using a
32-bit resolution and 500Hz sample rate.

B. EOG label

In our experiment, we use the local error rate as the index
of fatigue. The local error rate e(t) is derived by computing
the target false recognition rate within a 2-min time window
at 8-s step as

e(t) =
NumF (ST + 2t− L/2, ST + 2t− 1 + L/2)

NumT (ST + 2t− L/2, ST + 2t− 1 + L/2)
, (9)

where ST is the start time for fatigue measurement, L is
the 120-s window length, NumF(i,j) is the number of false
responses within the time window (i, j), and NumT(i,j) is the
number of total stimuli within the time window (i, j).

The result is represented by correlation coefficient γ of the
regression result and the local error rate. γ ranges from -1
to 1. Higher absolute value indicates higher relevance. γ is
calculated as follows:

γ =

∑

t(f(t)− f(t))(e(t)− e(t))
√

∑

t(f(t)− f(t))2 ∗
∑

t(e(t)− e(t))2
, (10)

where f(t) and e(t) represent regression result and local error

rate, respectively. f(t) and e(t) are their average over time.

V. RESULT

To show the efficiency of our method, we applied the two
methods described in section II and section III on the EOG data
set we collected. More than 22 subjects have taken participate
in the experiments. However, subjects who didn’t show distinct
fatigue during the experiments were eliminated. We performed
the leave-one-out cross-validation to get the mean correlation
coefficients which is regarded as the key index of drowsiness
detection models. Comparison between the traditional model
of pattern recognition and our models is presented to show
that our model’s advantages.

As is shown in section II, we processed the raw signals
from the device and scaled the signals to the range of 0 to 1.
We obtained two EOG channels, the horizontal and vertical,
which are in the same range and high frequency removed. The
training samples were randomly picked in the training sessions
to balance the range of predictor variables.
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Fig. 6. The reconstruction of signals from CAEs. Fig. 6(a) and Fig. 6(b)
show the reconstruction results of the horizontal and vertical channels of EOG,
respectively. The length of signals in these two figures is 8 seconds.

The CNN we trained contains two convolutional layers
with 8 and 4 neurons, respectively, as well as maxpooling layer
over non-overlapping windows of size 8 and 2, respectively. On
the consideration of overfitting, the topology of the network,
which is competent to extract proper drowsiness-related fea-



Fig. 7. Some of the learned feature maps of the first layer of CNN.

tures, was selected after preliminary experiments. Each neuron
in the first and second convolutional layers has 201 and 26
inputs, respectively. We pretrained the convolutional neural
network using stacked convolutional auto-encoders with the
same structure as the CNN. The CAEs were kept training with
entire training set without labels until the reconstruction error
in Eq. (4) converged to a relatively small value. Fig. 6 depicts a
reconstruction of the EOG signals in the first layer, both hori-
zontal and vertical channels. Reconstruction error converges
to a small value with training epoches of CAEs. We can
intuitively see that the signals are perfectly reconstructed. Once
the CAEs were trained, the weights were used to initialize
a CNN. The linear regression layer was randomly initialized
and then the local error rate labels were added to train the
entire network using backpropagation learning algorithm with
a relatively small number of epoches. Fig. 7 depicts a learned
feature maps of the first layer. Part of the feature maps is
similar to patterns of some eye movements, while part of the
feature maps could be the patterns of artifacts. The second
layer of the networks integrates the output of the first layer
into higher features and the linear regression layer turns the
higher feature into appropriate drowsiness predictor.

Fig. 8 shows an example of regression result of a subject
in experiment. We can institutively see that a growing fatigue
about 13 minutes since the experiment started and the subject
fell asleep about 5 minutes later. The predict drowsiness curve
seizes the tendency and fits the the local error rate curve in
red well. We can see that the subject refreshed himself in the
23 minute and got tired 4 minutes later which is all captured
by the drowsiness curve. The entire fitting results are shown
in Fig. 9 and our model gets a mean correlation coefficient
of 0.73 over the statistical methods of 0.70. More than half of
the correlation coefficients of the artificial network are slightly
better or better than the statistical method and our method gets
a smaller standard deviation. These results indicate that our
model processes an equivalent or even better abilities than
the corresponding models built on commonly used ad-hoc
statistical features on drowsiness detection.
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Fig. 8. An example of the regression result of a subject. The predicted
drowsiness curve in blue seizes the tendency of local error rate and perfectly
reflects the states of the subject.
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VI. CONCLUSION

We introduced the application of convolutional neural net-
work to EOG-based drowsiness detection and proposed a new
reliable drowsiness detection model in this paper. The model
we proposed employs two convolutional layers that learn to
extract relevant features from the EOG signals. The EOG
dataset is derived from 22 subjects of fatigue experiments.
The experimental results on our EOG dataset showed that
convolutional neural network possesses an equivalent or even
better ability over manual ad-hoc feature extraction method on
drowsiness detection task. Despite the manual designed fea-
tures advantage in depicting eye movements and interpreting
the physical properties of EOG, part of the features extracted
through eye movements pattern detection by the deep neural
networks is similar to the manual designed one, while other
features are different from the manual designed and hard to
design in practice. This model automatically provide a more
complete and appropriate set of features and our results show
that combination of these features yields a better predictor
of drowsiness. In this model, the LDS approach performs
an important step for reduction of unfavorable disturbance
of drowsiness-unrelated parts. As a consequence, we obtain
a remarkable increase in prediction accuracy.

This work also further demonstrates that convolutional
neural network is applicable to physiological signals and deep
learning methodologies are highly appropriate for drowsiness
detection. This work also suggests that the trivial, tough and
unstable feature extraction process in the traditional drowsiness
detection model of pattern recognition can be redundant. With
small modifications, the methodology proposed can be applied
for online drowsiness detection model, which can be widely
used in various scenarios. Future work includes a promotion
of the topology of the network and tests on the parameter sets.
Drowsiness detection models in other one-dimensional time-
series physiological signals such as EEG and EMG should
be done and more experiments in other scenarios will be
performed to test the generality of the drowsiness detection
model.
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