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Abstract— Various studies have shown that the traditional
electrooculograms (EOGs) are effective for driving fatigue
detection. However, the electrode placement of the traditional
EOG recording method is around eyes, which may disturb
the subjects’ activities, and is not convenient for practical
applications. To deal with this problem, we propose a novel
electrode placement on forehead and present an effective
method to extract horizon electrooculogram (HEO) and vertical
electrooculogram (VEO) from forehead EOG. The correlation
coefficients between the extracted HEO and VEO and the
corresponding traditional HEO and VEO are 0.86 and 0.78,
respectively. To alleviate the inconvenience of manually labelling
fatigue states, we use the videos recorded by eye tracking glasses
to calculate the percentage of eye closure over time, which is a
conventional indicator of driving fatigue. We use support vector
machine (SVM) for regression analysis and get a rather high
prediction correlation coefficient of 0.88 on average.

I. INTRODUCTION

Physiological signals have been applied to detect driving
fatigue in the past decades. Among these signals, electroen-
cephalography (EEG) and EOG are two promising measure-
ments of fatigue [1]. In recent studies, EEG-based methods
were extensively applied to driving fatigue detection [2] [3].
In comparison with that of EEG, the amplitude of EOG is
significantly higher, which makes EOG more robust to noise
than EEG. Two critical issues of EOG-based methods for
driving fatigue detection have been investigated recently: one
is the electrode placement to record EOG, and the other is
how to conveniently label fatigue states. This paper proposes
novel approaches to dealing with these two problems.

In traditional EOG-based experiments, EOG signals are
recorded by two pair of electrodes on opposite sides of eyes
[4]. It is difficult to cover these positions with a wearable
device. Therefore, to develop a new electrode placement
for recording EOG signals is important for improving the
user experience during experiment and practical applications.
In this study, we present a novel electrode placement on
forehead. For fully making use of existing powerful methods
to extract features from traditional EOG, we introduce an
effective approach to extracting forehead HEO and forehead
VEO.
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In driving simulation experiments of previous studies, the
driving fatigue state is usually provided by the subjects’ self-
report or by manually labelling according to the recorded
videos, which is inconvenient for a long time experiment.
In this study, we introduce a novel method for automatically
labelling the fatigue state during the driving process with
SMI eye tracking glasses. The percentage of eye closure over
time (PERCLOS) has been proved to be a good indicator
of driving fatigue [5]. The existing methods for calculating
PERCLOS are not robust in practical applications due to the
complexity of eye detection. The eye tracking glasses is a
wearable device and can directly record the state of eyes
without extra work on eye detection, which is more efficient
than traditional cameras [6]. PERCLOS is usually calculated
with a 60 seconds window, which makes it not suitable
for real-time driving fatigue detection. Besides, the portable
device which can accurately track the eye movements is
usually too expensive[7]. Therefore, the PERCLOS data
obtained from eye tracking glasses is only used as labels
in training model stage. In practical application, the well-
trained model can be adopted to predict fatigue states.

II. EXPERIMENTS

A. Procedure and Subjects

The whole experiment was performed on a driving sim-
ulator, which had a four-lane national highway simulating
the real situation. Total seven-channel EOG signals were
recorded by the NeuroScan system at a sampling rate of 500
Hz, which then were down-sampled to 125 Hz. A bandpass
filter between 0 and 30 Hz was used to eliminate noise
signals during the recoding process. At the same time, eye
tracking glasses was used to record the videos of subjects’
eyes. The experiment environment is shown in Fig. 1.

Our driving simulation experiments were carried out by 14
subjects, including 10 men and 4 women aged around 22. All
the subjects were healthy and no wound on the forehead and
face. All of them had an afternoon nap habit or went to bed
early than 11:30 pm. They were required to keep eye open
before they were tired and do nothing irrelevant with the
driving task. The mean period of the experiment was about
2 hours for the purpose of insuring the subject to fall into
a sleepy state during driving. The time of our experiments
contained two periods, one from 12:30 am to 14:30 pm, and
the other from 9:30 pm to 11:30 pm.

B. Forehead EOG and Fatigue Measurement

The EOG-based human-machine interfaces have been ex-
tensively investigated, and there are plenty of methods to
extract features from traditional EOG signals. Compared

7th Annual International IEEE EMBS Conference on Neural Engineering
Montpellier, France, 22 - 24 April, 2015

978-1-4673-6389-1/15/$31.00 ©2015 IEEE 707



(a) Driving simulation system (b) A subject wearing eye track-
ing glasses

Fig. 1. The driving simulation system and eye tracking glasses used in the
experiment.

with finding new methods to directly extract features from
forehead EOG, it is more valuable to find effective methods
to separate HEO and VEO from forehead EOG, which is a
mixed signal.

Following our previous work [8], we designed a novel
placement to extract forehead EOG signals. Fig. 2 shows
the electrode positions of both forehead and traditional
EOGs in our experiment. The fourth electrode is a common
electrode to both forehead and traditional EOGs. The refer-
ence electrode is placed at the left mastoid and the ground
electrode is placed at the right mastoid. Number five and
number six electrodes are respectively placed at the edge of
forehead, and at the same height with number four electrode.
Number seven electrode is placed 3cm over the number four
electrode.

The PERCLOS, which is calculated from the infra-red
videos recorded by eye tracking glasses, was chosen to be
the indicator of driving fatigue in this study.
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Fig. 2. Electrode placement for traditional and forehead EOG recording

III. METHODS

A. Forehead HEO and VEO Extraction

By extracting HEO and VEO signals from different com-
binations of signals recorded by forehead electrodes, we
found an effective method to extract them from forehead
EOG. The correlation coefficients between traditional EOG
and extracted EOG were used to evaluate the extraction
method. The EOG signals recorded by the fourth and seventh
electrodes were used to extract VEO by FASTICA [9]. The
two separated signals obtained by FASTICA contained the
signal with high similarity to VEO, and it appeared in the
first channel.

When the same method was performed on the signals
recorded by fifth and sixth electrodes to extract HEO, it
got a result of nearly the same correlation with direct

subtraction of them. The channel of the extracted HEO in
these two separated signals did not appear so fixed. The
most similar signal sometimes showed a negative correlation
with traditional HEO. Therefore, a simple but more robust
subtraction method was finally chosen to acquire forehead
HEO. After the EOG being extracted, a median filter was
used to remove the noise. Fig. 3 shows the comparison of
a segment from one subject between traditional EOG and
forehead EOG. The upper part is the traditional EOG, while
the lower part is forehead EOG. From Fig. 3, we can see
that the amplitude of forehead VEO extracted by FASTICA
is significant lower than that of traditional VEO.
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Fig. 3. Comparison of a segment between traditional EOG and forehead
EOG

B. Feature Extraction and Smoothing

The wavelet methods have been used in EOG features
extraction [4], [10]. As the wavelet transform is sensitive
to singularity, it obtains a better result than the derivative
method in detecting blink and saccade. We computed the
continuous wavelet coefficients at scale 8 with a Mexican
mother wavelet. Based on the previous studies, we introduced
the peak detection algorithm provided by MATLAB to
improve the performance of former threshold-based detection
algorithm [4]. The peak detection algorithm was performed
on the wavelet coefficients to detect the blink and saccade.

Fig. 4 shows a segment of saccade detection. The green
points are the positive peaks, and the blue points are the
negative peaks obtained by peak detection algorithm. The
peaks with a low threshold amplitude have been ignored.
We coded the negative and positive peaks into sequences,
in which the positive peak was coded into ‘1’, and the
negative was coded into ‘0’. The segment with a ‘01’ or ‘10’
subsequence was chosen as a candidate saccade segment.
We can get a straight line from the start point to the end
point of the candidate segment. We calculated the slope
value of the line and the correlation between the line and the
corresponding segment. When the absolute value of the slope
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and the correlation were beyond a threshold, the candidate
segment was judged as a saccade segment. The same method
was performed on blink detection. The main difference
between the blink detection with the saccade detection is that
the blink detection check the subsequence ‘010’ and has a
threshold of the maximal segment length.

0 0.5 1 1.5 2 2.5 3 3.5 4
−400

−200

0

200

400

600

time(s)

H
or

iz
on

 E
O

G
 v

al
ue

Horizon EOG
MexicanCWT

Fig. 4. The saccade detection segment

To reduce the complexity of extracting features from EOG,
we detected the blink from extracted VEO and the saccade
from extracted HEO. After blink, saccade and fixation (blink
or saccade duration) being detected, we calculated the mean,
maximum, variance, and derivative of the blink, saccade, and
fixation. The features were extracted from a fixed 8 seconds
non-overlap window. We eliminated the features if their
correlation coefficients with PERCLOS were under a certain
threshold. Table. I shows the finally chosen 36 features.

TABLE I
THE FEATURES EXTRACTED FROM EOG

Group Features

blink mean/maximum of blink rate variance/amplitude variance
maximum/minimum/mean of blink amplitude
power/mean power of blink amplitude
maximum/mean/sum of blink rate
blink number

saccade maximum/minimum/mean of saccade rate/saccade amplitude
maximum/mean of saccade rate variance/saccade amplitude variance
power/mean power of saccade amplitude
saccade number

fixation mean/maximum of blink duration variance/saccade duration variance
maximum/minimum/mean of blink duration/saccade duration

A simple but effective moving average filter was used to
smooth the features, which could remove the components of
small correlation with fatigue at the same time.

C. PERCLOS Calculating

We used the contour detection algorithm provided by
OPENCV to detect the eye closure state (see [6] for detail).
After the eye state being detected, we calculated the PERC-
LOS with a 60 seconds length window, and then smoothed
the result with a 30 seconds moving average window. Each
experiment contained 110 minutes PERCLOS data with the
first 100 seconds and the tail segment being discarded, and
the same method was also performed on the extracted EOG
signals.

D. Data Partition

The EOG data is time dependent, and cannot be randomly
divided. The time for different subjects to fall asleep is
different, so the whole data cannot be split with a fixed
interval. The training segment should include both sleepy
and awake data. Therefore, we divided the EOG data into
several continuous segments in this experiment. To get a
long segment of fatigue period to predict, the EOG data
was divided into five continuous segments with 22 minutes
length. Among them, the four segments were used to train
model, and the rest was used in prediction.

E. Regression Model

After EOG features being extracted, SVM with linear
kernel and linear regression model were used to regress the
features to PERCLOS data on each subject.

IV. RESULTS AND DISCUSSION

A. Forehead HEO and VEO Extraction

TABLE II
EXTRACTION RESULTS

Subject HEO VEO Subject HEO VEO

1 0.9208 0.9159 8 0.9290 0.9508
2 0.8794 0.4380 9 0.9361 0.8772
3 0.8446 0.9432 10 0.8022 0.9464
4 0.9283 0.5640 11 0.7525 0.5787
5 0.8830 0.9394 12 0.6905 0.6983
6 0.8388 0.8221 13 0.8337 0.4948
7 0.8778 0.8509 14 0.8683 0.9196

Mean±std 0.8561±0.0707(HEO), 0.7814±0.1871(VEO)

The traditional EOG contains HEO and VEO, so the
extracting results contain both forehead HEO and VEO.
The correlation coefficients between the forehead EOG and
the traditional EOG on different subjects are illustrated in
Table II. We also make comparison between two types
of VEO: one is obtained by FASTICA and the other by
the subtraction method. The results are shown in Fig. 5.
The ‘VEO-M’ represents the forehead VEO obtained by
subtraction method. The mean correlation coefficients of both
HEO and VEO are 0.86 and 0.78, while VEO obtained
by subtraction method is 0.66. The results show that the
correlation coefficient obtained by FASTICA is higher than
the subtraction method. Therefore, in this study, FASTICA
is finally chosen to extract VEO.

Using the electrodes on forehead to record the EOG
signals can reduce much discomfort to the subject, especially
who wear sunglasses or eye-short glasses. A suitable elec-
trode placement and the corresponding separating method
need further research, which is useful for integrating the
EOG electrodes into wearable devices.

B. Data Partition

Because different subjects may have different fatigue states
during the driving simulation, the divided segment to predict
is also somewhat different. In our experiment, the fatigue
always happened between the second and fourth segments.
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Fig. 5. The results of two methods to extract VEO

TABLE III
DATA SEGMENT PARTITION

#Predicting segment #Subjects

2 2 3 4 5 7 10 11
3 1 13
4 6 8 9 12 14

Table III shows the number of the predicting segment for
each subject. The rest four segments not shown in Table
III are used to train the model. From the segment partition
results, we can see that the prediction segments are mainly
distributed in second and fourth segment.

C. Regression Prediction
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Fig. 6. Comparison between predicting fatigue curve and the original
PERCLOS curve

Once the data were collected, the training segments were
used to train the regression model and then the trained model
was used to predict the test segment. Fig. 6 shows a subject’s
PERCLOS prediction with a segment of 22 minutes length,
in which the red curve is the predicting results of the SVM
and the black curve is the original PERCLOS curve.

The correlation coefficients of prediction results on all the
14 subjects are shown in Table IV. From Table. IV, we can
see that the linear SVM gets a correlation coefficient of 0.88
on average, while the linear regression (LR) gets 0.74.

The PERCLOS is an easy accessible indicator to driving
fatigue. With the assistance of eye tracking glasses we can
get a more accurate PERCLOS data with less extra work.
As eye tracking glasses is expensive, it can only be used to

TABLE IV
PREDICTION RESULTS

Subject SVM LR Subject SVM LR

1 0.9829 0.9799 8 0.9512 0.9442
2 0.7656 0.6335 9 0.8063 0.7882
3 0.9015 0.7785 10 0.8812 0.8500
4 0.9818 0.9898 11 0.8059 0.6335
5 0.8786 0.5740 12 0.9309 0.4215
6 0.9772 0.4215 13 0.8924 0.8550
7 0.9263 0.9349 14 0.6665 0.6233

Mean±std 0.8820±0.0921(SVM), 0.7448±0.1952(LR)

get the labels in training stage. After the model being trained
well, the information extracted from forehead EOG signals
is used to predict the fatigue state.

V. CONCLUSION

In this study, we have introduced a novel electrode place-
ment on forehead and proposed a corresponding algorithm to
extract HEO and VEO from forehead EOG. The extraction
results on 14 subjects show that the separating algorithm
worked well on the proposed forehead electrode placement.
The forehead is a promising placement to record EOG, which
is more convenient for practical applications. The PERCLOS
calculated from the videos recorded by eye tracking glasses
provides a reliable index of driving fatigue. The regression
model trained on forehead EOG achieves a fine prediction
performance on each subject. The experiment is a meaningful
trial for using forehead EOG to detect driving fatigue in
future practical applications.
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