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Bilingual Continuous-Space Language Model
Growing for Statistical Machine Translation

Rui Wang, Hai Zhao, Bao-Liang Lu, Senior Member, IEEE, Masao Utiyama, and Eiichiro Sumita

Abstract—Larger -gram language models (LMs) perform
better in statistical machine translation (SMT). However, the
existing approaches have two main drawbacks for constructing
larger LMs: 1) it is not convenient to obtain larger corpora in the
same domain as the bilingual parallel corpora in SMT; 2) most of
the previous studies focus on monolingual information from the
target corpora only, and redundant -grams have not been fully
utilized in SMT. Nowadays, continuous-space language model
(CSLM), especially neural network language model (NNLM), has
been shown great improvement in the estimation accuracies of the
probabilities for predicting the target words. However, most of
these CSLM and NNLM approaches still consider monolingual
information only or require additional corpus. In this paper, we
propose a novel neural network based bilingual LM growing
method. Compared to the existing approaches, the proposed
method enables us to use bilingual parallel corpus for LM growing
in SMT. The results show that our new method outperforms the
existing approaches on both SMT performance and computational
efficiency significantly.
Index Terms—Continuous-space language model, language

model growing (LMG), neural network language model, statistical
machine translation (SMT).

I. INTRODUCTION

N OWADAYS, many studies focus on constructing larger
Back-off N-gram Language Models (BNLMs) [1], [2],

[3], for a better perplexity (PPL). These larger LanguageModels
(LMs) have been successfully applied to Statistical Machine
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Translation (SMT) [2] and help bring better BLEU [4], [5].
Meanwhile, larger in-domain corpora used in LM training in
SMT1 are necessary in most of the existing approaches. How
to select the in-domain corpora is also a critical problem in
large LM constructing and adaptation, because increasing cor-
pora from different domains will not result in better LMs [6] or
translation [7], [8], [9], [10], [11]. In addition, it is very difficult
to collect an extra large corpus for some special domains such
as the TED (Technology, Entertainment, Design) corpus [12] or
for some rare languages. Therefore, how to improve the perfor-
mance of LM without assistance of extra corpus is an important
subject in SMT.
‘Language Model Growing (LMG)’ refers to adding -grams

outside the corpus together with their probabilities into the orig-
inal LM. LMG is useful because it can improve LM through
adding more and more useful -grams from a small training
corpus. In the past decades, various methods [13], [14], [15],
[16] have been developed for adding -grams from corpus se-
lected by different criteria. However, none of these approaches
can conduct the -grams outside the corpus.
Recently, Continuous-Space Language Models (CSLMs),

especially Neural Network Language Models (NNLMs) [17],
[18], [19], [20], are actively used in SMT [21], [21], [22],
[23], [24]. These models have demonstrated that CSLMs can
improve BLEU scores of SMT over -gram LMs with the same
sized corpus for LM training. An attractive feature of CSLMs
is that they can predict the probabilities of -grams outside the
training corpus more accurately.
Due to too high computational cost, it is difficult to use

CSLMs in decoding directly. A common approach in SMT
using CSLMs is a two-pass procedure, or -best re-ranking.
In this approach, the first pass uses a BNLM in decoding to
produce an -best list. Then, a CSLM is used to re-rank those
-best translations in the second pass [21], [25], [22], [23].

Another approach is based on Restricted Boltzmann Machines
(RBMs) [24], instead of multi-layer neural networks [17], [18],
[20]. Since the probability of an RBM can be calculated very
efficiently [24], RBM-based LM can be conveniently applied
to SMT decoding. However, the RBM can only be used in a
small SMT task due to its high training costs.
Vaswani et al. propose a method for reducing the training cost

of CSLM and apply it into SMT decoder [26]. However, their
method is still slower than the -gram LM. Some other studies
try to implement neural network LM or translation model for
SMT [27], [28], [29], [30], [31], [32], [33], [34], [35], [36]. But

1It is common to use larger monolingual corpus in SMT, in comparison to the
small bilingual parallel corpus.
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until now, the decoding speed using -gram LM is still the state-
of-the-art one.
To integrate CSLM more efficiently into decoding, some ex-

isting approaches calculate the probabilities of the -grams be-
fore decoding and store them [37], [38], [39], [40]2. The ‘con-
verted CSLM’ is directly used in SMT, and its decoding speed
is as fast as the -gram LM. Actually, more -grams which
are outside the training corpus can be generated by using these
‘converting’ methods. Unfortunately, all of these existing ap-
proaches can only construct an LM with the similar size of the
original -gram LM.
These CSLM methods mentioned above can calculate the

probabilities of the -grams outside training corpus more accu-
rately. However, it is difficult to decide which -grams should
be grown by using monolingual target language information
for SMT, because the -grams appearing in phrase-based SMT
should be selected from the bilingual phrase table. As we know,
every translation candidate phrase for phrase-based SMT de-
coding is from the bilingual phrase table. Therefore, additional
-grams from a larger LMs, which are outside the phrase table,

will never be actually used in SMT. These -grams are useless
because they do nothing but waste computing time and storage
space in LM constructing.
It is observed that the translation outputs of a phrase-based

SMT system consist of phrases from either of the following
cases: (a) the phrase is already included in a phrase in the phrase
table, or (b) the phrase is the result of concatenating two or more
phrases in the phrase table. These phases are called ‘connecting
phases’. Based on this observation, the probabilities of the con-
necting phrases, which are not all in the training corpus, can be
calculated by CSLM. Therefore, we propose a novel neural net-
work based bilingual LM growing method for making use of the
connecting phrases without assistance of extra corpus.
The rest of this paper is organized as follows. In Section II, the

related work on LM growing will be introduced. A new bilin-
gual LM growing method will be presented in Sections III and
IV. In Section V, experiments will be conducted and the results
will be analyzed. Section VI will summarize this work.

II. RELATED WORK

Most of the existing LM growing methods need extra larger
monolingual corpus and focus on how to select more useful
-grams from the corpus by different criteria.
Ristad and Thomas describe an algorithm for growing
-gram LM [13]. They use a greedy search for finding the

individual candidate -grams to be added to the LM by using
‘Minimum Description Length (MDL)’-based cost function.
They obtain significant improvement over their baseline -gram
LM, but their baseline model performs worse as longer contexts
are used according to [16]. This means that the baseline model
they used [13] is not well optimized.
Niesler and Woodland present a method for backing-off from

standard -gram LMs to cluster LMs [14]. They present an ap-
proach to grow a class -gram LM, which estimates the prob-
ability of a cluster given the possible word clusters of the con-
text. They also use greedy search for finding the candidates to

2This paper is partially motivated by [38].

be added to the LM similar with the technique used by [13].
The difference is that they add conditional word distributions
for -gram contexts and prune away unnecessary -grams.
Siu and Ostendorf construct -gram LM as a tree structure

and show how to combine the tree nodes in several different
ways [15]. Each node of the tree represents an -gram con-
text and the conditional -gram distribution for the context.
Their experiments indicate that most gain can be achieved by
choosing an appropriate context length separately for each word
distribution, and the size of LMs can be halved with no signif-
icant loss in performance.
Siivola et al. present a method for estimating variable-length
-gram LM incrementally while maintaining some aspects of

Kneser Ney smoothing [16], which is popular applied to sev-
eral natural language processing tasks [41], [42], [43], [44],
[45], [46], [47], [48]. The growing algorithm is similar to that
of [14], whereas their method uses a MDL-based cost criterion.
The MDL criterion is defined in a simpler manner than in the
algorithm of [13], where a more compact and more theoretical
criterion is developed.
It should be noted that these four kinds of methods mentioned

above do not consider to grow the -grams outside the corpus.
As a result, they actually belong to LM pruning or adaptation
methods from the point of view that they all construct a smaller
LM from a large corpus.
As CSLM or NNLM makes it possible to calculate the prob-

abilities of the -gram outside the training corpus more accu-
rately, various studies try to implement neural network LM or
translation model for SMT [26], [28], [30], [31], [33], [49], [50].
However, their decoding speed is still not as fast as the -gram
LM. Because directly using CSLM in SMT or speech recogni-
tion is very time consuming, some studies focus on converting
CSLM into -gram LM.
In our previous work, we propose a method for converting

CSLM into -gram LM [37]. The probabilities of the -grams
in training corpus using CSLM are calculated, and then stored
together with the -grams in the format of -gram LMs. The
converted LM can be directly used in SMT decoding with the
same speed as the original -gram LM. The results show that
this conversion method can obtain better BLEU in SMT. How-
ever, it can not generate the -grams outside the corpus. We
select this method as a baseline in this study.
Arsoy et al. present another CSLM converting method [39],

[40]. The basic idea behind their method is that a very large
LM is generated by adding all the words in the ‘short-list’ of
CSLM after the ‘tail (end) word’ of every -gram of the original
-gram LM3. The LMs are pruned into the same size of the

original -gram LM using entropy-based LM pruning method
[51]. Their converted CSLM is applied to speech recognition.
In fact, a larger LM has been actually grown, but this method
needs to spend additional time and space on the large converted
LM4. To our best knowledge, the method developed by Arsoy
et al. [39], [40] is the only exiting LM growing approach that

3The definition of short-list, tail (end) word and other details of CSLM will
be given in Section IV.

4We are aware that this intermediate LM can be pruned parallel during con-
verting, however it still costs more space than the original one depending on the
threshold set for pruning.
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starts from an original small corpus. We also add their method
into the baselines for comparison.
In addition, all the existing LM growing methods only exploit

monolingual information from corpus and do not take bilingual
information into account. The performance of these grown LMs
are mostly measured by PPL or word error rate in speech recog-
nition, which is beyond the SMT topic of this paper.

III. BILINGUAL LM GROWING

This section describes the proposedmethod, ‘bilingual CSLM
growing method’ or ‘connecting phrase-based CSLM growing
method’.
Following the discussion in Section I, the translation output

of a phrase-based SMT system can be regarded as a concate-
nation of phrases in the phrase table (except unknown words).
This means that an -gram that appears in a translation output
satisfies either one of the following two conditions: (a) it is in-
cluded in a phrase in the phrase table or (b) it is the result of
concatenating two or more phrases in the phrase table.
Based on the above observations, we propose the following

procedure for constructing connecting phrases:
Step 1. All the -grams included in the phrase table should

be maintained at first;
Step 2. The connecting phrases are defined in the following

way. Let be a target language phrase starting
from the -th word ending with the -th word, and

be a phrase including as a part of it, where
and represent any word sequence or none. An

-gram phrase ( ) is a con-
necting phrase5, if
(a) is the right (rear) part of one phrase in

the phrase table, and
(b) is the left (front) part of one phrase

in the phrase table.
For a 4-gram phrase ‘a b c d’, it is a connecting phrase if at

least one of the following conditions holds,
(a) phrases ‘ ’ and ‘b c d ‘ are in the phrase table, or
(b) phrases ‘ a b’ and ‘c d ‘ are in the phrase table, or
(c) phrases ‘ a b c’ and ‘ ‘ are in the phrase table.
The same pipeline can be applied to other -grams such as

bigrams, trigrams and 5-grams. After the probabilities of them
are calculated using CSLM (in Section IV), the -grams in the
phrase table from Step 1 and the connecting phrases from Step 2
are combined, and the combined LM is re-normalized. Finally,
the connecting phrase-based grown LM is built up.

A. Ranking the Connecting Phrases
Using connecting phrase LM growing method, the -grams

outside the corpus can be generated, and a larger LM can be con-
structed. Since the size of connecting phrases is too huge, which
is usually more than one Terabyte (TB), it is necessary to deter-
mine the usefulness of connecting phrases which are likely to

5We are aware that connecting phrases can be applied to not only two phrases,
but also three or more. However the appearing probabilities (which will be dis-
cussed in Eq. (2) of next subsection) of connecting phrases are approximately
estimated. To estimate and compare probabilities of longer phrases in different
lengths will lead to serious bias, and experiments also showed using more than
two connecting phrases did not perform well (not shown), so only two con-
necting phrases are applied in this paper.

appear in SMT. More useful connecting phrases can be selected
by ranking the appearing probabilities of the connecting phrases
in SMT decoding. The size of the grown LM will be tuned in
this way.
The translation probability from a source phrase

to a target phrase , can be calculated using bilingual parallel
training data and found in phrase table. In decoding, the proba-
bility of a target phrase appearing in SMT should be,

(1)

where means the appearing probability of a source
phrase, which can be calculated using source language part in
the parallel data. Using 6, a connecting phrase with
high appearing probability is selected as -gram to add into the
original LM. These -grams are called ‘grown -grams’.
We thus build all the connecting phrases at first, then use

the appearing probabilities of the connecting phrases to decide
which connecting phrases should be selected. For an -gram
connecting phrase , where is part of , is
part of , and the and are the phrases in the
phrase table, the probability of the connecting phrases can be
roughly estimated as,

(2)

and then the value of threshold for is set.
It should be noted that only the connecting phrases whose ap-
pearing probabilities are higher than the threshold will be se-
lected as the grown -grams.

IV. CALCULATING THE PROBABILITIES OF GROWN
-GRAMS USING CSLM

A. Standard Back-off N-gram Language Model
A BNLM predicts the probability of a word given its pre-

ceding words . But it will suffer from data
sparseness if the context does not appear in the training data.
So an estimation by ‘backing-off’ to models with smaller his-
tories is necessary. In the case of the interpolated Kneser-Ney
smoothing [52], the probability of given under a BNLM,

, is

(3)

where is a discounted probability and is the
back-off weight. A BNLM is used as a background LM with a
CSLM as shown in Section IV-B.

B. Continuous-Space Language Model
The main structure of a CSLM using a multi-layer neural net-

work contains four layers: the input layer projects all words in
the context onto the projection layer (the first hidden layer);

6This hence provides more bilingual information, in comparison
to only using monolingual target LMs.
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the second hidden layer and the output layer achieve the non-
linear probability estimation and calculate the language model
probability for the given context [18].
CSLM calculates the probabilities of all of the words in vo-

cabulary of the corpus given the context at once. However, due
to too high computational complexity of calculating the proba-
bilities of all words, CSLM is only used to calculate the prob-
abilities of a subset of the vocabulary. This subset is called
short-list, which consists of the most frequent words in the vo-
cabulary. CSLM also calculates the sum of the probabilities of
all of the words outside the short-list with the help of BNLM by
assigning a neuron. The probabilities of other words outside the
short-list are obtained from an -gram LM [18], [37], [53].
Let , be the current word and history, respectively. The

CSLM with a BNLM calculates the probability of given ,
, as follows,

(4)

where is the short-list, is the probability calculated by
the CSLM, is the sum of probabilities of the
neurons for all the words in the short-list, is the probability
calculated by BNLM in Eq. (3), and

(5)

It may be regarded that CSLM redistributes the probability mass
of all of the words in the short-list. This probability mass is
calculated by using the -gram LM7 [18], [37], [53].
For our bilingual LM growing method, 5-gram BNLM and
-gram ( ) CSLMs are built from the target lan-

guage of the parallel corpus, and phrase table is built from the
bilingual languages of the parallel corpus.
The probabilities of unigrams in the original BNLM will be

maintained as they are. Next, the -grams from the bilingual
phrase table will be grown using the ‘connecting phrases’ based
method. As the number of all of the connecting phrases is very
huge, the ranking method is applied to select more useful con-
necting phrases. The distributions of different -grams (

) of the grown LMs are set as the same as the original
BNLM.
The probabilities of the grown -grams ( ) are

calculated using the 2,3,4,5-CSLMs, respectively. Namely, the
grown -grams will be the input into CSLMs, and the grown
-grams together with calculated probabilities as the output. If

the tail (target) words of the grown -grams are not in the short-
list of CSLM, the in Eq. (4) will be applied to calculate
the probability.
The grown -grams ( ) are combined together,

and the probabilities and back-off weights of the -gram LM are
re-normalized using the SRILM’s ‘-renorm’ option [54], [55].
Finally the original BNLM and the grown LM are interpolated8
using the default setting of SRILM. The entire process is illus-
trated in Fig. 1.

7If we do not use in Eq. (4), the PPL of test data of NTCIR-9 will
increase from 97.5 to 100.4. Please refer to the Section V for detail settings.

8The interpolation is setup for fair comparisons with Wang et al. [37]. and
Arsoy et al.’s methods [39], [40], because they both use interpolation.

Fig. 1. Process of bilingual CSLM growing method.

C. Baseline Systems
For the baseline systems, we only re-writes the probabilities

from CSLM into the BNLM in our previous work [37]. There-
fore, this method can only construct a converted LM with the
same size as the original BNLM. The main difference between
our proposed method in this paper and our previous approach
is that -grams outside the corpus are generated firstly and the
probabilities are calculated by using the samemethod as our pre-
vious approach. Namely, the proposed new method is the same
as our previous one when no any grown -gram is generated.
The Arsoy’s method developed in [39], [40] adds all the

words in the short-list after the tail words of the -grams to con-
struct the ( )-grams. For example, if the -gram is ‘I want’,
then the ( )-gram will be ‘I want ’, where ‘ ’ stands for any
word in the short-list. The probabilities of the ( )-grams are
calculated using the ( )-CSLM. A very large intermediate
( )-grams will have to be grown at first, and then be pruned
into smaller suitable size using an entropy-based LM pruning
technique modified from [51]. The ( )-grams are grown
using ( )-grams recursively.

D. Computational Complexity for Growing Methods
The time complexity for CSLM [18] can be expressed as,

(6)

where is the order of -grams, is the size of projection layer,
is the size of hidden layer, and is the size of output layer.

The original equals to the size of the vocabulary ( ). To
reduce the time complexity, the short-list in Eq. (4), which
is a subset of the vocabulary, is used as the output layer .
The other words outside short-list in the output layer will be
calculated using background BNLM.
The method developed by Arsoy et al. [39], [40] is applied to

4-gram LM for speech recognition, and all of the words in the
short-list are required to be added after the tail word of -gram to
construct the ( )-gram. The short-list usually includes thou-
sands of words, so the generated ( )-grams will be thousands
times larger than the -grams before they are pruned. Because
the higher order -grams commonly contain more -grams, so
the computing cost for calculating the generated ( )-grams
significantly grows as the order of -gram increases. The low
order -gram makes their method more applicable to speech
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recognition, as SMT usually requires a higher order -gramLM.
For example, 5-gram LM as common setting is used for SMT,
and 4-gram LM is used for speech recognition.
In contrast, we only rewrite the -grams from the grown LM,

and calculate the same number of -grams as the grown LM,
which is at most 10 times (by experience) larger than the original
one. For the baseline approach [39], [40], the size of LM is about
thousands times of the original BNLM9.
The decoding speed of the grown LM is nearly the same as

the normal -gram LM, because the neural network probabili-
ties are encoded into the grown -gram LM using the SRILM
toolkit. As a result, the proposed method has significant advan-
tage on computational cost. This attractive featuremakes it work
faster on the same corpus.

V. EXPERIMENTS AND RESULTS

A. Experiment Setting

The same settings for the NTCIR-9 Chinese to English trans-
lation baseline system [56] are followed, and the only differ-
ence is to use various LMs to compare them. TheMoses phrase-
based SMT system is applied [57] together with GIZA++ [58]
for alignment and MERT [59] for tuning on the development
data. Fourteen standard SMT features are used: four translation
model scores, one phrase pair number penalty score, one word
penalty score, seven distortion scores, and one LM score. Each
of the different LMs is used to calculate the LM score. The trans-
lation performance is measured by the case-insensitive BLEU
on the tokenized test data. The tool, , is used
for calculating BLEU scores10.
The patent data for the Chinese to English patent transla-

tion subtask from the NTCIR-9 patent translation task [56]11 is
used. The parallel training, development, and test data consists
of 1 million (M), 2,000, and 2,000 sentences, respectively. This
SMT system is called SMT1M. A subset is randomly selected
from the whole train data containing 100 K sentences and all
other settings the same are as the SMT1M. This SMT system is
called SMT100K.
As an example, considering a phrase table built from

SMT100K sentences, it consists of nearly 9.5M phrases.
So it is too time and space consuming to construct the con-
necting phrases using all the phrases in the phrase table
( M M T). For SMT1M, it will takemore time and
space. In practice, only a small part of top useful phrases (1%-5%
by experience for SMT100K and SMT1M) in the phrase table
are considered by a ranking method according to Eq. (1)12.

9Although all the tail words in short-list can be calculated at the same time
using neurons in the output layer, their method still takes much time.

10It is available at http://www.itl.nist.gov/iad/mig/tests/mt/2009/
11We are aware that there is extra large monolingual English corpus for

NTCIR-9, unlike TED, whose large extra monolingual corpus is hard to find.
NTCIR-9 corpus is selected for a fair comparison amongWang et al. [37]’s (use
NTCIR-9 corpus), Arsoy et al. [39], [40]’s and our methods. The experiments
on TED corpus will be shown in Section V-E, and the experiments using
additional monolingual corpus will be shown in Section V-F.

12We also empirically compare the proposed ranking method with the phrase
table pruning method in Johanson et al. [60], and the ranking method shows
better performance. Thus we choose the ranking method at last.

TABLE I
COVERAGE RATES OF WORDS IN SHORT-LIST

Following SRILM [54], [55], a 5-gram BNLM is trained with
interpolated Kneser-Ney smoothingmethod using the 1M/100K
sentences or 42M/4M words without cutoff. These LMs are
called BNLM42M and BNLM4M.
The 2,3,4,5-CSLMs are trained on the same 1M/100K sen-

tences using the CSLM toolkit [53]. The settings for the CSLMs
are: projection layer (first hidden layer) of dimension 256 for
each word, (second) hidden layer of dimension 384 and output
layer (short-list) of dimension 8192, which are recommended
in the CSLM toolkit and our previous work [37]. These CSLMs
are called CSLM42M and CSLM4M.
In this paper, around 42M words are used as the corpus, in-

cluding 456 K words as vocabulary, and 8 K words, which
covers 92.89% of words in the training corpus, as short-list for
both our method and baseline methods. Arsoy et al. use around
55M words as the corpus, 84 K words as vocabulary, and 20 K
words as short-list. The sizes of our corpus and short-list are
similar with theirs in [39], [40]. However, our vocabulary is
much larger than theirs, because the whole vocabulary must be
used for SMT decoding, compared with only a small vocabu-
lary used for speech recognition. The ratio of affect
how much the time complexity will be reduced for the output
layer. With a small (84 K) in Arsoy et al.’s [39], [40], 76%
time cost could be saved as 20 K is chosen for the short-list size.
For our method, being 456 K and 8 K being short-list, 98%
time cost is saved.
The coverage rate, , of short-list is defined as:

(7)

where indicates the number of words hit in short-list
and indicates the number of words in corpus. The size
of short-list is selected according to the corpus by experiments
before CSLM is constructed. The results in Table I show that
the coverage rates become saturated after short-list size is larger
than 8 K. It should be noted that these 1% and 2% of cov-
erage rate differences determine which LM, CSLM or BNLM,
is more likely used to calculate the probabilities of -grams.
However, it will lead to a big gap of computational cost. For a
8 K sized short-list, nearly 93% of the -grams in the training
data will be calculated using CSLM and 7% using BNLM. The
time complexity for CSLM is approximately linear with the size
of output layer (short-list). If the short-list is 20 K as that in
Arsoy’s method, it will take nearly 2.5 times of computing time
for training and converting CSLM. Therefore, the 8 K short-list
is adopted for both methods. In comparison with 20 K short-list,
8 Kmakes little loss on the coverage rate, but brings about much
higher efficiency.



1214 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 23, NO. 7, JULY 2015

TABLE II
PROPORTIONS OF -GRAMS COVERED BY CSLM AND/OR BNLM

TABLE III
PERFORMANCE OF THE GROWN LMS IN SMT100K

The proportions of -grams in the test data covered by CSLM
(8 K as short-list) and/or BNLM13 are also counted. For each
-gram, there are four situations shown in Table II.
It should be noted that the common settings of CSLM in our

previous work [37], Arsoy et al.’s approach and the proposed
bilingual growing method are all the same for fair comparison
with the same 2.70 GHz CPUs in this paper. Code for the bilin-
gual CSLM growing is available online14.

B. SMT Results

Experiments are firstly conducted on SMT100K. That is,
CSLM4M and BNLM4M are used for LMs growing, and then
the grown LMs are applied to SMT100K. The results are shown
in Table III. Then, the experiments are conducted on SMT1M.
That is, CSLM42M and BNLM42M are used for LMs growing,
and then the grown LMs are applied to SMT1M. The results are
shown in Table IV. At last, the grown LMs from CSLM4M and
BNLM4M are applied to SMT1M to study whether the grown
LMs built from a small corpus can outperform the original
BNLMs built from larger corpus. In other words, CSLM4M
and BNLM4M are used for LMs growing, and then the grown
LMs are applied to SMT1M. The results are shown in Table V.
The results of the LM experiments in SMT are divided into

five groups: the original BNLMs (BNLM4M/42M), CSLMs in
decoding (CSLM4/42M, mainly following the setting of [50],
[61]), our previous converting method [37], Arsoy et al. [39],
[40]’s growing, and neural network based bilingual growing
methods. For our previous method [37] which is referred to
Wang4M/42M, the probabilities are only re-written fromCSLM
into the BNLM. Therefore, only an LM with the same size can
be conducted. For our new bilingual LM growing method, 5

13If the -grams are not covered by BNLM, BNLM will refer to lower-order
probabilities with the adjusted weights using back-off.

14it is available at http://bcmi.sjtu.edu.cn/wangrui/program/blmg.zip

TABLE IV
PERFORMANCE OF THE GROWN LMS IN SMT1M

TABLE V
PERFORMANCE OF THE GROWN LMS (BIL4M) IN SMT1M

Bilingual grown LMs for every SMT system (Bil4M/42M-1 to
515) are conducted in increasing sizes, and the largest grown LM
is around 10 times larger than the original one by the number of
-grams. For the method in [39], [40], 5 grown LMs (Arsoy4M/

42M-1 to 5) for each SMT system are also conducted in in-
creasing sizes. Entropy based method is adopted to prune them
into similar sizes as the grown LMs using our method (Bil4M/
42M-1 to 5).
Our previous converted LM, Arsoy grown LMs and bilin-

gual grown LMs are interpolated with the original BNLMs by
using default setting of SRILM16. To reduce the randomness
of MERT, two methods are used for tuning the weights of dif-
ferent SMT features, and two BLEU scores are obtained corre-
sponding to these twomethods.BLEU-s indicates that the same
weights of the baseline (BNLM4M/42M) features are used for
all the SMT systems. BLEU-i indicates that the MERT is run
independently by three times and the average BLEU scores
are taken. The trends of PPL and BLEU-s are illustrated in
Figs. 2 and 3, respectively.
The paired bootstrap re-sampling test [62]17 is performed.

2000 samples are used for each significance test. The marks at
the right of the BLEU scores indicate whether the LMs are sig-
nificantly better/worse than Arsoy’s grown LMs with the same

15We firstly select the top connecting phrases, which are around 10 times
larger than the -gram (phrases) in the original BNLM, and then choose the top
20%, 40%, 60%, 80% and 100% of them to construct the Bil42M-1 to Bil42M-5.
The IDs after the Bil42M indicate the sizes of grown LMs (in ascending order).
The distribution of -grams in different orders ( ) is the same as
the original BNLM.

16Our previous method [37] uses the development data to tune the weights
of interpolation. In this paper, the default weight 0.5 is used as the interpolation
weights for fair comparison.

17The implementation of our system follows http://www.ark.cs.cmu.edu/MT
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Fig. 2. Trend of PPL as the LMs grow (Lower is better).

Fig. 3. Trend of BLEU as the LMs grow (Higher is better).

TABLE VI
PERFORMANCE OF THE GROWN LMS AND CSLM IN RE-RANKING

IDs (‘ / ‘: significantly better/worse at significance level
, ‘ / ‘: ).

Comparison are also conducted on re-ranking for CSLM
and our bilingual grown LMs. CSLM42M and Bil42M are
used to re-rank the 1000-best lists of SMT1M. That is, the
BNLM scores in the 1000-best lists are replaced with the
CSLM42M/Bil42M scores, and then the global scores are
re-ranked. For CSLM re-ranking in Table VI, the PPL column
indicates that the PPLs are calculated using CSLM, and the
BLEU(Re-ranking) column indicates that the feature weight of
CSLM42M/Bil42M is tuned using Z-MERT [63]. The results
are presented in Table VI.
From the results shown in Tables III, IV, V, and VI and

Figs. 2 and 3, we can obtain the following observations:

TABLE VII
CONSTRUCTING CONNECTING PHRASES TIME

(a) Nearly all the bilingual grown LMs outperform the orig-
inal BNLM and our previous converted LM on the PPL
and BLEU in SMT. These indicate that our bilingual LM
growing method can give better probability estimation for
LM and better performance for SMT. Compared with the
CSLM in re-ranking and decoding methods, the bilingual
grown LMs obtain higher PPLs, but similar BLEUs.

(b) As the sizes of grown LM increase, the PPLs on the test
data always decrease and the BLEU scores trend to in-
crease. Bil42M-1 keeps the top 20% ranked connecting
phrases, which are the most useful connecting phrases,
and therefore it performs similar as Bil42M-5, which con-
tains all the selected connecting phrases.

(c) Compared with the grown LMs in [39], [40], our grown
LMs obtain better PPL and significantly better BLEUwith
the similar size. Furthermore, the improvements on the
PPL and BLEU obtained by their method become satu-
rated much more quickly than ours, as the LMs grow.

(d) The grown LMs (Bil4M) in SMT1M performmuch better
than in SMT100K, but much worse than the BNLM42M
with the similar size in SMT1M. This indicates that the
grown LMs built from small corpus can indeed improve
the performance on PPL and BLEU. But they do not per-
form well compared to the LMs originally built from large
corpus18.

C. Efficiency Comparison
In this subsection, the efficiency of our new bilingual LM

growing method is investigated.
1) Efficiency for Constructing Connecting Phrases: The av-

erage time for constructing 1M trigrams connecting phrases for
SMT100K and SMT1M is shown in Table VII. The results in-
dicate that the constructing time is much less than the growing
time in Table VIII for the same 1M trigrams.
2) Growing Time: The growing time of Arsoy’s method and

the proposed bilingual growingmethod is evaluated. The 1M tri-
grams are used as the input -grams for CSLMs (SMT100K for
CSLM4M and SMT1M for CSLM42M) for both methods. The
time of LMs growing is recorded. For the growing step, Arsoy’s
method will generate much more -grams and then prune it into
smaller ones19. The proposed method only produces the same
size -grams. The growing time used by these two methods is
presented in Table VIII.
From Table VIII, we can see that Arosy’s growing method

takes much more time (nearly 40 times) than ours. The Arsoy’s
method grows all the possible -grams ended with the words in

18Given a large extra monolingual corpora (in-domain and out-of-domian),
our connecting phrase method will be suitable for LM domain adaptation. Please
refer to Section V-F for details.

19The pruning actually takes a lot of time, but we do not take it into account
for fair comparison of growing time.
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TABLE VIII
GROWING TIME

TABLE IX
DECODING TIME

the short-list (usually thousands times of the original one) and
then prunes them into smaller ones. Although all the tail words
in the short-list can be calculated at the same time using neurons
in the output layer in CSLM, Arsoy’s method still takes much
more time than ours. For the proposed method, which -grams
to be grown are decided according to the appearing probabilities
in Eq. (2) before they are put into CSLM. The growing time for
the proposed method is approximately linear with the size of
input -grams. In practice, a grown LMwhich is around 8 times
larger than the original one has the best performance in SMT as
shown in Tables III, IV and V.
3) Decoding Time: Vaswani et al. [26] propose several

techniques (such as NCE training algorithm) to improve the
efficiency of using NPLM in SMT. Meanwhile our proposed
growing method stores the probabilities of the CSLM into
BNLM format to improve the efficiency of using CSLM in
SMT. In this subsection, we evaluate the decoding efficiency
of the BNLM, CSLM, NPLM20 and our bilingual grown LM
with all the same settings in SMT decoding. The 2,000 English
reference sentences of the NTCIR-9 test data are used for
evaluation. The log-probabilities of every sentence of the test
data are calculated using different LMs for SMT decoding
stimulation. The decoding time is shown in Table IX.
From Table IX, the following conclusions can be reached:
(a) The decoding time using Bil42M-3 and BNLM are quite

close. This indicates that the proposed converting method
can run as fast as the BNLM.

(b) The decoding time using CSLM is much slower than the
BNLM and Bil42M-3. This demonstrates the advantage
of decoding speed of the proposed method.

(c) The decoding time using the NPLM (without normaliza-
tion) is much faster than the CSLM and much slower than
the BNLM/Bil42M-3. This also shows the efficiency ad-
vantage of our proposed method.

D. Function of Connecting Phrase
The above results show that the proposed LM growing

method performs better in terms of both PPL and BLEU,
because more useful connecting phrases have been added to the
LM. This subsection will show how these connecting phrases
perform in SMT in detail.

20The numbers of hidden layers are set the same as the CSLM and other set-
tings follow the default setting of NPLM toolkit [26].

Fig. 4. Trend of ALH in SMT decoding (Longer is better).

Given each sentence from the test data, the probability of
every target word is calculated using the grown LMs, to sim-
ulate the performance of the LMs in SMT decoding. Then the
ratio of the different -grams used for each grown LMs on all
the test data is counted.
The results of the -grams hit in SMT decoding are shown

in Tables III, IV and V. The last column is the Average Length
of the -grams Hit (ALH) in SMT decoding for different LMs
using the following function,

(8)

where means the percentage of the -grams hit in SMT
decoding, and it is illustrated in Fig. 4.
There exist positive correlations among the ALH, PPL

and BLEUs. The ALHs of bilingual grown LMs (Bil42/4M)
are longer than those of Arsoy’s grown LMs in similar sizes
(Arsoy42/4M).
As we know, the LM refers to the probabilities of

( )-grams together with the adjusted weights using back-off,
if no any corresponding -gram is hit. The statistics above
indicate that more high-order -grams are hit using the pro-
posed grown LMs in SMT in comparison to the Arsoy’s grown
LMs. In another word, less back-off is applied to the proposed
connecting phrase-based grown LMs in SMT decoding.

E. Experiments on TED Corpus
As TED corpus is in special domain, where large extra mono-

lingual corpora are hard to be found. In this subsection, the SMT
experiments on TED corpora are conducted by using the pro-
posed LM growing method.
The baselines of the IWSLT 2014 evaluation campaign21 are

followed and only a few modifications are made such as the LM
toolkits and -gram order for constructing LMs. The French
(FR) to English (EN) and Chinese (CN) to English language
pairs are chosen. The data sets, dev2010 and test2010, are se-
lected as development data and evaluation data, respectively.
The statistics on TED parallel data used for setting up the base-
lines are described in Table X.

21It is available at https://wit3.fbk.eu
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TABLE X
STATISTICS ON TED PARALLEL DATA

TABLE XI
FR-EN TED EXPERIMENTS

TABLE XII
CN-EN TED EXPERIMENTS

The same LM growing method is applied to TED corpora as
on NTCIR corpora. That is, the bilingual data is used to grow
the LMs, and then the monolingual grown LMs are integrated
into SMT system. The results of TED experiments are divided
into three groups: baseline method using BNLM (BNLN)22, our
previous method using converted CSLM (Wang) [37], and our
proposed bilingual grown LMs (Bil1-1,2,3) on both language
pairs. The results are shown in Tables XI and XII.
Tables XI and XII demonstrate that the proposed growing

method can improve the performances of LMs in both PPL and
BLEU for different corpora and language pairs.

F. Experiments on Additional Monolingual Corpora

So far, the concerned LMs are limited to the target side of
bilingual corpora. In this subsection, the CSLMs using addi-
tional monolingual corpora are constructed and compared with
our bilingual grown LMs without using additional monolingual
corpora.
We conduct experiments on both in-domain and out-of-

domain corpora. For the in-domain NTCIR-9 patent experi-
ments, the 2005 US patent English data set distributed in the
NTCIR-8 patent translation task [64] is used as the additional
monolingual corpus, which consists of around 5M sentences23.
For the out-of-domain TED experiments, the NIST English

22Our CN-EN baseline is a little better than the baseline ( ) in
IWSLT 2014. For the FR-EN language pair, only the EN-FR baseline is shown
( ) in IWSLT 2014. Please refer to https://wit3.fbk.eu/score.
php?release=2014-01 for details.

23The original corpus consists of 25M sentences, and we choose a part of
these sentences randomly.

TABLE XIII
STATISTICS OF ADDITIONAL MONOLINGUAL CORPORA

TABLE XIV
NTCIR EXPERIMENTS WITH ADDITIONAL MONOLINGUAL CORPUS

TABLE XV
TED (CN-EN) EXPERIMENTS WITH ADDITIONAL MONOLINGUAL CORPUS

OpenMT06 data set24, which consists of around 400 K sen-
tences, is used following the same setting of [65]. TED data
set belongs to a specific domain, so it is not easy to obtain in-
domain additional monolingual corpus in fact. The additional
US patent data and NIST data are added to the original NTCIR-9
and TED data, respectively, to construct the large monolin-
gual corpora. These corpora are called Corpus-US-patent and
Corpus-NIST, respectively. The statistics on these corpora are
shown in Table XIII.
The LM experimental settings are conducted in two ways:

(a) both CSLMs and BNLMs are built from the large cor-
pora (Corpus-US-patent/NIST), and the large BNLMs are
converted using large CSLMs. These converted CSLMS are
called Converted CSLM-US-patent/NIST-(a); (b) only the
BNLMs are built from the large corpora, and the large BNLMs
are converted using small CSLMs built from NTCIR-9/TED
corpora. These converted CSLMS are called Converted
CSLM-US-patent/NIST-(b).
The SMT experimental settings follow Section V-A, except

for using different LMs. That is, the same CN-EN phrase table
and other models used in Section V-A are applied, and LMs
are built from different size corpora. The bilingual grown LMs
(Bil42M-2 (NTCIR) and Bil-1 (TED)), with the similar size as
the corresponding Converted CSLMs built from large additional
corpora, are selected for fair comparison.
The results are shown in Tables XIV and XV. For the NTCIR

patent experiments, the Converted CSLM-US-patent using ad-
ditional monolingual in-domain patent corpus perform better
than our bilingual grown LM. For the TED SMT experiments,
our bilingual grown LMs perform better than the Converted

24It is available at http://www.itl.nist.gov/iad/mig/tests/mt/2006/. The data
mainly consists of news and blog texts.
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TABLE XVI
HIERARCHICAL PHRASE-BASED SMT ON CN-EN NTCIR

TABLE XVII
SYNTAX-BASED SMT ON CN-EN NTCIR

TABLE XVIII
HIERARCHICAL PHRASE-BASED SMT ON FR-EN TED

TABLE XIX
SYNTAX-BASED SMT ON FR-EN TED

CSLM-NIST using the out-of-domain additional monolingual
corpus. These results suggest that our bilingual LM growing
method is useful for corpus adaptation.

G. Experiments on Hierarchical Phrase-based and
Syntax-based SMT

The experiments of applying our bilingual grown CSLMs
to hierarchical phrase-based and syntax-based SMT are also
conducted. Namely, the bilingual grown CSLMs are firstly
constructed using phrase table, and then applied to hierar-
chical phrase-based or syntax-based SMT. The same settings
for the NTCIR-9 hierarchical translation baseline system
[56] are followed for hierarchical phrase-based SMT, and
WAT-2014 String-to-Tree translation baseline system25 [66] for
syntax-based SMT.
Experiments are conducted on NTCIR-9 Chinese-to-English

and IWSLT-2014 TED French-to-English corpora, and results
are shown in Tables XIV, XVII, XVIII and XIX.
The results in Tables XVI, XVII, XVIII and XIX demonstrate

that the proposed LM growing method can improve the BLEU
for different translation models.

25To accelerate the speed of parsing and training, the maximum length limit
of sentences is set a little shorter than the baseline.

VI. CONCLUSIONS
A novel proposed LM growing method in this paper has two

attractive features. First, it constructs a large efficient LM using
neural network. The pre-computed CSLM probabilities inside/
outside the corpus are stored in BNLM format, and therefore the
grown LMs can perform as precisely as CSLM and run as fast
as the BNLM. Second, it takes the phrase-table into considera-
tion, and makes the grown LM obtain bilingual information for
SMT. The key points of our method are to construct and select
the connecting phrases, which are likely to appear in SMT de-
coding but outside phrase-table. The ranking functions are care-
fully designed for constructing the connecting phrases precisely
and efficiently.
Various metrics are applied to evaluate our new method,

and the experimental results show that the proposed method
significantly outperforms the existing LM converting/growing
methods in SMT performance. Both the growing time and
decoding time are also significantly reduced. From the ex-
perimental results, we can see that the proposed method is
promising and can be applied to LM adaptation for additional
monolingual out-of-domain corpus.
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