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a b s t r a c t

Constructing an informative and discriminative graph plays an important role in various pattern recogni-
tion tasks such as clustering and classification. Among the existing graph-based learningmodels, low-rank
representation (LRR) is a very competitive one, which has been extensively employed in spectral cluster-
ing and semi-supervised learning (SSL). In SSL, the graph is composed of both labeled and unlabeled sam-
ples, where the edge weights are calculated based on the LRR coefficients. However, most of existing LRR
related approaches fail to consider the geometrical structure of data, which has been shown beneficial
for discriminative tasks. In this paper, we propose an enhanced LRR via sparse manifold adaption, termed
manifold low-rank representation (MLRR), to learn low-rankdata representation.MLRR can explicitly take
the data local manifold structure into consideration, which can be identified by the geometric sparsity
idea; specifically, the local tangent space of each data point was sought by solving a sparse representation
objective. Therefore, the graph to depict the relationship of data points can be built once the manifold
information is obtained. We incorporate a regularizer into LRR to make the learned coefficients preserve
the geometric constraints revealed in the data space. As a result, MLRR combines both the global informa-
tion emphasized by low-rank property and the local information emphasized by the identified manifold
structure. Extensive experimental results on semi-supervised classification tasks demonstrate that MLRR
is an excellent method in comparison with several state-of-the-art graph construction approaches.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

For many machine learning and pattern recognition applica-
tions, we often have no sufficient labeled samples, which are usu-
ally hard or expensive to acquire. However, unlabeled samples
are easier to obtain via the Internet for some applications. For
simultaneously utilizing both limited labeled samples and many
unlabeled samples, SSL has received increasing attention in
learning-based applications. SSL algorithms usually make use of
the smoothness, cluster, and manifold assumptions, which can
be roughly categorized into four groups: generative models, low-
density separation models, heuristic models, and graph-based
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models. Nie et al. presented a semi-supervised orthogonal discrim-
inant analysis algorithm via label propagation by solving the or-
thogonal constrained trace ratio optimization problem (Nie, Xi-
ang, Jia, & Zhang, 2009). Yu et al. proposed a two stage method
in which an unsupervised basis learning phase was followed by a
supervised function learning, for SSL on high dimensional nonlin-
ear manifolds (Yu, Zhang, & Gong, 2009). A unified framework for
semi-supervised and unsupervised dimensionality reduction was
proposed in Nie, Xu, Tsang, and Zhang (2010). A SSL framework,
termed flexiblemanifold embedding, considers themanifold struc-
ture of both labeled and unlabeled samples. Karasuyama et al. de-
signed a parameterized similarity function to define the graph edge
weights (Karasuyama & Mamitsuka, 2013), which represent both
similarity and local representation weight simultaneously. A de-
tailed review of recent work on SSL can be found in Zhu (2008). In
this paper, we focus our work on graph-based SSL due to its excel-
lent performance in practice.

http://dx.doi.org/10.1016/j.neunet.2015.01.001
http://www.elsevier.com/locate/neunet
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http://crossmark.crossref.org/dialog/?doi=10.1016/j.neunet.2015.01.001&domain=pdf
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mailto:bllu@sjtu.edu.cn
http://dx.doi.org/10.1016/j.neunet.2015.01.001
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Graph-based SSL relies on using a graph G = (V , E,W ) to rep-
resent the data structure, where V is a set of vertices and each
vertex represents a data point, E ⊆ V × V is a set of edges con-
necting related vertices, and W is an adjacency matrix measuring
the pairwiseweights between vertices. Generally, the graph is con-
structed by using the relationship of domain knowledge or similar-
ity of samples. Once the graph is constructed, each sample spreads
its label information to neighbors over the graph until a global sta-
ble state is achieved on the whole data set. Thus, both labeled and
unlabeled samples remarkably affect the graph construction. How
to construct a good graph for representing data structure is critical
for graph-based SSL. Recently, some graphs have beenwell investi-
gated, such as k nearest neighbors (KNN) graph, local linearly em-
bedding (LLE)-based graph (Roweis & Saul, 2000), graph for label
propagation based on linear neighborhoods (LNP) (Wang & Zhang,
2008), sparse representation-based graphs (Lu, Zhou, Tan, Shang,
& Zhou, 2012; Yan & Wang, 2009), and sparse probability graph
(SPG) (He, Zheng, Hu, & Kong, 2011).

Sparse representation-based graph is motivated by that each
datum can be reconstructed by the sparse linear superposition
of other data points (Cheng, Yang, Yan, Fu, & Huang, 2010) and
the sparse reconstruction coefficients are derived by solving an
ℓ1-norm regularized least square optimization problem. Unlike
sparse representation which enforces the representation coeffi-
cients to be sparse, the recently proposed LRR can obtain a low-
rank coefficient by solving a rank minimization problem. LRR has
been widely used for various applications such as subspace seg-
mentation (Liu, Lin, & Yu, 2010; Luo, Nie, Ding, & Huang, 2011),
face recognition (Chen, Wei, & Wang, 2012) and multitask learn-
ing (Chen, Zhou, & Ye, 2011). The graph constructed by LRR can
be used for many learning tasks such as spectral clustering (Liu
et al., 2010) and SSL (Yang, Wang, Wang, Han, & Jiao, 2013). Sev-
eral improved models have been proposed to alleviate the draw-
backs of the original LRR algorithm on SSL. Non-negative low-rank
and sparse (NNLRS) graph (Zhuang, Gao, Lin, Ma, Zhang and Yu,
2012)was proposed by imposing the non-negative and sparse con-
straints on the low-rank representation coefficient. Zheng et al.
presented an algorithm to construct the graph based on low-rank
representation with local constraint (LRRLC) (Zheng, Zhang, Jia,
Zhao, Guo, Fu and Yu, 2013) in which the local structure is pre-
served by a locally constrained regularization and the global struc-
ture is preserved by LRR. A graph regularization termwas added on
the LRR objective and the graph regularized low-rank representa-
tion (GLRR) model was formulated for destriping of hyperspectral
images in Lu, Wang, and Yuan (2013).

Recently, researchers have considered the case when data is
drawn from sampling a probability distribution that has support on
or near a submanifold of an ambient space. Here, a d-dimensional
submanifold of an Euclidean spaceRM is a subsetMd

⊂ RM , which
locally looks like a flat d-dimensional Euclidean space (Lee, 2012).
It has been shown that learning performance can be significantly
enhanced if the underlying manifold structure can be properly
identified (Cai, He, & Han, 2011; Cai, He, Han, & Huang, 2011;
Zheng, Bu, Chen, Wang, Zhang, Qiu and Cai, 2011).

Motivated by the recent progress on LRR and manifold
learning, we propose a novel manifold low-rank representation
model to build graph for semi-supervised classification. The basic
motivation behind MLRR is to explicitly combine the global and
local geometrical structure of data together in graph construction.
In MLRR, the global structure is considered by the low-rank
property and the local structure is emphasized by the manifold
identification. Different from LRRLC and GLRR, which identify the
manifold based on the Euclidean distance between data pairs,
MLRR adopts the geometric sparsity idea (Elhamifar & Vidal, 2011)
to approximately seek the tangent space of each data point. Here
the multiple manifolds underlying the data set are assumed to
be composed of many local tangent spaces (Zhang & Zha, 2004).
We incorporate a regularizer into the LRR objective, aiming at
enforcing the low-rank coefficients to preserve the identified
manifold structure of data. Similar to NNLRS (Zhuang et al., 2012),
we also constrain the representation coefficients to be sparse
and non-negative. By properly identifying the manifold structure,
MLRR can obtain excellent experimental results in comparison
with several LRR variants and other state-of-the-art approaches.

The remainder of this paper is organized as follows. We
review the original LRR, several related LRR variants and optimiza-
tion method in Section 2. In Section 3, we present the formula-
tion of proposed manifold low-rank representation model and its
implementation by linearized alternating direction method with
adaptive penalty (LADMAP) method (Lin, Liu, & Su, 2011). Experi-
ments on three widely used face data sets and one voice data set
to evaluate the performance of MLRR are illustrated in Section 4.
Section 5 concludes the paper.

2. Related work

In this section, we review the following three parts: LRR model
aswell as its several variants, the LADMAPmethod (Lin et al., 2011)
which is often employed to implement the LRR model, and the
semi-supervised classification framework used in this paper.

2.1. Low-rank representation and its several variants

Let X = [x1, x2, . . . , xn] ∈ Rd×n be a set of n samples in the
d-dimensional space. Low-rank representations aim at represent-
ing each sample by a linear combination of the bases in A = [a1,
a2, . . . , am] ∈ Rd×m as X = AZ, where Z = [z1, z2, . . . , zn] is the
matrix with each zi being the representation coefficient of sample
xi. Each element in zi can be seen as the contribution to the re-
construction of xi with A as the basis. LRR seeks the lowest-rank
solution by solving the following optimization problem (Liu et al.,
2010)

min
Z

rank(Z), s.t. X = AZ. (1)

Due to theNP-hardnature of the rank function, the above optimiza-
tion problem can be relaxed to the following convex optimization
problem (Candès, Li, Ma and Wright, 2011)

min
Z

∥Z∥∗, s.t. X = AZ, (2)

where ∥·∥∗ denotes the trace normof amatrix (Cai, Candès, & Shen,
2010), i.e., the sum of its singular values. Considering the fact that
samples are usually noisy or even grossly corrupted, a more rea-
sonable objective for LRR can be expressed as

min
Z,E

∥Z∥∗ + λ∥E∥2,1, s.t. X = AZ + E, (3)

where the ℓ2,1-norm is defined as ∥E∥2,1 =
n

j=1

d
i=1 e

2
ij and

parameter λ is used to balance the effect of low-rank term and er-
ror term. Some existing studies also used the ℓ1-norm to measure
the error term (Liu & Yan, 2012; Okutomi, Yan, Sugimoto, Liu and
Zheng, 2012; Peng, Wang, Wang, & Lu, 2013) while the ℓ2,1-norm
is used in this paper. The optimal solution Z∗ to problem (3) can
be obtained via the inexact augmented Lagrange multiplier (ALM)
method (Lin, Chen, & Ma, 2010).

As described in Liu et al. (2010), LRR jointly obtains the
representation of all the data under a global low-rank constraint,
and thus is good at capturing the global structure. Moreover, since
each sample can be used to represent itself, there always exist
feasible solutions even when the data sampling is insufficient,
which is different from sparse representation. These properties
make LRR-graph a good candidate for various learning tasks. Below
are several recently proposed LRR variants for graph based SSL.
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• GLRR-graph (Lu and Wang et al., 2013). GLRR was formulated
by incorporating a graph regularizer into LRR objective,
minimizing the following objective

min
Z,E

∥Z∥∗ + λ∥E∥2,1 + βTr(ZLZT ),

s.t. X = AZ + E,
(4)

where L is the graph Laplacian. Thismodel emphasizes the local
consistency involved in data, which intuitively encourages that,
if twodata points xi and xj are close in the intrinsicmanifold, the
corresponding representations zi and zj are also similar.

• LRRLC-graph (Zheng, Zhang, Yang, & Jiao, 2013). LRRLC imposes
the local constraint on the representation coefficients as

min
Z,E

∥Z∥∗ + λ1∥E∥2,1 + λ2

n
i,j=1

∥xi − xj∥2
|zij|,

s.t. X = AZ + E,
(5)

where the dictionary A is the data matrix X itself. The regu-
larizer is induced based on the locality assumption that sim-
ilar samples should have similar coefficients. Thus, LRRLC is
declared to capture both the global structure by LRR and the
local structure by the locally constrained regularizer.

• NNLRS-graph (Zhuang et al., 2012). Based on the assumption
that an informative graph should reveal both the true intrinsic
complexity and certain global structure of data, NNLRS intro-
duces the non-negativity and sparsity constraints on the repre-
sentation coefficients as

min
Z,E

∥Z∥∗ + λ∥E∥2,1 + β∥Z∥1,

s.t. X = AZ + E, Z ≥ 0.
(6)

The obtained NNLRS-graph can capture both the global mixture
of subspaces structure by the low rankness and the locally lin-
ear structure by the sparseness of data.

Though these LRR variants show excellent performance in re-
spective applications (GLRR for remote sensing image denoising,
LRRLC and NNLRS for semi-supervised classification), LRR still
leaves room for improvement. Here we only focus on the im-
provement frommanifold preserving perspective. GLRRuses graph
Laplacian to enforce the learned low-rank representation coeffi-
cients to vary smoothly along the data manifold. The geometrical
structure in GLRR is reflected by the affinity matrix which is built
on the basis of ‘HeatKernel’ function in Euclidean space. Thus it
can be predefined given the data set. LRRLC is also using the graph
Laplacian-based formula. Different from GLRR, LRRLC needs not to
calculate the affinity matrix beforehand, which uses the low-rank
representation coefficient directly. Specifically, zij is used to mea-
sure the closeness of samples xi and xj. However, as described in Liu
et al. (2010), Liu et al. (2013) and Zhuang et al. (2012), LRR de-
picts the global structure of data. Therefore, it is unclear whether
zij can accurately reflect the local structure. NNLRS neglects to
explicitly consider the manifold information though the sparse-
ness constraint could capture locally linear structure to some
extent.

2.2. Linearized alternating direction method with adaptive penalty

Considering the following linearly constrained convex opti-
mization problem,

min
x,y

f (x)+ g(y), s.t.A(x)+ B(y) = c, (7)

where x, y, c are vectors or matrices, f , g are convex functions, and
A, B are linear mappings.
The alternating direction method (ADM) for problem (7) works
on the following augmented Lagrangian function

L(x, y, λ) = f (x)+ g(y)+ ⟨λ,A(x)+ B(y)− c⟩

+
β

2
∥A(x)+ B(y)− c∥2. (8)

ADM decomposes the minimization of L into two subproblems
w.r.t. variables x and y, respectively. Specifically, the updating rules
are as follows,

xk+1 = argmin
x

L(x, yk, λk)

= argmin
x

f (x)+
β

2
∥A(x)+ B(yk)− c + λk/β∥

2, (9)

yk+1 = argmin
y

L(xk+1, y, λk)

= argmin
y

g(y)+
β

2
∥A(xk+1)+ B(y)− c + λk/β∥

2, (10)

λk+1 = λk + β[A(xk+1)+ B(yk+1)− c]. (11)

If no closed form solutions to (9) and (10), auxiliary variables
are often introduced to iteratively optimize them. To avoid
introducing auxiliary variables and solve these two subproblems
efficiently, LADMAP was proposed on the basis of the following
two techniques: (1) linearization of (9) and (10), and (2) adaptively
updating the penalty parameter. In LADMAP, the updating rules are
reformulated as

xk+1 = argmin
x

f (x)+ ⟨A∗(λk)+ βA∗(A(xk)

+ B(yk)− c), x − xk⟩ +
βη1

2
∥x − xk∥2

= argmin
x

f (x)+
βη1

2
∥x − xk

+ A∗(λk + β(A(xk)+ B(yk)− c))/(βη1)∥2, (12)

yk+1 = argmin
y

g(y)+
βη2

2
∥y − yk + B∗(λk + β(A(xk+1)

+ B(yk)− c))/(βη2)∥2,

whereA∗ is the adjoint ofA and η1, η2 are related parameters. The
parameter β , which is fixed in ADM, is adaptively updated as

βk+1 = min(βmax, ρβk), (13)

ρ =


ρ0, if βk · max (

√
η1∥xk+1 − xk∥,√

η2∥yk+1 − yk∥)/∥c∥ < ε2,
1, otherwise,

(14)

where βmax is an upper bound of {βk}, and ρ0 ≥ 1 is a constant.
Detailed explanation of η1, η2, and the settings of ρ, β can be found
in Lin et al. (2011) and Yang and Yuan (2013).

2.3. Semi-supervised classification framework

Denote Y = [y1, y2, . . . , yn]T ∈ Rn×c as the initial label matrix.
If xi is the unlabeled data, then yi = 0. If xi is labeled data in
class k, then the kth entry of yi is 1 and the other entries of yi are
0. Generally, graph-based SSL models aim to solve the following
problem (Zhou, Bousquet, Lal, Weston and Schölkopf, 2004),

min
Q

Tr(QT L̃Q)+ Tr((Q − Y)TΨ(Q − Y)), (15)

where L is the Laplacianmatrix, L̃ = D−1/2LD−1/2 is the normalized
graph Laplacian, D is the corresponding degree matrix w.r.t. the
learned affinity matrix S, Ψ is a diagonal matrix with the ith
diagonal element ψii to control the impact of the initial label yi
w.r.t. xi, and Q ∈ Rn×c is the label matrix to be solved.
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Fig. 1. The illustration of local tangent space Ti and local affine subspace Fi associated
with xi . We aim to find a proper Fi to approximate the Ti . In this example, there are
three local affine subspaces (two of them are shown in green line and one shown
in red line) and the best fitted one (shown in red line) is spanned by the two local
directions xi2−xi

∥xi2−xi∥
and xi3−xi

∥xi3−xi∥
. Such Fi holds the minimal distance to xi and the

minimal angle w.r.t. the local tangent space Ti .
Source: Adapted from Zhang et al. (2013).

Taking the derivative of problem (15) w.r.t. Q and setting the
derivative to zero, we have

Q = (L̃ + Ψ)−1(ΨY ). (16)

In the following section, we will describe how to learn an informa-
tive graph affinity matrix S by MLRR.

3. Low-rank representation via sparse manifold adaption

In this section, we introduce the newly proposed MLRR model.
Firstly, we introduce the principle of identifying the manifold
based on spare manifold adaption; secondly, we formulate the
objective function of MLRR by incorporating a regularizer into LRR
objective function, which aims at enforcing the LRR coefficients
to preserve the identified manifold structure of data; finally, we
develop the optimization method to MLRR via LADMAP (Lin et al.,
2011).

3.1. Sparse manifold adaption

Notations. The affinity matrix used to represent the neighbor-
hood graph is W ∈ Rn×n, where wij represents the edge weight
between vertices xi and xj. M is the manifold underlying the data,
{Ti}

n
i=1 are local tangent spaces, {Ui}

n
i=1 are local direction basis ma-

trices, and {Fi}ni=1 are local affine subspaces.
For each sample xi, i = 1, 2, . . . , n, we want to identify its

neighbors on the same manifold rather than the entire Euclidean
space. Assuming that samples are sufficient and the manifold is
smooth, each data point can be well approximated by a linear
combination of a few nearby samples on the samemanifold. Based
on the idea that the underlying manifolds are equivalent to the
local tangent spaces to some extent (Zhang & Zha, 2004), manifold
M can be mathematically written as M ,

n
i=1 Ti, where each

local tangent space Ti is a small patch of a submanifold from M.
Therefore, we need to identify each tangent space, denoted by Ti,
which lies around data point xi. The relationship among the local
manifold, local tangent space Ti, and local affine space Fi is illustrated
in Fig. 1.

In this paper, we employ the geometric sparsity idea (Elhamifar
& Vidal, 2009, 2011) to seek the local tangent spaces. Similarly,
sparse representation was used in Shen and Si (2010) to identify
multiple manifolds for non-negative matrix factorization-based
spectral clustering (MM-NMF), where each data point xi is linearly
represented by other data points. Different from MM-NMF, we
reconstruct xi using sparse bases selected from the local direction
basis matrix Ui. The optimal local directions which can determine
the optimally fitted local affine subspace Fi will be selected by
minimizing the reconstruction distortion. As a result, we can get
a local affine subspace Fi which can well approximate the local
tangent space Ti and the angle between these two spaces is
minimized. Consequently, the submanifold around data point xi is
identified.

We refer to the above manifold identification method as sparse
manifold adaption since this process is completed by solving a
sparse representation objective. The detailed steps will be given
below.

Specifically, we first find Ni neighbors around xi based on
Euclidean distance (denote the neighbors’ indices [i1, i2, . . . , iNi ]

of xi as Ni) and then select some qualified ones by sparse manifold
adaption. To remove the distance variations and preserve only
the direction information, we normalize the difference vectors
between xi and its Ni neighbors. The formed local direction basis
matrix Ui is

Ui =


xi1 − xi

∥xi1 − xi∥2
,

xi2 − xi
∥xi2 − xi∥2

, · · · ,
xiNi − xi

∥xiNi − xi∥2


. (17)

Then the local affine subspace Fi can be defined as {xi+Uici|1T ci =

1, ci ∈ RNi}. Since sparse manifold adaption aims at finding a
proper Fi which can best fit xi, weminimize the distortion between
Fi and xi, which is equivalent to

min
1T ci=1

1
2
∥Uici∥2

2. (18)

Among all solutions which satisfy ∥Uici∥2
2 ≤ θ (θ is a small

positive value), we impose the ℓ1-norm sparsity constraint on the
coefficient vector ci to automatically select local directions fromUi.
Therefore, we formulate the sparse representation objective as

min
ci∈RNi

1
2
∥Uici∥2

2 + γ ∥ci∥1, s.t. 1T ci = 1. (19)

As reviewed in Yang, Zhou, Balasubramanian, Sastry and Ma
(2013), there are several representative approaches to ℓ1-norm
regularized minimization problem: Gradient Projection, Homo-
topy, Iterative Shrinkage Thresholding, Proximal Gradient and
Augmented Lagrange Multiplier. Problem (19) introduces an ex-
tra affine constraint 1T ci = 1 on the sparse representation prob-
lem (Tibshirani, 1996), which can be efficiently optimized by the
ADM method (Elhamifar & Vidal, 2011). The concrete updating
rules are shown in Appendix A.

By using sparsemanifold adaption,we can obtain the coefficient
vectors {ci}ni=1 and thus a neighborhood graph can be constructed
similar to the LLE-graph (Roweis & Saul, 2000). The graph edge
weights {wij}

n
i,j=1 based on ci = [c1i, c2i, . . . , cNi i]

T are defined as

wij,i =
cji

∥xij − xi∥2


j′∈Ni

cj′ i
∥xij′ − xi∥2

. (20)

Since we only consider the direction information in (17) but
neglect the distance information, Eq. (20) can compensate the
distance information which makes the neighbors closer to xi
contribute larger weights.

Now we have obtained the relationship between each point xi
and its neighbors; thus we can represent xi by these neighbors.
Neighborswithnon-zero coefficients span the local affine subspace
Fi, which is a proper approximation to the local tangent space Ti
around xi, which can be seen as the submanifoldwhere xi and these
neighbors are drawn from.

Once (19) is solved, we can calculate the graph edge weightwji
using (20). Accordingly, we have the following theorem.



Y. Peng et al. / Neural Networks 65 (2015) 1–17 5
Theorem 1. For each point xi, thewij,i calculated via (20) satisfies

∥xi −


j∈Ni
wij,ixij∥

2
2 ≤ ε, (21)

where ε = θ


j∈Ni

cji
∥xij−xi∥2

, θ is the resulting error of (19) (e.g.,

∥Uici∥2
≤ θ ), and Ni is the neighbors’ index set of xi.

Proof. According to the definition ofwij,i in (20), we have Eq. (22)
given in Box I. �

3.2. Manifold regularization via sparse manifold adaption

By using the sparse manifold adaption, we obtain the relation-
ship of representing one data point by its neighbors in data space
X. Naturally, we hope that this relationship can be preserved in
the low-rank coefficient space Z. Now wemake an analysis on the
connection of data representation between X and Z.

Theorem 2. There exists a number ϑ ≥ 0, such that the following
inequality holds

∥xi −


j∈Ni
wjixj∥2

2 = ∥(Azi + ei)−


j∈Ni

wji(Azj + ej)∥2
2

.
= ∥Azi −


j∈Ni

wjiAzj∥2
2 ≤ ϑ∥zi −


j∈Ni

wjizj∥2
2, (23)

where
Ni

j=1wji = 1, wji ≥ 0, ei is the ith column of E, and Ni is the
neighbors’ index set of xi.

Proof. We have

∥Azi −


j∈Ni
wjiAzj∥2

2 = ∥


j∈Ni

wjiA(zj − zi)∥2
2

=


j,l∈Ni

wjiwli(zj − zi)TATA(zl − zi)

,


j,l∈Ni
wjiwli(zj − zi)TM(zl − zi),(24)

whereM = ATA.
Since M is a real-valued symmetric matrix, its eigenvalue de-

composition can be written as M = VΛMVT . Suppose that λ1M is
the maximal eigenvalue in ΛM and thus we have

∥Azi −


j∈Ni
wjiAzj∥2

2 =


j,l∈Ni

wjiwli(zj − zi)TM(zl − zi)

≤ λ1M


j,l∈Ni

wjiwli(zj − zi)T (zl − zi)

= λ1M∥


j∈Ni

wji(zi − zj)∥2
2

= λ1M∥zi −


j∈Ni
wijzj∥2

2. (25)

Let ϑ = λ1M, so ∥zi −


j∈Ni
wjizj∥2

2 in the low-rank coeffi-
cient space Z is a tight upper bound of ∥xi −


j∈Ni

wjixj∥2
2 in data

space X. �

According to Theorem 2, it is reasonable to use the geometrical
structure in data space to constrain the low-rank coefficients.
Therefore, we can directly use W, which can be learned in data
space X by sparse manifold adaption, as the neighborhood graph
affinity matrix in Z. Specifically, when recovering the data matrix
Xwithin the LRR framework, we expect the learned LRR coefficient
matrix Z to preserve the geometry constraint, which was depicted
by the affinity matrixW. To this end, we minimize

G(Z) =

n
i=1

∥zi −


j

wjizj∥2
2 = ∥Z − ZW∥

2
2 = ∥(Z − ZW)T∥2

2

= Tr(Z(I − W)(I − W)TZT ) = Tr(ZGZT ), (26)

where I is the identity matrix and G = (I − W)(I − W)T .
3.3. Manifold low-rank representation model

Existing studies show that an informative graph often satisfies
three properties, high discriminative power, sparsity, and adaptive
neighborhood (Wright, Ma, Mairal, Sapiro, Huang and Yan, 2010;
Zhuang et al., 2012). For inheriting the advantages caused by
the sparsity and non-negativity properties, we impose these
two constraints on low-rank coefficient matrix as Zhuang et al.
(2012). As a result, taking the manifold information, sparsity and
non-negativity properties into consideration, we formulate the
objective function of MLRR as

min
Z,E

∥Z∥∗ + λ∥E∥2,1 + α∥Z∥1 + βG(Z),

s.t. X = AZ + E, Z ≥ 0,
(27)

where three parameters, λ > 0, α > 0 and β > 0, are respectively
used to control the impacts of error term, sparsity and manifold
regularizer.

Similar to Liu et al. (2010), we introduce an auxiliary variable
J w.r.t. Z to make the MLRR objective separable and thus problem
(27) can be rewritten as

min
Z,J,E

∥Z∥∗ + λ∥E∥2,1 + α∥J∥1 + βTr(ZGZT ),

s.t. X = AZ + E, Z = J, J ≥ 0.
(28)

The augmented Lagrangian function L to problem (28) is
L(Z, J, E, Y1, Y2, µ) = ∥Z∥∗ + λ∥E∥2,1 + α∥J∥1 + βTr(ZGZT )

+ ⟨Y1,X − AZ − E⟩

+ ⟨Y2, Z − J⟩ +
µ

2
(∥X − AZ − E∥2

F + ∥Z − J∥2
F )

= ∥Z∥∗ + λ∥E∥2,1 + α∥J∥1 + f (Z, J, E, Y1, Y2, µ)

−
1
2µ
(∥Y1∥

2
F + ∥Y2∥

2
F ), (29)

where Y1 and Y2 are Lagrangian multipliers, µ > 0 is a penalty
parameter, ∥ · ∥F is the Frobenius norm and
f (Z, J, E, Y1, Y2, µ) = βTr(ZGZT )

+
µ

2

X − AZ − E +
Y1

µ

2
F
+

Z − J +
Y2

µ

2
F


. (30)

The LADMAP (Lin et al., 2011) is used to obtain the updating rules of
variables Z, J and E, alternately. Specifically, we minimize problem
(29) w.r.t. each variable while fixing the others. By some linear
algebraic transformations, the updating rules are as follows.
• Update Zwith other variables fixed.

Zk+1 = argmin
Z

∥Z∥∗ + ⟨∇Zf (Zk, Jk, Ek, Y1,k, Y2,k, µk), Z − Zk⟩

+
ηµk

2
∥Z − Zk∥

2
F

= argmin
Z

∥Z∥∗ +


2βZkG − µkAT


X − AZk − Ek +

Y1,k

µk


+ µk


Zk − Jk +

Y2,k

µk


, Z − Zk


+
ηµk

2
∥Z − Zk∥

2
F

= argmin
Z

∥Z∥∗ +
ηµk

2
∥Z − Zk +


2βZkG
µk

− AT

X − AZk − Ek +

Y1,k

µk


+


Zk − Jk +

Y2,k

µk


/η∥2

F .

Therefore, the updating rule for Z is as

Zk+1 , Θ 1
ηµk


Zk +


−

2βZkG
µk

+ AT

X − AZk − Ek +

Y1,k

µk


−


Zk − Jk +

Y2,k

µk


/η


. (31)
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2)
∥xi −

j∈Ni

wij,ixij∥
2
2 =



j∈Ni

(xij − xi)
cji

j′∈Ni

cj′ i
∥xi′j

−xi∥2
· ∥xij − xi∥2


2

2

=




xi1 − xi

∥xi1 − xi∥2
,

xi2 − xi
∥xi2 − xi∥

, . . . ,
xiNi − xi

∥xiNi − xi∥2


·



c1i/


j∈Ni

cji
∥xij − xi∥2



c2i/


j∈Ni

cji
∥xij − xi∥2


· · ·

cNii/


j∈Ni

cji
∥xij − xi∥2







2

2

=




xi1 − xi
∥xi1 − xi∥2

,
xi2 − xi

∥xi2 − xi∥
, . . . ,

xiNi − xi
∥xiNi − xi∥2


·

1
j∈Ni

cji
∥xij−xi∥2

·

 c1i
c2i
· · ·

cNi i



2

2

= ∥Uici∥2
2


j∈Ni

cji
∥xij − xi∥2

≤ θ


j∈Ni

cji
∥xij − xi∥2

= ε. (2

Box I.
• Update J with other variables fixed.

Jk+1 = argmin
J
α∥J∥1 + ⟨Y2,k, Zk+1 − J⟩ +

µk

2
∥Zk+1 − J∥2

F

= argmin
J

α

µk
∥J∥1 +

1
2
∥J −


Zk+1 +

Y2,k

µk


∥
2
F .

Therefore, the updating rule for J is as

Jk+1 , S α
µk


Zk+1 +

Y2,k

µk


.

To enforce the non-negativity on J, we simply set the negative
elements in Jk+1 to zero as

Jk+1 = max

S α
µk


Zk+1 +

Y2,k

µk


, 0

. (32)

• Update Ewith other variables fixed.

Ek+1 = argmin
E
λ∥E∥2,1 + ⟨Y1,k,X − AZk+1 − E⟩

+
µk

2
∥X − AZk+1 − E∥2

F

= argmin
E

λ

µk
∥E∥2,1 +

1
2

E −


X − AZk+1 +

Y1,k

µk

2
F
.

Therefore, the updating rule for E is as

Ek+1 , Ω λ
µk


X − AZk+1 +

Y1,k

µk


. (33)

The notations Θ , S and Ω are respectively the singular value
thresholding (Cai et al., 2010), soft thresholding (Lin et al., 2010)
and ℓ2,1-norm minimization (Liu et al., 2010) operators, which are
defined in Appendix B. The complete optimization to MLRR is
summarized in Algorithm 1.

3.4. MLRR-based graph construction

Given a data matrix X, we can use itself as the dictionary. A
in (27) can be simply replaced by X and the learned coefficient Z
measures the self-expressive capacity of data. Once problem (27)
is solved, we can obtain an optimal Z∗ in which column z∗

i of Z∗
Algorithm 1 Efficient LADMAP Algorithm for MLRR
Input: data matrix X, parameters λ, α and β , the manifold

identification matrixW;
Output: an optimal solution {Zk, Jk, Ek}.
1: Initialization: Z0 = J0 = E0 = Y1,0 = Y2,0 = 0, µ0 = 0.1,
µmax = 1010, ρ0 = 1.1, ε1 = 10−6, ε2 = 10−4, η = 1.02∥X∥

2
2,

k = 0.
2: while µk · max(

√
η∥Zk − Zk−1∥F , ∥Jk − Jk−1∥F , ∥Ek − Ek−1∥F )

/∥X∥F ≥ ε2
or ∥X − AZk − Ek∥F/∥X∥F ≥ ε1 do

3: Update variable Z as (31);
4: Update variable J as (32);
5: Update variable E as (33);
6: Update Lagrangian multipliers as

Y1,k+1 = Y1,k + µk(X − AZk+1 − Ek+1),
Y2,k+1 = Y2,k + µk(Zk+1 − Jk+1);

(34)

7: Update µ as
µk+1 = min(µmax, ρµk), (35)
where

ρ =


ρ0, if µk max(

√
η∥Zk+1 − Zk∥F , ∥Jk+1 − Jk∥F ,

∥Ek+1 − Ek∥F )/∥X∥F < ε2,
1, otherwise;

8: Update k as k = k + 1;
9: end while

depicts how other instances contribute to the representation of xi.
The coefficientmatrixZhas three properties: (1) grouping effect (Li
& Fu, 2013; Lu, Feng, Lin, & Yan, 2013) obtained by the low-
rankness constraint, which encourages the coefficients of samples
from the same manifold to be highly correlated; (2) the sparsity
constraint ensures that each sample can only associate with a few
samples; (3) geometric structure preserving property obtained by
the manifold regularization. Alternatively, MLRR can be seen as a
combination of both global information emphasized by the low-
rank constraint and local information emphasized by the manifold
regularization.

Thus, we can define the affinity matrix of an undirected graph
based on Z∗. Similarly, we use the coefficient shrinkage and
normalization operators as Zhuang et al. (2012). The whole
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procedure for constructing MLRR-graph is summarized in Algo-
rithm 2.

Algorithm 2MLRR based Graph Construction
Input: data matrix X = [x1, x2, . . . , xn] ∈ Rd×n

Output: The affinity matrix S of MLRR-graph.
1: Normalize each sample to ℓ2 unit norm via x̂i = xi/∥xi∥2 to

obtain X̂ = [x̂1, x̂2, · · · , x̂n];
2: Identify the inner structure of data by solving

min
ci∈RNi

1
2
∥Uici∥2

2 + γ ∥ci∥1

s.t. 1T ci = 1;
(36)

3: Formulate the manifold regularizer (26) based on the W
computed by (20);

4: Optimize the following problem using Algorithm 1:
min
Z,E

∥Z∥∗ + λ∥E∥2,1 + α∥Z∥1 + βG(Z)

s.t.X = XZ + E, Z ≥ 0
and obtain the optimal solution (Z∗, E∗).

5: Normalize all column vectors of Z∗ by z∗

i = z∗

i /∥z
∗

i ∥2 and
shrink Z∗ by

ẑ∗

ij =


z∗

ij , if z∗

ij ≥ δ,

0, otherwise; (37)

and obtain a sparse Ẑ∗.
6: Construct the graph affinity matrix S by

S = (|Ẑ∗
| + |Ẑ∗

|
T )/2. (38)

3.5. Computational complexity analysis

In this section, we give a brief analysis of the computational
complexity of theMLRRmodel based on the O notation. Obviously,
computing ci involved in problem (19) and Z involved in problem
(27) cause the main complexity for MLRR.

In optimizing problem (19) (see Appendix A), since the (UTU +

λI)−1 is not related to the variable r and can be computed before-
hand, updating r is the main computation of ADMM for each data
point and its complexity is O(K 2), where K here is equivalent to
Ni in (19). As a result, the complexity for solving problem (19) is
O(t1nK 2), where t1 is the number of iterations for ADMMmethod.

The main computation of problem (27) is updating Z, which
needs to compute the SVD decomposition of an n × n matrix.
Therefore it will be time consuming if n is large, i.e., the number of
data samples is large. Similar to Liu et al. (2013), the computational
cost can be reduced based on the following theorem.

Theorem 3. For any optimal solution (Z∗, E∗) to problem (27), we
have Z∗

∈ span(AT ) (Liu et al., 2013).

Theorem 3 shows that the optimal solution Z∗ to problem (27)
always lies in the subspace spanned by rows of A. It means that
Z∗ can be factorized into Z∗

= P∗Z̃∗, where P∗ can be computed
beforehand via orthogonalizing the columns of AT . Therefore, we
can solve the following problem instead,

min
Z̃,E

∥Z̃∥∗ + λ∥E∥2,1 + α∥Z̃∥1 + βG(Z̃)

s.t. X = BZ̃ + E, Z̃ ≥ 0,
(39)

where B = AP∗. Once a solution (Z̃∗, E∗) to (39) is obtained, the
optimal solution to (27) is (P∗Z̃∗, E∗).

Assuming that the rank of A is r (i.e., Z̃ has at most r rows), we
get the complexity for updating Z: the SVD decomposition for a
Table 1
Statistics of the four data sets.

Dataset #size(n) #dimensionality(d) #classes (c)

ORL 400 1024 40
Extended Yale B 1000 1024 20
CMU PIE 1000 1024 20
ISOLET 1560 617 26

r × n matrix is O(r2n), and the related multiplication is O(r3 +

r2n+ rdn). Therefore, the complexity is O(d2n+ t2(r2n+ r3+ rdn))
if we consider the orthogonalization (O(d2n)) and the iterations
of running the LADMP algorithm (t2). As a whole, we can get the
complexity of optimizing MLRR is O(t1nK 2

+ d2n + t2(r2n + r3 +

rdn)).

4. Experimental studies

In this section, we evaluate the effectiveness of MLRR-graph on
public data sets. The comparison between MLRR and other several
graph construction methods includes two parts, (1) comparing
MLRR-graph with graphs constructed by LRR variants mentioned
in Section 2.1, (2) comparing MLRR-graph with some other state-
of-the-art graphs. Source codes to MLRR will be available from
http://bcmi.sjtu.edu.cn/~pengyong/.

4.1. Data sets

We select three face data sets and one voice data set, ORL,
Extended Yale B, CMU PIE and ISOLET, in our experiments. The
statistics of these data sets are summarized below (see also
Table 1):

• ORL1: The ORL data set contains ten different images of each of
40 distinct subjects. The images were taken at different times,
varying the lighting, facial expressions and facial details. Each
image is manually cropped and normalized to size of 32 × 32
pixels.

• Extended Yale B2: This face data set has 38 individuals, each
subject having around 64 near frontal images under different
illuminations. We simply use the first 50 cropped images of the
first 20 individuals, and then resize them to 32 × 32 pixels.

• CMU PIE3: This face data set contains 41,368 images of 68
subjects with different poses, illumination and expressions.
We only use their images in five near frontal poses (C05,
C07, C09, C27 and C29) and under different illuminations and
expressions. The first 50 images of the first 20 subjects are
selected. Each image is manually cropped and resized to size
32 × 32 pixels.

• ISOLET4: The ISOLET dataset is used to predict which letter-
name was spoken. The features include spectral coefficients,
contour features, sonorant features, per-sonorant features, and
post-sonorant features. The feature dimension is 617 and the
number of samples is 1560.

Several sample images of the three face data sets are shown in
Fig. 2.

For efficiently evaluating the performance of all algorithms, 10%
to 60% samples in each class are randomly selected, which are
treated as labeled samples. On each percentage of labeled samples,
we repeat the experiment 50 trials for each algorithm. For fair

1 http://www.uk.research.att.com/facedatabase.html.
2 http://vision.ucsd.edu/~leekc/ExtYaleDatabase/ExtYaleB.html.
3 http://www.ri.cmu.edu/projects/project_418.html.
4 http://archive.ics.uci.edu/ml/datasets/ISOLET.

http://bcmi.sjtu.edu.cn/~pengyong/
http://www.uk.research.att.com/facedatabase.html
http://vision.ucsd.edu/~leekc/ExtYaleDatabase/ExtYaleB.html
http://www.ri.cmu.edu/projects/project_418.html
http://archive.ics.uci.edu/ml/datasets/ISOLET


8 Y. Peng et al. / Neural Networks 65 (2015) 1–17
(a) Sample images of two subjects in ORL.

(b) Sample images of two subjects in Extended Yale B.

(c) Sample images of two subjects in CMU PIE.

Fig. 2. Sample images from the three face data sets.
comparison, we record the indices of randomly selected samples
and use these indices for all algorithms. The average performance
of these 50 trials on each percentage of labeled samples will be
reported.

Weuse the semi-supervised classification framework described
in Section 2.3 and set ψii = 1 if xi is labeled for all graph-based
algorithms in our experiments. To avoid the singularity when
calculating the inverse of (L̃ + Ψ), we always add a small value
10−6 on its diagonal elements.

4.2. Comparing with sparse manifold adaption

The manifold information used in MLRR is identified by sparse
manifold adaption, which also can generate a graph measured
by affinity matrix W. We call it SMA-graph for short. Simi-
larly, this graph can be used for semi-supervised classification.
Therefore, we compare the classification performance of MLRR-
graph with SMA-graph on the four data sets in this section.
The parameter γ in sparse manifold adaption is searched from
{10−3, 10−2, . . . , 102

} and the number of nearest neighbors is se-
lected from {5, 10, 20, 30, 50}. The best average results of SMA-
graph are used for comparison.

Fig. 3 shows the performance comparison between these two
graph constructionmethods, which offer us two insights: (1) SMA-
graph is very competitive in semi-supervised classification since it
can effectively explore the data local structure information; and
(2) Combining the sparse manifold adaption with LRR can obtain
much accuracy improvement. The global structure captured by
low rankness can be combined with the local structure induced
by sparse manifold adaption, which is more beneficial than
emphasizing one of them only. In the following section, we will
show MLRR is more effective than several LRR variants in graph-
based semi-supervised classification.

Figs. 4 and 5 show the performance of sparsemanifold adaption
versus parameters Ni and γ , respectively. Obviously, we can see
that sparse manifold adaption enjoys the satisfactory performance
when parameter γ takes value in {1, 10}. The performance of
sparse manifold adaption is insensitive to the number of nearest
neighbors Ni provided that Ni is a relatively large value between
20 and 50.
4.3. Comparing with LRR variants

In this section, we compare MLRR with several LRR related
graphs including LRR (Liu et al., 2010; Yang and Wang et al.,
2013), GLRR (Lu andWang et al., 2013), LRRLC (Zheng, Zhang, Yang
et al., 2013) and NNLRS (Zhuang et al., 2012). GLRRmodel employs
accelerated gradient method (Ji & Ye, 2009) to update J, which is
the auxiliary variable w.r.t. Z; while in our experiments, we relax
the GLRR objective function as described in Zheng, Zhang, Jia et al.
(2013) to solve J by using the SVT operator (Lin et al., 2010).

There are several parameters in LRR, LRRLC, GLRR and NNLRS.
For each LRR variant, the parameter (usually denoted by λ) to
control the impact of error term is searched from {10−1, 1, 10, 102

}

and parameter (usually denoted by α) to control the impact of
locality for LRRLC and GLRR or sparsity for NNLRS is searched from
{10−3, 10−2, . . . , 102

}. For GLRR, the number of nearest neighbors
k is set as 5 and the variance σ in ‘HeatKernel’ is set as the mean
value of the distances between all of the n data points.Wewill give
parameters setting ofMLRR in the end of this section. Total 50 trials
are run for each candidate value of λ for LRR and each group of
(λ, α) for LRRLC, GLRR and NNLRS.

Table 2 reports the mean accuracies as well as standard
deviations over these 50 trials. The best results are shown in
boldface. From the results, it can be easily observed that:

• In most cases, our proposed MLRR model, which employs the
sparse manifold adaption to explore the local structure of data,
achieves higher recognition rates than the original LRR model
and several variants such as LRRLC, GLRR and NNLRS. This
demonstrates that enforcing the low-rank coefficient to pre-
serve the geometrical constraints identified in the original data
space is reasonable and promising. GLRR uses graph Laplacian
to preserve the intrinsic local structure; however, it has been
proven to be sensitive to the kernel parameter when calculat-
ing the affinity between two data points (Wang & Zhang, 2008;
Xiang, Nie, & Zhang, 2010).

• MLRR still can achieve high accuracy when given a small
amount of labeled samples. Specifically, on ORL data set, the
accuracy obtained with MLRR is 6.9 % higher than the best
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(a) ORL. (b) Extended Yale B.

(c) CMU PIE. (d) ISOLET.

Fig. 3. Performance comparison between MLRR-graph and SMA-graph.
(a) ORL. (b) Extended Yale B.

(c) CMU PIE. (d) ISOLET.

Fig. 4. Performance of sparse manifold adaption with different numbers of nearest neighbors.
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(a) ORL. (b) Extended Yale B.

(c) CMU PIE. (d) ISOLET.

Fig. 5. Performance of sparse manifold adaption with different values of parameter γ .
Table 2
Results obtained from LRR variants on the four data sets (mean ± std − dev%).

ORL LRR LRRLC GLRR NNLRS MLRR

10% 67.71 ± 2.38 69.12 ± 2.19 70.86 ± 2.78 72.93 ± 2.09 78.83 ± 1.17
20% 80.13 ± 2.10 82.79 ± 2.23 83.03 ± 2.53 84.92 ± 2.41 90.13 ± 1.87
30% 86.29 ± 1.76 87.93 ± 2.17 88.92 ± 2.37 89.23 ± 2.20 91.99 ± 1.96
40% 88.97 ± 1.69 89.83 ± 1.96 91.83 ± 1.63 91.79 ± 1.78 94.17 ± 1.82
50% 90.67 ± 1.51 91.34 ± 1.88 94.60 ± 1.54 93.88 ± 1.59 95.56 ± 1.70
60% 92.19 ± 1.63 92.87 ± 1.77 95.41 ± 1.47 95.10 ± 1.63 96.87 ± 1.79

Yale B LRR± LRRLC± GLRR± NNLRS± MLRR±

10% 88.43 ± 1.92 90.12 ± 1.88 90.58 ± 1.76 94.55 ± 0.83 96.41 ± 0.77
20% 93.07 ± 1.47 94.79 ± 1.37 93.16 ± 1.38 95.97 ± 0.53 97.51 ± 0.53
30% 94.83 ± 1.03 95.96 ± 0.98 95.07 ± 1.09 96.79 ± 0.49 97.96 ± 0.38
40% 95.78 ± 1.15 96.80 ± 0.79 95.97 ± 0.93 96.98 ± 0.56 98.21 ± 0.43
50% 96.23 ± 0.91 97.56 ± 0.63 96.61 ± 0.91 97.54 ± 0.47 98.47 ± 0.49
60% 96.81 ± 0.79 97.86 ± 0.55 97.23 ± 0.76 97.91 ± 0.52 98.84 ± 0.57

PIE LRR± LRRLC± GLRR± NNLRS± MLRR±

10% 74.21 ± 2.58 74.59 ± 2.71 75.20 ± 2.61 78.13 ± 2.53 77.81 ± 2.47
20% 83.91 ± 1.54 84.51 ± 1.49 84.98 ± 1.83 85.17 ± 1.47 87.63 ± 1.72
30% 87.83 ± 1.22 88.27 ± 1.37 88.59 ± 1.17 87.99 ± 1.13 89.93 ± 1.23
40% 89.67 ± 1.18 89.80 ± 1.19 90.51 ± 1.43 89.77 ± 1.18 91.07 ± 1.39
50% 90.33 ± 1.23 90.79 ± 1.06 91.48 ± 1.01 90.62 ± 1.23 92.32 ± 1.38
60% 90.89 ± 1.03 91.23 ± 1.36 92.14 ± 1.08 91.46 ± 1.30 93.15 ± 1.37

ISOLET LRR± LRRLC± GLRR± NNLRS± MLRR±

10% 68.47 ± 1.45 73.22 ± 1.56 75.82 ± 1.29 83.17 ± 1.21 85.01 ± 1.16
20% 80.34 ± 1.13 81.51 ± 1.41 83.70 ± 1.13 87.95 ± 0.92 89.48 ± 0.96
30% 86.43 ± 1.19 87.16 ± 1.23 88.29 ± 0.97 89.98 ± 0.83 91.63 ± 0.83
40% 89.30 ± 0.91 90.11 ± 0.79 90.83 ± 0.84 91.04 ± 0.86 92.34 ± 0.71
50% 90.98 ± 0.93 91.28 ± 0.88 91.93 ± 0.90 91.78 ± 0.91 93.65 ± 0.83
60% 92.37 ± 0.87 92.46 ± 0.91 92.98 ± 0.81 92.73 ± 0.79 94.74 ± 0.87
result obtained from the other LRR variants; on Extended Yale
B and ISOLET data sets, the improvements are respectively 1.86
and1.84.Whengiven increasingnumber of labeled samples, the
performance of all LRR variants will get improved, which shows
that low-rank representation is a good approach to graph con-
struction.
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(a) ORL: 10% labeled. (b) ORL: 20% labeled.

(c) ORL: 30% labeled. (d) ORL: 40% labeled.

(e) ORL: 50% labeled. (f) ORL: 60% labeled.

Fig. 6. Results obtained from LRR variants of the first 15 trials (of total 50 trials) on ORL.
• NNLRS-graph and MLRR-graph obtain similar performance
when given a small amount of labeled samples, which fur-
ther shows that the non-negativity and sparsity constraints on
representation coefficients are beneficial because both graphs
share these two common properties. The reason why these two
constraints can bring better performance with limited labeled
samples will be investigated in detail in our future work.
Figs. 6–9 respectively show the classification results of all LRR

variants on the first 15 trials (of total 50 trials) on ORL, Extended
Yale B, CMU PIE and ISOLET data sets. It is obvious that MLRR
achieves the best results on most of the trials in comparison with
the other LRR variants.

For better visualizing the recognition rate distribution of these
LRR variants based graph construction models, we depict the box
plots of each model in Fig. 10.

Now we examine the parameter sensitivity of MLRR-graph,
which includes threemain parameters (λ, α and β) besides the pa-
rameters (Ni and γ ) involved in sparsemanifold adaption. InMLRR,
λ is to deal with the corruption in data, α is to control the sparsity
of representation coefficients and β is to emphasize the effect of
manifold regularization. Based on the results of sparse manifold
adaption in Section 4.2, we set (Ni, γ ) as a near optimal combi-
nation (20, 1) for all data sets. As reported in Zhuang et al. (2012)
and Zheng, Zhang, Jia et al. (2013), LRR variants are insensitive to
the variation of λ provided that it is given a relatively large value
(usually 10). Thus it is reasonable to set λ as a fixed value to alle-
viate the burden of parameter tuning, which means that the level
of corruption in data could be fixed. In all above experiments, we
set λ = 10. Nowwe vary the parameters α and β and evaluate the
performance of MLRR-graph based semi-supervised classification.

Figs. 11 and 12 respectively show the change of accuracy ver-
sus parameters α and β . We fix (λ, β) as (10, 0.01) in Fig. 11 and
(λ, α) as (10, 0.01) in Fig. 12. From these two figures, we can see
that the classification accuracy obtained from MLRR will decrease
when α and β are large. Generally, MLRR can achieve promising
results when α < 1 and β < 0.1 on all four data sets. MLRR is
slightly sensitive to parameters when given a small amount of la-
beled samples; therefore, when given more labeled samples, the
performance of MLRR will become more robust. Obviously, 0.001
and 0.01 are suitable candidate values for both α and β . In all our
experiments above, we always set (α, β) as (0.01, 0.01).

4.4. Comparing with other state-of-the-art models

In order to further evaluate the effectiveness of MLRR, we
compare it with the following state-of-the-art graph construction
models.

• KNN-graph. Samples xi and xj are considered as neighbors if xi is
among the k nearest neighbors of xj or xj is among the k nearest
neighbors of xi. The number of nearest neighbors for KNN1
and KNN2 is respectively 4 and 8. The distance information is
measured by ‘HeatKernel’ where the variance σ is the average
of squared Euclidean distances for all edged pairs on graph.

• Local spline regression (LSR)-based graph (Xiang et al., 2010).
In the neighborhood of each data point, an optimal spline is
estimated via regularized least square regression. The losses in
local neighborhoods are accumulated together to measure the
global consistency on the labeled and unlabeled data points.
We use the learned graph Laplacianmatrix, which was denoted
by M in Xiang et al. (2010), for graph-based semi-supervised
learning task. The parameter γ in Xiang et al. (2010) is set
as 1, which is equivalent to the semi-supervised framework
described in Section 2.3. The remaining two parameters: the
number of nearest neighbors k is searched from {5, 10, 20, 30}
and the regularization parameter λ for local spline regression
from {10−3, 10−2, . . . , 102

}. The best average accuracies are
reported.
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(a) YaleB: 10% labeled. (b) YaleB: 20% labeled.

(c) YaleB: 30% labeled. (d) YaleB: 40% labeled.

(e) YaleB: 50% labeled. (f) YaleB: 60% labeled.

Fig. 7. Results obtained from LRR variants of the first 15 trials (of total 50 trials) on Extended Yale B.
(a) PIE: 10% labeled. (b) PIE: 20% labeled.

(c) PIE: 30% labeled. (d) PIE: 40% labeled.

(e) PIE: 50% labeled. (f) PIE: 60% labeled.

Fig. 8. Results obtained from LRR variants of first 15 trials (of total 50 trials) on CMU PIE.
• Local regression and global alignment (LRGA) (Yang, Nie, Xu,
Luo, Zhuang and Pan, 2012). LRGA was originally proposed for
multimedia retrieval; meanwhile, the robust Laplacian matrix
learned by LRGA is also suitable for semi-supervised learning.
In LRGA, for each data point, a local linear regression model
is used to explore the local structure; then a unified objective
function is proposed to globally align the local models from
all the data points. Two related parameters, the number of
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(a) ISOLET: 10% labeled. (b) ISOLET: 20% labeled.

(c) ISOLET: 30% labeled. (d) ISOLET: 40% labeled.

(e) ISOLET: 50% labeled. (f) ISOLET: 60% labeled.

Fig. 9. Results obtained from LRR variants of the first 15 trials (of total 50 trials) on ISOLET.
(a) ORL. (b) Extended Yale B.

(c) CMU PIE. (d) ISOLET.

Fig. 10. Results obtained from LRR variants on the four data sets.
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(a) ORL. (b) Extended Yale B.

(c) CMU PIE. (d) ISOLET.

Fig. 11. Performance of MLRR with different values of parameter α.
(a) ORL. (b) Extended Yale B.

(c) CMU PIE. (d) ISOLET.

Fig. 12. Performance of MLRR with different values of parameter β .
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Table 3
Results obtained from state-of-the-art graph construction models on the four data sets (mean ± std − dev%).

ORL KNN1 KNN2 LSR LRGA LNP L1-Graph SPG MLRR

10% 64.98 ± 2.07 53.47 ± 2.80 57.21 ± 3.13 65.93 ± 2.62 71.21 ± 2.30 61.89 ± 2.69 65.92 ± 2.42 78.83 ± 1.17
20% 74.07 ± 2.71 63.97 ± 2.69 71.84 ± 3.08 75.94 ± 2.55 82.01 ± 2.20 76.16 ± 2.73 78.74 ± 1.98 90.13 ± 1.87
30% 79.42 ± 2.24 68.93 ± 2.72 79.78 ± 3.09 81.81 ± 2.97 88.06 ± 2.45 84.61 ± 2.32 86.24 ± 2.36 91.99 ± 1.96
40% 81.16 ± 2.43 71.64 ± 2.82 85.04 ± 2.78 85.90 ± 2.22 91.43 ± 1.68 89.31 ± 1.90 90.72 ± 1.64 94.17 ± 1.82
50% 82.76 ± 2.41 72.83 ± 2.44 88.76 ± 1.76 89.53 ± 1.61 93.15 ± 1.74 92.47 ± 1.69 93.20 ± 1.64 95.56 ± 1.70
60% 83.23 ± 2.20 74.75 ± 2.69 91.31 ± 2.37 92.10 ± 2.16 94.69 ± 1.64 94.25 ± 1.59 95.46 ± 1.50 96.87 ± 1.79

Yale B KNN1± KNN2± LSR± LRGA± LNP± L1-Graph± SPG± MLRR±

10% 73.04 ± 1.62 55.82 ± 2.91 63.03 ± 2.37 72.64 ± 2.45 86.22 ± 1.52 77.69 ± 1.74 82.92 ± 1.62 96.41 ± 0.77
20% 77.13 ± 1.31 63.03 ± 2.39 73.27 ± 1.45 77.78 ± 1.49 90.86 ± 1.14 87.58 ± 1.05 89.84 ± 1.16 97.51 ± 0.53
30% 80.12 ± 1.38 67.29 ± 1.91 78.25 ± 1.52 82.03 ± 1.38 92.45 ± 0.72 92.13 ± 1.15 92.75 ± 0.99 97.96 ± 0.38
40% 81.49 ± 1.35 69.86 ± 2.46 81.57 ± 1.62 85.84 ± 1.89 93.42 ± 0.86 94.39 ± 0.94 94.26 ± 0.77 98.21 ± 0.43
50% 83.50 ± 1.43 72.24 ± 2.45 83.80 ± 1.37 88.45 ± 1.57 93.85 ± 0.82 95.90 ± 1.03 95.59 ± 0.72 98.47 ± 0.49
60% 84.25 ± 2.03 74.74 ± 2.42 85.26 ± 1.46 90.38 ± 1.64 94.89 ± 0.98 97.29 ± 0.93 96.37 ± 0.85 98.84 ± 0.57

PIE KNN1± KNN2± LSR± LRGA± LNP± L1-Graph± SPG± MLRR±

10% 49.38 ± 2.83 40.09 ± 2.11 46.55 ± 2.00 54.31 ± 2.17 67.50 ± 2.77 63.60 ± 2.35 65.29 ± 2.16 77.81 ± 2.47
20% 59.22 ± 2.24 51.99 ± 1.93 61.53 ± 2.13 67.75 ± 2.23 79.11 ± 1.47 76.43 ± 1.18 77.80 ± 1.70 87.63 ± 1.72
30% 64.69 ± 1.73 60.76 ± 1.77 70.32 ± 2.09 76.55 ± 2.18 83.54 ± 1.73 82.93 ± 1.44 83.82 ± 1.26 89.93 ± 1.23
40% 67.12 ± 1.91 68.56 ± 1.45 76.65 ± 2.27 82.53 ± 2.14 87.02 ± 1.35 86.99 ± 1.25 87.23 ± 1.25 91.07 ± 1.39
50% 69.87 ± 2.09 75.11 ± 1.10 80.20 ± 2.34 85.50 ± 1.87 89.08 ± 1.38 89.34 ± 1.02 89.35 ± 1.41 92.32 ± 1.38
60% 71.49 ± 2.04 81.15 ± 1.11 83.45 ± 2.33 88.06 ± 1.02 90.07 ± 1.53 90.96 ± 1.32 91.60 ± 1.63 93.15 ± 1.37

ISOLET KNN1± KNN2± LSR± LRGA± LNP± L1-Graph± SPG± MLRR±

10% 75.06 ± 1.43 77.35 ± 1.26 76.67 ± 2.03 76.33 ± 2.18 78.58 ± 1.54 71.49 ± 1.37 77.47 ± 1.35 85.01 ± 1.16
20% 79.04 ± 1.29 81.17 ± 1.35 82.94 ± 1.22 83.61 ± 1.37 83.69 ± 0.94 75.69 ± 1.36 83.58 ± 0.97 89.48 ± 0.96
30% 80.95 ± 1.14 82.93 ± 1.21 85.94 ± 0.88 87.08 ± 1.11 86.60 ± 0.91 82.90 ± 1.13 86.99 ± 0.97 91.63 ± 0.83
40% 82.36 ± 1.07 84.41 ± 1.11 87.60 ± 1.11 89.14 ± 1.08 88.83 ± 0.93 87.19 ± 1.01 89.45 ± 1.06 92.34 ± 0.71
50% 83.46 ± 1.15 85.21 ± 1.14 88.90 ± 1.04 90.71 ± 0.97 90.54 ± 1.04 90.08 ± 1.00 91.01 ± 0.97 93.65 ± 0.83
60% 84.29 ± 1.13 85.93 ± 1.23 89.73 ± 0.95 91.99 ± 0.93 92.19 ± 0.82 91.89 ± 0.98 92.59 ± 0.99 94.74 ± 0.87
nearest neighbors k and the parameter λ for local weight
decay term are respectively searched from {5, 10, 15} and
{10−3, 10−2, . . . , 103

} as suggested by Yang et al. (2012).
• LNP (Wang & Zhang, 2008). We follow the pipeline of linear

label propagation in Wang and Zhang (2008) to construct the
graph. The neighborhood size in LNP is set to 40 to achieve the
best results.

• ℓ1-graph (Lu et al., 2012; Yan & Wang, 2009). The ℓ1-norm
regularization parameterλ is searched from {10−3, 10−2, 10−1,
1} to generate the best results. l1-ls package (Koh, Kim, &
Boyd, 2007) is used to solve ℓ1-norm regularized least square
problem.

• SPG graph (He et al., 2011). We implement the SPG algorithm
by setting nknn as 10% of the size of data set and λ is searched
from {10−3, 10−2, . . . , 10}.

Similar to previous experiments, we randomly select 10% to
60% samples per class as labeled samples and the rest as unla-
beled samples. For each configuration,we conduct 50 trials for each
model. Table 3 shows the results obtained from the above men-
tioned models on the four data sets. The mean accuracies as well
as standard deviations are reported in this table in which the best
results are shown in boldface.

Roughly, these eightmodels can be categorized into four groups
based on their different characteristics.

• KNN1 and KNN2 graphs are in the first group. They adopt
the ‘HeatKernel’ to calculate the graph edge weights in which
the performance may be significantly affected by the kernel
parameter (variance σ ). If the intrinsic structure of data is not
suitable for being measured by Euclidean distance or data is
corrupted, the performance of KNN graphs will be decreased;

• LSR, LRGA and LNP graphs are in the second group. Both LSR
and LRGA use the ‘from-local-to-global’ scheme to learn the
Laplacian matrix instead of constructing it based on ‘HeatKer-
nel’ function. The localmodels from all the data points are accu-
mulated to form a robust Laplacian matrix for semi-supervised
classification. The main difference between these two models
is that the local model in LSR is based on the spline regression
while in LRGA it is a general linear regression. LNP constructs
the graph by using the neighborhood information of each point
instead of considering the pairwise relationships. These three
models need not to tune the variance parameter in the ‘HeatK-
ernel’ function and obtain great improvements over the KNN
graphs.

• ℓ1-graph and SPG graph are in the third group. These twomod-
els are based on sparse representation model. ℓ1-graph cal-
culates the graph weights based on the sparse coefficients.
Recent studies have shown that sparsity is a desirable prop-
erty for building an informative graph. SPG graph addition-
ally imposes the non-negativity property on the sparse weights
of a graph and thus it usually obtains higher accuracies than
ℓ1-graph. According to our experimental results, SPG graph is
superior to ℓ1-graph on ORL, CMU PIE and ISOLET data sets.

• MLRR graph is in the fourth group. The main framework of
MLRR graph is based on LRR in which the low rankness con-
straint has grouping effect for samples from the same class and
thus can capture the global structure. Furthermore, the intro-
duced manifold regularizer can preserve the local manifold in-
formation. Since each sample can be used to represent itself,
there always exist feasible solutions even when data sampling
is insufficient. MLRR inherits the non-negativity and sparsity
properties, which have been proven to be efficient in construct-
ing a desirable graph. Therefore, MLRR achieves outstanding re-
sults in all four data sets, especially when given a small amount
of labeled samples.

4.5. Computational complexity analysis

Besides the qualitative computational complexity analysis in
Section 3.5, we give quantitative evaluation of the time cost of
MLRR in this section. Specifically, we compare MLRR with other
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Fig. 13. Comparison of elapsed time of LRR variants on ORL and CMU PIE.

LRR variants on ORL and CMU PIE data sets. The computational
platform used in our experiments is Intel(R) Core(TM) i7-3770
CPU@3.40 GHz 16.0GB RAM with Windows 7 systems and Matlab
2013a.

Fig. 13 shows the elapsed time of different LRR variants on ORL
and CMU PIE data sets. As shown in this figure, LRR has the least
time consuming and the four LRR variants expend approximately
the same amount of time. Therefore, MLRR can obtain much
accuracy improvement with negligible extra time. Similar results
can be found on Extended Yale B and ISOLET data sets.

5. Conclusion

This paper presented a manifold low-rank representation
model, which can explicitly consider the data manifold in calcu-
lating low-rank representation coefficients, for graph-based semi-
supervised learning. The main contribution of MLRR lies in three
aspects: (1) Instead of directly calculating the affinitymatrix based
on some similarity measures, MLRR employed the sparse manifold
adaption method to simultaneously do neighborhood selection
and edge weight optimization by solving a sparse representation
objective; (2) The connection of manifold information between
original data space and low-rank representation coefficient space
was analyzed and thus it was reasonable to put the learned graph
weights in the original data space into the LRR coefficient space;
(3) MLRR additionally imposed the sparsity and non-negativity
properties on LRR coefficients, which can be efficiently imple-
mented in the LADMAP framework. Experimental results on four
popular data sets showed that MLRR is a competitive model for
graph-based semi-supervised learning.

MLRR is actually a two-stage method in which the first stage
is to identify the manifold by sparse manifold adaption and the
second stage is to learn the effective representation coefficient by
optimizing amanifold regularized low-rank representationmodel.
The first stage is an unsupervised learning task; therefore, the
grid search is used to select the near optimal parameters. In the
second stage, a commonly-used paradigm (He et al., 2011; Yan
& Wang, 2009; Zhuang et al., 2012), which randomly sampled
different percentage of data points as the labeled samples and the
left were used as unlabeled data, was followed to quantitatively
evaluate different graph-based semi-supervised learningmethods.
As a shortcoming of MLRR, we lack unified object criteria to
tune related parameters, especially in the case of semi-supervised
learning in which the number of labeled samples is often limited.
Since the labeled samples in different trials are different, the cross-
validation bases method is difficult to use. Therefore, we try to
minimize the bias when conducting experiments between MLRR
and the other methods from two aspects: (1) investigating the
mean performance of several independent trials; and (2) searching
the near optimal parameters for all comparing methods to make
them achieve the best results.
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Appendix A. Optimization of problem (19)

We introduce an auxiliary variable ri w.r.t. ci and neglect the
subscript i. Therefore, problem (19) can be rewritten as

min
c

1
2
∥Ur∥2

2 + γ ∥c∥1, s.t. 1T c = 1, r = c. (A.1)

The corresponding augmented Lagrangian function is

L(r, c, λ,Λ, µ) =
1
2
∥Ur∥2

2 + γ ∥c∥1 + λ(1 − 1T r)

+ ⟨Λ, r − c⟩ +
µ

2
∥r − c∥2

F . (A.2)

Weneed to update r, c alternatelywith the other variable fixed and
the updating rules are listed below:

• Updating r as

r = (UTU + µI)−1(µc −Λ+ λ1); (A.3)

• Updating c as

c = argmin
c

γ

µ
∥c∥1 +

1
2
∥c −


Λ

µ
+ r


∥
2
F , (A.4)

which can be solved via soft shrinkage operator described in
Appendix B.

• Updating Lagrangian multipliers and related parameter as

Λ = Λ+ µ(z − c),
λ = λ+ µ(1 − 1T r),
µ = min(ρµ,µmax).

(A.5)

Appendix B. Three operators

1. Soft thresholding (shrinkage) operator is defined as

Sε[x]
.
=

x − ε, if x > ε,
x + ε, if x < −ε,
0, otherwise,

(B.1)

where x ∈ R and ε is a small positive value. This operator can be
extended to vectors andmatrices by applying it element-wisely
as

Sε[W] = argmin
X
ε∥X∥1 +

1
2
∥X − W∥

2
F . (B.2)

Therefore, the solutions to (A.4) and (32) are S γ
µ


Λ

µ
+ r


and

S α
µk


Zk+1 +

Y2,k
µk


.

2. Singular value thresholding (SVT) operator is defined as

Θε[W] , USε[Σ]VT
= argmin

X
ε∥X∥∗ +

1
2
∥X − W∥

2
F , (B.3)

where UΣV T is the SVD decomposition of W. SVT shrinks the
singular values ofW.
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3. ℓ2,1-norm minimization operator (Liu et al., 2010). Given a
matrix Q = [q1, q2, . . . , qi, . . .], if the optimal solution of

Ωλ[Q] , argmin
W
λ∥W∥2,1 +

1
2
∥W − Q∥

2
F (B.4)

is W∗, then the ith column of W∗ is

W∗(:, i) =


∥qi∥ − λ

∥qi∥
qi, if λ < ∥qi∥,

0, otherwise.
(B.5)
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