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Abstract. With quick development of Kinect, depth image has become
an important channel for assisting the color/infrared image in diverse com-
puter vision tasks. Kinect can provide depth image as well as color and
infrared images,which are suitable formulti-model vision tasks.This paper
presents a framework for intensity-depth face alignment based on cascade
shape regression. Information from intensity and depth images is combined
during feature selection in cascade shape regression. Experimental results
show that this combination improves face alignment accuracy notably.
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1 Introduction

Face alignment is to detect key points such as eye corner, mouth corner and
nose tip on human face, and is an important step for many face related vision
tasks like face tracking and face recognition. A variety of models are proposed
to tackle face alignment problem. Notable ones are Active Shape Model (ASM)
[8], Active Appearance Model (AAM) [7], Constrained Local Model (CLM) [9],
Explicit Shape Regression [4] and Deep Convolutional Network [14]. Besides,
numerous improvements for these models have been proposed.

Among those different models, the family of cascade regression models is the
leading one. Generally, cascade regression models solve face alignment problem
with many stages of regressions (in a cascade manner). Based on the basic struc-
ture, a lot of models are proposed. Cao et al. [4] use two-level boosted regression,
shape indexed features and fast correlation-based feature selection. They achieve
remarkable results. Asthana et al. [1] make the learning parallel and incremental,
so that the model can automatically adapt to data. Burgos et al. [3] model occlu-
sion explicitly to locate occluded regions and improve performance for occluded
faces. Chen et al. [5] deal with face detection and face alignment jointly, which
improves performance on both problems.
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Most face alignment studies focus on intensity image. Unlike intensity image,
each pixel in a depth image represents the distance between the point in the scene
and the camera. Intuitively, information from intensity image and depth image is
complementary. For example, eyelid and eyebrow are very distinct on intensity
image because of their darkness; tip of nose is very distinct on depth image
because of its shape. However, only a few researchers try to combine them in
face alignment tasks [2,6].

Both [2] and [6] are based on CLM. Nevertheless, this approach has some
limitations. The first one is that it is not optimal because intensity information
and depth information do not always contribute equally to face alignment in the
whole face region. Moreover, this approach is based on CLM, but recent studies
show that cascade shape regression achieves higher performance. In this paper,
we address those two problems in a novel way.

2 Framework

We adapt cascade shape regression model to depth image, and use a novel app-
roach to combine intensity image and depth image. Figure 1 is an overview of
our framework.

2.1 Problem Description

Suppose that I is an image (intensity-depth image in our case), which con-
tains human face, R is a rectangle, which gives face region in I, and Y =
[x1, y1, . . . , xN , yN ]T is the ground truth of facial landmarks. The task of face
alignment is computing an estimation Ŷ from only I and R, which minimizes

‖Y − Ŷ ‖2. (1)

2.2 Framework Structure

Since computing Ŷ in one-shot is difficult, almost all face alignment models work
in a cascade manner. That is, let Ŷ1 (which is usually the average landmarks

Fig. 1. The workflow of our framework.
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positions translated into R) be the initial estimation, and compute a better
estimation Ŷ2 from I and Ŷ1. Repeat this for several times and we can get the
final result Ŷ .

Our framework also works in this manner. We use the two-level structure
proposed in [4]. In our framework, there are T stages. Therefore we begin with
Ŷ1, and get Ŷ2, Ŷ3, . . . , Ŷt, . . ., iteratively, until ŶT . ŶT will be our final result Ŷ .

2.3 Feature

Doing regression on I and Ŷt directly is hard. We must extract features from I
and Ŷt.

Shape Indexed Features. Shape indexed features mean that features are
extracted relative to landmarks. For face alignment, shape indexed features are
more robust against pose variation. In [4], a feature is the difference between
intensity values of two pixels. The pixel position is generated by taking an offset
to a certain facial landmark. Therefore, pixels positions are relative to facial
landmarks, which makes them invariant in different poses. In [3], linear interpo-
lation between two landmarks is used as the position of a pixel, which makes it
more robust.

In our framework, we also use shape indexed features. For intensity image, we
directly use the difference between intensity values of two pixels, whose positions
are randomly generated, as a feature. We generate many such features and then
do feature selection. For depth image, we use normalized depth features.

Normalized Depth Features. Shape indexed features can effectively deal
with pose variation problem for intensity image. But for depth image, shape
indexed features are not enough, since the depth value of each pixel will change
dramatically during pose variation. To make information of depth image more
robust against pose variation, we propose normalized depth features.

As in the intensity image case, we use the difference between depth values of
two pixels as a feature. To make it invariant under pose variation, we compensate
each value of pixel according to the pose.

If we use a plane to approximate the human face, the plane can be expressed by

Xβ = z, (2)

where X = [1, x, y]T is the location of the pixel, β is the parameter of the plane
and z is the depth of the pixel.

Suppose X = [x1,x2, . . . ,xm]T , xk = [1, xk, yk]T is a landmark on the
depth image, and z is the corresponding depth values. Then their relationship
can be expressed by

Xβ = z, (3)

which can be solved by linear regression. Using normal equation, the result is

β = (XTX)−1XTz. (4)
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Having got the parameter β of the face plane, we can compensate the depth
value of a pixel by

z′ = z − αXβ, (5)

where z is the original depth value, z′ is the compensated depth value, and
X is the location of the pixel. We also use attenuation parameter α for the
compensation, because the estimated face pose may not be very accurate.

The estimation of β is an iterative process. As the estimation of landmarks
becomes more accurate during face alignment, the estimation of β will also
become more accurate, which in turn contributes to the estimation of landmarks.

Feature Selection and Fusion. Using the feature extraction method described
above, we can randomly (randomly select a landmark and randomly choose
an offset) generate a huge feature pool for each image of training data, which
contains not only intensity features but also depth features. We use correlation-
based (Pearson Correlation) feature selection method proposed in [4],

jopt = arg min
j

corr(Y v,Xj), (6)

where X is a matrix to represent all randomly generated features of all the train-
ing data in current external-stage, Xj is a column vector which represents the
jth feature of all the training data, Y is a matrix in which each row represents
the disparity between current estimation of landmarks positions and true land-
marks positions, and v is a vector drawn from unit Gaussian to project Y into
a vector. Note that v is necessary here, so that we can compute the correlation.

In our model, each stage contains K internal-stages [4]. In the training of each
internal-stage (a fern [10]), we use the feature selection method described above
to select F features for that fern. Both intensity features and depth features are
considered. Therefore, one fern can use intensity features and depth features at
the same time, which effectively combine the best part of two sources of features.
Figure 2 gives an example of such a fern. Further more, we use a parameter ρ
to control the ratio between intensity features and depth features, and use cross
validation to select the best value for ρ.

Fig. 2. Feature fusion. A fern can contain both intensity features and depth features
at the same time.
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2.4 Initial Estimation

An accurate initial estimation of facial landmarks positions can greatly con-
tribute to face alignment. We use k-means on training data to get representative
initial estimations of facial landmarks positions. Multiple initializations [4] are
used in testing.

In a tracking scenario, a reasonable initial estimation is the face alignment
result on previous frame. However, using that estimation directly will lead to
model drift, since the model is trained with certain initial estimations obtained
by k-means as described above. To solve drift problem, we use Procrustes method
[8] to align initial estimations to face alignment result on previous frame, and
then use those transformed initial estimations.

3 Experiments

We conduct experiments on two datasets to evaluate our model. Shape Root-
Mean Square (RMS) error normalized w.r.t the inter-ocular distance of the face
is used in the evaluation. In each experiment, we create three models: inten-
sity, depth, intensity-depth. The only difference among those three models is
feature. Depth model only uses depth features, intensity model only uses inten-
sity features, and intensity-depth model is allowed to use both intensity features
and depth features. All of the parameters are determined by cross validation on
training data. To make the comparison fair, even though intensity-depth model
is allowed to use both kinds of features, the numbers of total features which
these three models are allowed to use are equal.

3.1 FRGC

FRGC (Face Recognition Grand Challenge) Version 2.0 database [11] is origi-
nally designed for face recognition, but some researchers [12,13] annotated those
face images with 68 landmarks. It consists 4950 face images with color and depth
information. We conduct this experiment in a similar manner (with minor dif-
ference) as [6], so that the results can be compared.

From Fig. 3, we can see that the performance of intensity model and intensity-
depth model is on the same level, and both are much higher than that of the
depth model. We also observe that the performance of our model is better than
that of [6]. The average landmark errors of our intensity model, depth model
and intensity-depth model are 0.0211, 0.0408 and 0.0209 respectively.

3.2 LIDF

The experiment on FRGC validates our model. However, the improvement by
combining intensity feature and depth feature is very small. We believe that it
is because of performance saturation (faces in FRGC are almost frontal and not
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Fig. 3. Landmark error curves of our three models and 3D CLM [6] on FRGC.

challenging enough). To better evaluate the effect of combining intensity fea-
ture and depth feature, we create a more difficult dataset. Our labeled infrared-
depth face (LIDF) dataset is acquired in a lab environment. It consists of 17
subjects (10 males and 7 females), each subject has 9 poses, and each pose has
6 expressions. Infrared image and depth image are taken simultaneously and are
perfectly aligned (using Microsoft Kinect One). So we have 918 infrared-depth
images in total. 15-points manually labeled landmarks are provided. This dataset
is publicly available1. We use images from first 7 male subjects and first 4 female
subjects as training set, and the rest images as testing set (Fig. 4).

From Fig. 5 we can see that the performance of intensity-depth model is
notably higher than both intensity model and depth model. The average land-
mark errors of our intensity model, depth model and intensity-depth model are
0.0329, 0.0380 and 0.0305 respectively. Some alignment results obtained by our
method are shown in Fig. 6.

Fig. 4. Some images in LIDF.

1 Available soon on http://bcmi.sjtu.edu.cn/resource.html.

http://bcmi.sjtu.edu.cn/resource.html
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Fig. 5. Landmark error curves of our three models on LIDF.

Fig. 6. Some alignment results of our intensity-depth model (first row: FRGC, second
row: LIDF).

4 Conclusion

We proposed a face alignment model for intensity-depth image based on cascade
regression model. Depth features were made to be robust against pose variation.
Intensity and depth features were effectively combined during feature selection.
Our intensity-depth model got 0.9 % error reduction on FRGC and 7.3 % error
reduction on LIDF over intensity model, which indicated that higher perfor-
mance could be achieved by combining intensity image and depth image.
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