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ABSTRACT
Various studies have shown that the temporal information cap-
tured by conventional long-short-term memory (LSTM) networks
is very useful for enhancing multimodal emotion recognition us-
ing encephalography (EEG) and other physiological signals. How-
ever, the dependency among multiple modalities and high-level
temporal-feature learning using deeper LSTM networks is yet to be
investigated. Thus, we propose a multimodal residual LSTM (MM-
ResLSTM) network for emotion recognition. The MMResLSTM
network shares the weights across the modalities in each LSTM
layer to learn the correlation between the EEG and other physio-
logical signals. It contains both the spatial shortcut paths provided
by the residual network and temporal shortcut paths provided by
LSTM for efficiently learning emotion-related high-level features.
The proposed network was evaluated using a publicly available
dataset for EEG-based emotion recognition, DEAP. The experi-
mental results indicate that the proposed MMResLSTM network
yielded a promising result, with a classification accuracy of 92.87%
for arousal and 92.30% for valence.
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1 INTRODUCTION
Emotion recognition is integral to effective reasoning, planning,
and the execution of certain tasks. Automatic emotion recognition
plays an important role in human-computer interaction systems
for more affective and personal interactions. Inspired by the great
success of deep neural networks in numerous recognition tasks, sev-
eral deep learning architectures have been proposed to improve the
performance of multimodal emotion recognition using electroen-
cephalographic (EEG) signals among other physiological signals,
including auto-encoders, convolutional neural networks (CNNS),
and recurrent neural networks (RNNs) [18, 19, 27].

RNNs, unlike other feed-forward networks, can extract com-
plex temporal information from sequences of various lengths and
have drawn increasing attention in the field of multimodal emotion
recognition using EEG and other physiological signals. Various
studies have demonstrated that considering temporal information
improves the performance of RNNs as a temporal feature extractor
module [15, 32]. However, the temporal correlation information
among multiple modalities, together with high-level temporal fea-
ture learning using deeper RNNs, is yet to be investigated.

The temporal correlation among the different modalities is im-
portant, because emotions are manifested via various internal phys-
iological responses and external behaviors over time. Although
the signals in multiple modalities are collected from various posi-
tions using different devices with different reflection latencies, they
reflect the same emotion changes with temporal evolution.

The temporal correlation among different modalities is valuable
for extracting emotion-related information and filtering unrelated
noise, as an EEG signal is typically characterized by a low signal-to-
noise ratio (SNR). We propose the construction of neural networks
that can capture the temporal correlation among various modalities
and achieve a better generalization for modeling emotion evolution.

Moreover, owing to the complexity of human emotions, use-
ful temporal features, as well as the correlation among modalities,
could be a highly complex non-linear function of input sequences.
Studies in various fields have indicated that deep neural networks
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(DNNs) can learn complex high-level features, consequently outper-
forming the shallow ones [10, 31]. With the discovery of residual
learning [11] and normalization of neuron activities [13, 17], DNNs
can converge more efficiently, thus optimizing the time cost of
training. Similarly to residual learning [11], we hypothesize that
deep RNNs with residual connections can learn more complex high-
level features for emotion recognition, consequently outperforming
other neural network architectures.

There are various multimodal fusion approaches such as training
one common layer for the subnetworks of the multiple modalities
[19], utilizing disjoint layers for different modalities [32], and com-
bining multiple modalities by feature concatenation or ensemble
[21]. However, to the best of our knowledge, previous works have
not explicitly modeled the temporal correlation among multiple
modalities for multimodal emotion recognition.

The LSTM [12], a gated variant of RNN, alleviates gradient ex-
plosion or vanishing problems by utilizing multiplicative gating
operations and shortcut paths through time. In our multimodal
residual LSTM (MMResLSTM) network, the temporal correlation
amongmodalities is explicitly learned by sharing the weights across
modalities. This architecture was first proposed for speaker identi-
fication in videos, and it significantly improved the robustness of
the voice data to content quality degradations and non-auditory
distractors [26]. Because all the modalities cooperate and compete
with each other when learning the shared weights, the network
tends to accumulate temporal correlations across the modalities.
Moreover, by sharing the weights across the time steps in the LSTM,
learning is robust to the different emotion reflection latencies of
the different modalities, and can learn the correlation using the
different time-step biases.

Residual learning [11] and layer normalization [17] are further
utilized to build four residual LSTM layers for complex high-level
learning of temporal features. Although there are other techniques
for building DNNs through spatial shortcut paths [29, 40], it has
been demonstrated that the residual networks yield efficient train-
ing and interpretation without extra parameters. Consequently, the
residual LSTM network contains both temporal and spatial short-
cuts provided by the LSTM and the residual network, respectively,
for effectively training the deep RNNs on long sequences.

We conducted experiments using the plain deep LSTM network,
residual LSTM network, and MMResLSTM network on the DEAP
dataset. The results indicated that under different parameter set-
tings, the MMResLSTM network can stably outperform the other
LSTM structures. In a comparison with the state-of-the-art meth-
ods on the same dataset, the MMResLSTM also achieved promising
results.

2 RELATEDWORK
There are six main public EEG datasets for emotion recognition
tasks: DEAP (2012) [16], MAHNOB-HCI (2012) [28], SEED (2015)
[38], HR-EEG4EMO (2017) [4], DREAMER (2018) [14], and SEED-IV
(2019) [37]. Previous studies on DEAP explored different aspects of
feature extraction, experiment settings, and modalities. Aside from
the choice of classification model, the most common differences
among the emotion recognition studies relate to the process of fea-
ture extraction. The majority of prior studies did not directly utilize

raw EEG signals; rather, they extracted the features first. The pro-
cess of feature extraction can be regarded an effective way to reduce
the dimensions of the data. In a typical time-series signal, the con-
ventional EEG features include time-domain, frequency-domain,
and time-frequency-domain features. Wang and colleagues inves-
tigated three kinds of feature extraction methods for recognizing
two emotions from EEG data [35]. Pandey et al., using the discrete
wavelet coefficient features with a multilayer perceptron (MLP)
model on a single-channel EEG, achieved 58.50% classification ac-
curacy [22]. Garcia et al. deploys multiple entropy features with a
support vector machine (SVM) classifier [9]. Using the empirical
mode decomposition method, Zhuang et al. automatically decom-
pose the EEG signals into intrinsic mode function (IMF) features.

However, feature extraction always requires prior knowledge
of the specific task, and designing the proper features for a new
task may be more time consuming than designing the model itself.
Nowadays, DNN models are powerful enough to automatically
extract features during the learning process; furthermore, there is
the emerging possibility of using raw signals as the input and an
“end-to-end” approach to learning the task. For example, Fourati et
al. use an echo state network (ESN) wherein the recurrent layers
enable the projection of the raw EEG data into a high-dimensional
state space [8]. Alhagry et al. obtain a satisfactory result using a
2-layer plain LSTM with raw EEG input [1].

Existing works conducted on the DEAP dataset utilize different
experiment settings. Although the DEAP dataset has four emotion
labels: arousal, valence, dominance, and liking, not all the labels
are used in related studies. Liu et al. [20] combine the indices of
arousal, valence, and dominance to obtain a space that contains
eight emotions, and classify the eight-class task using SVM. Zheng
et al. [39] investigate the four quadrants of the valence-arousal space
(low arousal-low valence, high arousal-low valence, low arousal-
high valence, and high arousal-high valence), and solve the four-
class task using the graph regularized extreme learning machine
(GELM) method. Both studies obtain approximately 70% accuracy
on their multinomial classification tasks. Most existing studies on
the DEAP dataset have considered the emotion recognition problem
as two independent binomial classification tasks (low/high arousal
and low/high valence), and report the accuracy of arousal and
valence detection, respectively.

Emotion recognition has been performed using various modali-
ties, such as facial expressions, voice, EEG, pupillary diameter (PD),
electrooculography (EOG) [5]. Furthermore, while the abovemen-
tioned studies focus solely on single EEG modality, multi-modal
approaches have also been widely implemented for emotion recog-
nition [18, 19, 21, 32, 36]. Lu et al. apply a fuzzy integral fusion
strategy to combine EEG and eye movement features on the SEED
dataset [21]. Lin et al. transform EEG into images and extract the
hand-crafted features of other peripheral physiological signals to
train a deep CNN [18]. Liu et al. train a bimodal autoencoder net-
work, and they achieved the mean accuracy of 91.0% and 83.6%
on the SEED and DEAP datasets, respectively [19]. As mentioned
earlier, these works do not explicitly model the temporal correlation
among the multiple modalities for multimodal emotion recognition;
rather, their approaches are based on common layers, feature con-
catenation, or decision ensemble. Thus, the proposed model aims to
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Figure 1: Conventional LSTM

improve on previous studies by using a deep LSTM with temporal
weights shared across the multiple modalities.

3 METHODOLOGY
3.1 Long-Short-Term Memory (LSTM)
LSTM [12], as a popular variant of RNN [10, 34], has demonstrated
its effectiveness for extracting temporal information from long
biosignals [3, 7, 30, 32]. It contains cell states ct that are propagated
through time and are responsible for storing temporal information,
and data-driven gates ft , it ,ot that control the process of forget-
ting, remembering, and outputting information, respectively. The
formulas (excluding the bias terms) are as follows:

c̃t = tanh(Whд ∗ ht−1 +Wxд ∗ xt ), (1)
ft = σ (Whf ∗ ht−1 +Wxf ∗ xt ), (2)
it = σ (Whi ∗ ht−1 +Wxi ∗ xt ), (3)
ot = σ (Who ∗ ht−1 +Wxo ∗ xt ), (4)
ct = ft ⊙ ct−1 + it ⊙ c̃t , (5)
ht = ot ⊙ tanh(ct ). (6)

whereWh∗, includingWhf ,Whi ,Whд ,Who , are the weight matri-
ces of the previous time step’s hidden states;Wx∗, includingWxf ,
Wxi ,Wxд ,Wxo , are the weight matrices of the current time step’s
input, and σ represents the sigmoid function. The operator ∗ in the
equations denotes the matrix multiplication, while ⊙ represents
the element-wise multiplication.

3.2 Multimodal LSTM Network
Conventionally, for achieving multimodal emotion recognition us-
ing EEG and other physiological signals, the multimodal architec-
tures either build parallel LSTMs for the different modalities [15],
or directly concatenate the data of multiple modalities to produce
a larger input [32]. The first type of architecture contains parallel
LSTMs for different modalities, and it is more efficient for training,
because each LSTM focuses on inputs with similar properties; it is
also more interpretable, because information from different modal-
ities is stored separately. Nevertheless, this architecture makes no
provision for correlation learning among the multiple modalities,
because the LSTMs are completely independent of each other. The
second type of architecture feeds the LSTM with the concatenation
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Figure 2: Multimodal LSTM with bimodal inputs

of multiple modalities; although the networks are free to simulta-
neously access the information of multiple modalities, the cross-
modality correlation is not explicitly learned. There is no distinction
between intra-modality correlation and cross-modality correlation
in LSTM, because the inputs of the multiple modalities are treated
similarly. In addition, without restricting the structure of the LSTM
weights, the second architecture tends to simultaneously address
the differences and correlation among the modalities, as well as the
requirement for useful emotion-related features; thus, it is more
prone to overfitting.

The multimodal LSTM network explicitly learns the correlation
among the modalities by sharing the weights across the modalities.
As shown in Fig. 2, the network builds an LSTM for each modality
while sharing the weightsWh∗. The formulas, excluding the bias
terms, are as follows:

c̃st = tanh(Whд ∗ hst−1 +W
s
xд ∗ xst ), (7)

f st = σ (Whf ∗ hst−1 +W
s
x f ∗ xst , ) (8)

ist = σ (Whi ∗ h
s
t−1 +W

s
xi ∗ x

s
t ), (9)

ost = σ (Who ∗ h
s
t−1 +W

s
xo ∗ x

s
t ), (10)

cst = f st ⊙ cst−1 + i
s
t ⊙ c̃st , (11)

hst = ost ⊙ tanh(cst ), (12)

where the superscript s indicates each modality in the input se-
quences and the subscript t indicates the time step.

Each modality in the multimodal LSTM network has its own
weightsW s

x∗, hidden states hst , and cell states cst . Therefore, the
network is allowed to behave uniquely, and learn separate temporal
features for different modalities. This is convenient for handling
asynchronous emotion reflection among the modalities, where the
strategies of different gates are required. It also provides more inter-
pretation and training efficiency by concentrating on onemodality’s
input. When building the deep multimodal LSTM network, exclu-
sive states preserve the multimodal property, thereby facilitating
complex correlation learning among the modalities.

At the same time, the cross-modal correlation is explicitly learned
by sharing the weightsWh∗. Both the previous hidden states ht−1
and the current input xt are involved in the calculation of the gate
output and cell-state candidates that controls the process of se-
lectively remembering and forgetting information through time.
Wh∗, and notWx∗, is shared because, compared with xt , ht−1 con-
tains information from previous time steps, and is more useful for
learning temporal property. By sharingWh∗ across the modalities,
multimodal LSTM layers can interact with each other during the
learning processes. Provided thatWh∗ are also shared across the
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time steps, they play an important role in learning the temporal
correlation among the different modalities.

3.3 Residual Learning
The concept of residual learning was introduced in [11] for training
ultra-deep CNNs for image recognition. Residual learning provides
reference for the representation learning of higher layers, and ex-
plicitly reformulates the layers’ objective as approximate residual
functions. The formula can be expressed as follows:

y = F (x ,W ) + x , (13)

where x ,y are the input and output vectors of the layers under
consideration, and F (x ,W ) represents the residual function learned
by the corresponding layers.

Following reformulation, the output becomes the linear com-
bination of the input and a non-linear residual, which provides
a shortcut across the layers for training the deep networks more
effectively. Although increasing the number of layers can cause
the problem of vanishing gradients, residual learning makes the
learning identity function possible, regardless of the number of
layers simply by setting the residual F (x ,W ) to zero.

3.4 Layer Normalization
Layer normalization [17] was proposed for reducing the training
time of deep RNNs by normalizing the activities of the neurons. It
is effective for stabilizing the hidden-state dynamics in RNNs. The
layer normalization re-centers and re-scales the neurons’ activa-
tions using extra normalization terms as follows:

µt =
1
H

H∑
i=1

(ht )i , (14)

δt =

√√√
1
H

H∑
i=1

((ht )i − µt )2, (15)

yt = f (
д

δt
⊙ (ht − µt ) + b), (16)

where (ht )i denotes the hidden state of the ith neuron in the LSTM,
the subscript t indicates the time steps, and the subscript i indicates
the neurons in each LSTM layer. д,b are trainable weights of the
same shape as ht which are responsible for scaling and centering
the input of the activation function f .

3.5 Multimodal Residual LSTM Network
For complex high-level temporal-feature learning with explicit cor-
relation control, the MMResLSTM network contains multiple LSTM
layers (we used four layers in this study) for each modality, and
shares the weightsWh∗ across each LSTM layer to learn the tempo-
ral correlation among the modalities. Residual learning and layer
normalization are also deployed for efficient training. Next, high
level representations of multiple modalities are concatenated to
predict the emotion labels using a fully connected (dense) layer
with softmax activation. The structure of a four-layer MMResLSTM
network is shown in Fig. 3.

In the MMResLSTM layers, the recurrent connections of the
LSTM represent the feed-back of the hidden states for future time-
step calculation, and the cross-layer skipping connections represent

𝑊ℎ∗

Layer Norm

Dropout

LSTM

Layer Norm

Dropout

LSTM

𝑊ℎ∗

Layer Norm

Dropout

LSTM

Layer Norm

Dropout

LSTM

𝑊ℎ∗

Layer Norm

Dropout

LSTM

Layer Norm

Dropout

LSTM

Dense

Predicted Labels

𝑊ℎ∗

Layer Norm

Dropout

LSTM

Layer Norm

Dropout

LSTM

𝑥1 𝑥2

Figure 3: The MMResLSTM network for bimodal input,
where x1,x2 denotes the input sequences of two modalities,
and Wh∗ denotes the shared weights across modalities in
each layer.

the identity mapping in residual learning.Wh∗ are shared across the
modalities for cross-modality correlation learning. In consonance
with [23], dropout is applied to the forward connections to reduce
overfitting.

4 EXPERIMENTS
4.1 Datasets
In this study, we evaluated the model’s performance using the
DEAP dataset. The DEAP dataset [16] contains EEG and periph-
eral physiological signals (PPS) that include EOG and electromyo-
graphic (EMG) data. In this dataset, 32 subjects watched 40 emotion-
stimulating video clips. Each video was one-minute long. On a scale
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of 1-9, personal ratings 9 were provided in four emotional dimen-
sions: arousal, valence, dominance, and liking. Similar to many
state-of-the-art studies, we evaluated our model on the dimensions
of arousal and valence, thereby reformulating the problem into
two single-trial binary classification problems, thus, we undertook
the classification task of low/high arousal and low/high valence
in each experiment, with 5 being the threshold value. The model
was trained and tested individually for each subject, thus mak-
ing our approach subject-dependent. This choice was predicated
on two factors: 1) According to our review of recent studies on
arousal-valence tasks, scant subject-independent studies exist. A
subject-dependent approach enables more comparisons and 2) the
subject-independent approach is likely to raise personal privacy
concerns, as it necessitates collecting private EEG data and building
a large emotion database.

4.2 Feature Extraction and Implementation
Asmentioned previously, one important feature of DNN approaches
is the end-to-end approach in which the conventional feature ex-
traction process is usually implicitly implemented. In our implemen-
tation of the MMResLSTM network, we utilize the downloadable
DEAP data (preprocessed) directly without any feature extraction.
Raw EEG signals and PPS were down-sampled to 128 Hz. For the
EEG signals, the EOG artifacts were removed and a bandpass fre-
quency filter ranging from 4.0-45.0 Hz was applied. The EEG signals
were also averaged to the common reference. The preprocessing
details are stated in [16].

The input signals obtained from each subject (40 63-s video
clips) were divided into 1-s non-overlapping intervals, shuffled, and
then fed into the LSTM network. The total dimensions of the input
intervals were formed by thirty-two channels of EEG signal and
eight channels of PPS. Because the sample rate was 128 Hz, each
input of the LSTM network consisted of 128×32 for EEG and 128×8
for PPS.

To compare the performance of the proposed MMResLSTM net-
work with that of the state-of-the-art methods based on feature
extraction, we also implemented the following feature extraction
routine that utilized the wavelet entropy and wavelet energy fea-
tures [2, 6, 33]. First, db4 discrete wavelet transform was applied
to each 4-s signal of each channel with a 2-s overlap to produce a
series of wavelet coefficients. These level 1-4 wavelet coefficients
approximately represent the components of the gamma, beta, alpha,
and theta bands, respectively. Second, the wavelet coefficients were
used for calculating the wavelet entropy and wavelet energy as
follows:

entropy = −

N∑
k=1

D j (k)
2loдD j (k)

2,k = 1...N , (17)

enerдy =

N∑
k=1

D j (k)
2,k = 1...N , (18)

whereD(k) represents thek-th wavelet coefficient, and subscription
j indicates the level of wavelet decomposition (j = 1, 2, 3, 4). The
extracted wavelet entropy and wavelet energy features were then
used to train an SVM classifier.

Table 1: Comparison of the plain LSTM, residual LSTM, and
MMResLSTM

method layer No. arousal (%) valence (%)

LSTM 4 91.00±4.10 89.04±5.79

residual LSTM 4 92.34±2.15 91.66±1.69

MMResLSTM
2 92.54±2.18 91.85±1.81
3 92.65±2.50 92.15±1.61
4 92.87±2.11 92.30±1.55

80 

85 

90 

95 

100 

arousal valence 
LSTM residual LSTM MMResLSTM 

Figure 4: Comparison results of the plain LSTM, residual
LSTM, and MMResLSTM (all with 4 layers)

All the methods were implemented using Python and Tensor-
Flow1.

4.3 Results
4.3.1 Effect of residual and weight-sharing terms. First, we con-
ducted experiments to compare the plain LSTM network, LSTM
with residual terms, and the proposed MMResLSTM to explore the
effect of the residual and weight-sharing terms. We experimented
with the combinations of the following parameters:

• Node number: 32, 64, 128
• Layer number: 1, 2, 3, 4
• Learning rate: 1e-2, 1e-3, 3e-3, 1e-4
• L2 regularization: 1e-2, 1e-4, 1e-6

Following experiments, the optimal parameter settings were deter-
mined as follows for all the LSTM models: The LSTM node number
(for both modalities) was set to 128, layer number, 4, dropout ratio,
0.5, and the learning rate, 3e-3; The l2 regularization was 1e-6 for
the arousal task and 1e-2 for the valence task and the maximum
number of epochs was 2000. The Adam optimization algorithm was
used to train networks. Furthermore, training was terminated early,
that is, when the accuracy had not increased 0.1% in the previous
120 epochs. Five-fold cross validation (with randomly shuffled data)
was applied to each subject, and the average classification accuracy
over subjects and folds was calculated.

The results for all the thirty-two subjects are shown in Table 1,
Fig. 4, and Fig. 5. From Table 1 and Fig. 4, it can be observed that,

1https://www.tensorflow.org/
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Figure 5: The results of the performance gains of the residual LSTM over the plain LSTM, and the performance gains of the
MMResLSTM over the plain LSTM, respectively, on the (a) arousal and (b) valence classification task, for 32 individual subjects
and their average

first, in both the arousal and valence tasks, the MMResLSTM out-
performed the other two models. Second, the results obtained with
the plain LSTM have very large deviations in both tasks. The results
were stabilized as a result of the effect of the residual terms, and the
average accuracies were increased. Third, the performance of MM-
ResLSTM increased with the increase of layer number. Compared
with the residual LSTM, even the 2-layer MMResLSTM yielded
slightly greater accuracies. This result implies that the advantages
of learning the correlation by sharing weights across the modalities
were significant.

When, as shown in Fig. 4, the three methods have overlapping
(similar) accuracy regions, it is worth noting that the accuracies
of the different methods should be compared subject by subject,
not group by group. We conducted a paired-t test to demonstrate
the statistical difference among the plain LSTM, residual LSTM,
and MMResLSTM. Consequently, all the pairs (plain vs. residual,
plain vs. MMRes, and residual vs. MMRes) in both the arousal and
valence tasks have p < 0.05, which means the differences between
the pairs are statistically significant.

The improvements attributable to the residual terms and weight-
sharing terms can be observed more clearly in Fig. 5, where the
individual results for all the thirty-two subjects are shown. In the
figure, the dotted bars (blue) indicate the performance gains of the
residual LSTM over the plain LSTM, and the solid bars (orange)
indicate the performance gains of the MMResLSTM over the plain
LSTM. In some cases, merely applying the residual terms boosted
the accuracy significantly, and the weight-sharing terms resulted in
additional performance gain (e.g., #11 in Fig. 5(a), #7 and #10 in Fig.
5(b)). Further more, sometimes when the residual LSTM performed
worse than the plain LSTM, sharing the weights compensated the
loss (e.g., #5 in both Fig. 5(a) and Fig. 5(b)). It is true that occasionally,
even the MMResLSTM failed to improve the performance (e.g., #24
in Fig. 5(b)). This is mainly attributable to the use of the same set
of hyper-parameters for all the 32 subjects, rather than optimizing
these hyper-parameters for each subject. This was to reduce overfit-
ting, and validate the robustness of the network without optimizing
against each individual. As long as the proposed method exhibits a

superior performance overall, its underperformance in comparison
to the plain LSTM in minor cases is insignificant.

4.3.2 Comparison with other methods. Next, we conducted ex-
periments to compare the performance of the proposed method
with some feature-extraction-based and end-to-end state-of-the-art
methods.

Table 2: Comparison of the accuracies of the proposed MM-
ResLSTM method, the reference SVM method, with the re-
ported accuracies of representative subject-dependent ap-
proaches. In some studies, standard deviations were not pro-
vided; thus, only the detection accuracies of arousal and va-
lence are listed.

method feature modality arousal (%) valence (%)

MESAE [36] statistical
features EEG+PPS 84.18 83.04

CNN [18] statistical
features EEG+PPS 87.30 85.50

k-NN [24] statistical
features EEG 89.84 89.61

LSTM [32] differential
entropy EEG+PPS 83.23±2.61 83.82±5.01

DCCA [25] differential
entropy EEG+PPS 84.33 85.62

BDAE [19] raw signal EEG+PPS 80.5 85.2

SVM entropy
& energy

EEG 86.80±9.58 86.41±9.40
PPS 72.59±9.73 74.44±9.84

EEG+PPS 88.15±9.11 89.53±7.62
MM-

ResLSTM raw signal EEG+PPS 92.87±2.11 92.30±1.55

In Table 2, we collected the results obtained for the DEAP dataset
in recent studies. These studies use various approaches of fea-
ture extraction and classification models; however, they were all
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subject-dependent, and most of them adopted multiple modalities
(32-channel EEG plus 8-channel PPS). Under these similar experi-
ment settings, the proposedMMResLSTM outperformed these other
methods in terms of accuracy.

To further validate the proposed method, we also implemented
a reference method that used the wavelet entropy and wavelet
energy as features. These features have been reported to be effective
for emotion recognition [2, 6, 33]. SVM (with RBF kernel) is a
frequently used benchmark; thus, it was chosen as the classifier. The
other settings remained similar to our proposed method (subject
dependent, 5-fold cross validation with shuffled data).

We tested the method on varying modality settings (only EEG,
only PPS, and concatenated EEG and PPS); greater accuracies were
achieved with EEG + PPS than the other two variations, which indi-
cates the value of using information extracted from multiple modal-
ities. Even so, the approach incorporating feature extraction and
the SVM classifier did not outperform the proposed MMResLSTM
method. Although the MMResLSTM does not incorporate any fea-
ture extraction technique, its deep residual structure learns the
complex high-level features, and the temporal correlation between
the two modalities is learnt through weight sharing.

5 CONCLUSION
Biosignals from different modalities contain different aspects of
human emotions. Finding the correlation between the information
from these modalities and integrating them could improve the
recognition of human emotions. In this study, we proposed the
MMResLSTM, a multimodal deep LSTM network reinforced by
residual learning and weight sharing. The network functions in an
end-to-end way to implicitly extract high-level temporal features.
Experiments on theDEAP dataset showed that the proposedmethod
classified arousal and valencewith an accuracy of 92.87% and 92.30%,
respectively, thereby outperforming the state-of-the-art methods.

In future, we plan to extend the proposed network to additional
applications that simultaneously utilize EEG and other modalities,
such as the data analysis of sleep stages, labor concentration, and
driving fatigue, possibly undertaking the more challenging task
of utilizing a totally different signal (e.g. video) as the secondary
modality.
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