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Abstract— This paper explores the discrimination ability and
stability of electroencephalogram (EEG) and eye movement
signals over time for classifying five emotions: happy, sad, fear,
disgust and neutral. We develop a multimodal emotion dataset
called SEED-V with 16 subjects. Two classifiers are trained
based on the EEG and eye movement signals. Topographic
maps are used to depict the neural patterns of EEG signal.
The classification result based on EEG, eye movement, and
feature level fusion (FLF) reaches the average accuracies of
70.8%, 59.87% and 75.13%, respectively. The experiment result
indicates that: a) the EEG and eye movement signals have good
discrimination ability for five emotion classification problem;
b) the beta and gamma bands of EEG signal have better
discrimination ability than the delta, theta and alpha bands; c)
the stable neural patterns of different emotions do exist and are
common across sessions; and d) the neural pattern of disgust
emotion has high gamma response in the frontal area, while fear
emotion has low activation at the top of brain in the gamma
band.

I. INTRODUCTION

The last few years have seen the progress of physiological
signals based affective brain-computer interaction [1] and
emotion recognition [2]. There are two kinds of categorical
models of emotions: the discrete model, which distinguishes
a fix number of basic emotions, and the dimensional model,
which depicts emotions in a two- or three-dimensional space
[3]. One of the most famous discrete models of emotion is
proposed by Ekman, which consists of six basic emotions,
namely, fear, anger, surprise, disgust, sadness and happiness
[4]. In this paper, we adopt the discrete model to investigate
the five emotions (happy, sad, fear, disgust and neutral) clas-
sification problem using EEG and eye movement signals. The
discussion mainly focuses on two aspects: the discrimination
ability and stability over time.

In Zheng et al.’s work [5], the discrimination ability of
EEG and eye movement signals for happy, sad, fear and neu-
tral emotions is studied, and related discrete neural signatures
of basic emotions are also found in the functional magnetic
resonance imaging (fMRI) [6]. However, as far as we know,
there is no related research about the five emotions using
EEG and eye movement signals, neither related multimodal
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emotion dataset. The discrimination ability of EEG and eye
movement signals for the five emotion classification problem
needs further investigation. In our previous work [7], the
stable neural patterns of sad, neutral and happy emotions
have been discovered. The finding [8] indicates that the
emotions of fear and disgust are related to core symptoms of
depression, but the stable patterns of EEG signal for disgust
and fear emotions are still unknown.

In this paper, we develop a new multimodal emotion
dataset called SEED-V, which contains EEG and eye move-
ment signals for five emotions (happy, sad, fear, disgust
and neutral). Furthermore, we explore the discrimination
ability of EEG and eye movement signals for the problem
of classifying five emotions. We verify that the critical
frequency bands of EEG for classification are identical to
those in three emotions classification task [9]. To investigate
the stable patterns of different emotions over time, different
affective models are trained on different sessions. In addition
to the neural patterns of happy, sad and neutral emotions
mentioned in [7], the stable neural patterns of the fear and
disgust emotions are investigated in this paper.

II. EXPERIMENT SETUP

In order to obtain the EEG and eye movement signals
of the five emotions, video clips with audio were used
to elicit specific emotions of the subjects’ emotion. Each
subject was required to watch video clips wearing EEG
cap and eye tracking glasses alone in a quiet room. To
investigate the stability of neural patterns over time and the
performance of affective models across sessions, all of the
subjects participated in our experiment three times at an
interval of three days or longer.

A. Stimuli Material

In the preliminary stage, we selected a set of video clips
for the five emotions as our stimuli material pool. Twenty
participants were recruited to assess the stimuli materials
with a rating score from 0 to 5 according to the elicitation
effect after watching each video clip. As a result, nine video
clips for each emotion were selected from the pool as our
stimuli material in the descending order of their mean scores,
and the selected video clips have mean scores of 3 or higher.
The durations of the video clips range from two to four
minutes.

For each session, three video clips from each emotion
were included in the stimuli with fifteen clips in total. The
playing order of video clips is designed as follows: a) try to
avoid sudden emotion transform such as happy emotion after

978-1-5386-7921-0/19/$31.00 ©2019 IEEE

9th International IEEE EMBS Conference on Neural Engineering
San Francisco, CA, USA, March 20 - 23 , 2019

607



sad emotion, since human’s emotion changes gradually; b)
neutral emotion video clips could be used as a buffer between
two opposite emotion video clips.

B. Subjects

Participants enrolled in our experiments were asked to
fill out the Eysenck Personality Questionnaire (EPQ) in the
beginning of the experiments. Those who turned out to be
stable extraverts were selected as the subjects. Therefore,
16 subjects (6 males and 10 females, aged from 19 to
28, mean: 23.27, std: 2.37) with self-reported normal or
corrected-to-normal vision and normal hearing took part in
the experiments.

C. Procedure

Each session of the experiment contained 15 trials, and
a brief abstract of the content and the emotion to elicit is
prompted for 15 seconds before each clip started. After each
clip, there were 15 or 30 seconds left for rest and self-
assessment with relaxing background music. The length of
rest and self-assessment period depended on the emotion type
of the video clip. If the emotion type of the video clip was
disgust or fear, 30 seconds was given to make the subject
better recovered from that emotion, otherwise 15 seconds
was given. Each session last about 55 minutes. The protocol
of each session is shown in Fig. 1.

Trail Trail − 1Trail − 2 Trail + 1 Trail + 2

Hint of Start Movie Clip Self-Assessment

15 sec 2-4 min 15 or 30 sec

Fig. 1: Experiment protocol

The 62-channel active AgCl electrode cap and SMI ETG
eye-tracking glasses were used to record EEG and eye
movement signals simultaneously. The EEG signal was
recorded using ESI NeuroScan System at a sampling rate
of 1000 Hz according to the international 10-20 system. The
electromyogram (EOG) signal was recorded at the same time
from the electrode cap. The impedance of each channel in
the cap was controlled to less than 5 KΩ.

A rating scale was given to the subject before each session
started. The subjects were required to give a score (0-5) based
on the elicitation effect during the rest and self-assessment
period after watching each clip. Meanwhile, the subjects
were instructed to sit comfortably in front of the screen,
watch the forthcoming video intently, and refrain from body
movement to avert the impact of muscle artifacts.

D. Ethics Statement

This study was approved by the Scientific & Technical
Ethics Committee of the Bio-X institute at Shanghai Jiao
Tong University. All the subjects signed up an informed
consent, which described the experiment procedure, before
the first session.

III. METHODS

A. Preprocessing

We preprocessed the EEG signals with Curry 7, and carry
out a baseline correction, then we applied a bandpass filter
between 1 to 50 Hz to each channel. Finally, the signals from
EOG and FPZ channels were used to detect and remove eye
movement artifacts.

The spectral power of EEG signal has been shown to have
highly correlation with emotions [10]. In our previous work
[11], we proposed differential entropy (DE) feature for EEG-
based emotion recognition. Various studies demonstrated that
the DE feature is more suitable for EEG-based emotion
classification in comparison with the power spectral density
(PSD) feature [5][7][9][12]. In this paper, we use the DE
features.

EEG signals were first downsampled from 1000 Hz to 200
Hz before feature extraction to speed up the data analysis
procedure. The Short Time Fourier Transform (STFT) with
a time window of 4 seconds and no overlapping Hanning
window was used to extract the DE feature in the five
frequency bands: delta (1-3 Hz), theta (4-7 Hz), alpha (8-
13 Hz), beta (14-30 Hz), and gamma (31-50 Hz). Moreover,
the linear dynamic system algorithm was used for feature
smoothing [13]. As for the eye movement signals, we used
SMI BeGaze to extract features. The statistics of pupil diam-
eter (X and Y), dispersion (X and Y), fixation duration, blink
duration, saccade and other eye-movement related events
were calculated as the final 33-dimension eye movement
features as described in [14].

B. Classifier Training

We used Support Vector Machine (SVM) with linear
kernel and Multilayer Perceptron (MLP) as the classifiers.
To investigate the discrimination ability of EEG and eye
movement signals, we trained classifiers for each subject
using EEG and eye movement features. The parameter C
of SVM is searched within the range of -10 to 10 with a
step size of 1 using three-fold cross validation. The MLP
contains two hidden layers and one softmax output layer with
128, 64 and 5 cells, respectively. We further utilized a feature
level fusion (FLF) approach, which directly concatenated the
EEG and eye movement features, in comparison with the
classification performance achieved by single modality. In
the purpose of exploring the stability of EEG signals across
sessions, we used one session data as the training dataset and
the data from another session as the test dataset to train the
SVM classifiers for each subject.

IV. RESULT & DISCUSSION

A. Discrimination Ability

1) Discrimination of EEG and eye movement signals: To
evaluate the classification performance for the five emotions,
we trained the classifiers using EEG features, eye movement
features and the FLF approach, respectively. As shown
in Fig. 2, the means and standard deviations of accuracy
rate (%) for EEG features, eye movement features and the
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Fig. 2: The classification accuracy rates (%) for each subject based on the features of EEG, eye movement and FLF.

FLF approach are 69.50/10.28, 59.81/8.77, 73.65/8.90 for
SVM , respectively, and 70.79/8.63, 59.87/8.98, 75.13/8.57
for MLP. For most subjects, the FLF approach achieves
higher performance than the EEG features, and the EEG
features tend to have better discrimination ability than the
eye movement features.

2) Discrimination of Different Frequency Bands: In this
part, we evaluate the performance of the SVM classifiers
trained with the features in the separate and total frequency
bands. Table I shows that high frequency bands have better
discrimination than low frequency bands but with higher
standard deviations, which is consistent with our previous
findings in [9]. The total frequency band can achieve the
highest accuracy rate of 69.50%.

TABLE I: The classification accuracy rate (%) of different
frequency bands for each subject. The frequency band that
reaches highest accuracy is marked out for each subject.

Subject index Delta Theta Alpha Beta Gamma Total
#1 59.79 55.29 70.21 62.21 59.68 68.07
#2 52.93 58.53 63.96 72.02 72.90 84.15
#3 48.22 53.21 59.74 67.64 66.76 65.55
#4 39.93 60.61 64.29 71.31 61.99 72.24
#5 48.66 50.25 46.96 53.98 56.56 53.32
#6 42.02 64.89 42.35 54.64 45.53 65.44
#7 39.44 30.28 39.17 73.83 79.10 78.72
#8 39.22 65.99 55.95 64.18 70.38 74.77
#9 64.18 50.74 72.13 75.04 78.00 85.19
#10 45.26 44.82 63.03 41.09 41.58 47.07
#11 51.62 54.20 53.54 67.96 63.80 77.56
#12 48.33 49.59 62.53 44.98 47.23 63.36
#13 58.86 42.02 64.62 69.61 67.20 76.91
#14 43.23 45.58 55.95 51.40 49.26 60.18
#15 44.32 56.66 52.66 57.10 47.23 64.02
#16 36.20 50.80 57.49 70.87 59.08 75.43
Avg 47.64 52.09 57.79 62.37 60.39 69.50
Std 7.86 8.64 9.00 10.27 11.40 10.28

B. Stability

1) Stability of Emotion Classification Model over Time:
The stability of the emotion classification model over time
is important for the practical applications of affective brain-
computer interactions (aBCIs) [1]. Since subjects are re-

quired to participate in the experiments three times and the
interval between each session is at least three days, the
EEG data from different sessions are used to investigate
the stability of emotion classification model over time. Table
II shows the average accuracies of the classifiers. For each
session, EEG data from this session is used to train one
SVM classifier for each subject. Then, the performance of
the models are evaluated on the EEG data from another
session. In Table II, a mean classification accuracy of 55.84%
is achieved by our model, which implies that EEG signal is
stable over time for emotion classification.

TABLE II: The mean accuracy rate (%) of emotion recogni-
tion model across sessions

Train Test
First Second Third

Avg
First 60.61 53.58 46.71

Second 50.98 70.98 58.95
Third 48.48 50.32 62.00

Std
First 13.28 16.84 17.50

Second 20.04 20.37 14.25
Third 7.93 14.98 19.22

2) Neural Signature and Stable Patterns: Fig. 3 describes
the neural patterns of different frequency bands for disgust,
fear, sad, neutral and happy emotions, which is obtained
by averaging the DE features from all subjects in each
channel. As depicted in Fig. 3, the differentiation of the
topographic maps of each emotion in different frequency
bands demonstrates that the neural signatures corresponding
to the five emotions do exist.

In general, the differences of neural signatures are shown
in the degree of activation across different frequency bands
and brain areas. Specifically, the neural patterns of happy
emotion have significant high energy level in the lateral
temporal area and low energy level in the frontal part in
the beta and gamma bands, while the disgust emotion has
a moderate activation in the lateral temporal part but strong
activation in the frontal part. In fact, except for the frontal
part in the beta and gamma bands, happy emotion has

609



a) Disgust

b) Fear

c) Sad

d) Neutral

e) Happy

Fig. 3: The average neural patterns for all subjects for
different emotions

commonly strong activation in all five frequency bands.
In addition, the neural patterns for both sad and neutral
emotions have a weak response in the lateral temporal area
in the beta band. However, the neutral emotion shows much
stronger brain activity in the delta, theta and alpha bands than
the sad emotion, especially in the parietal and occipital area
of the alpha band. The most distinguishable neural signature
of fear emotion lies in the topographic map of the gamma
band which has a low activation level in the partial area and a
relatively high activation level in the frontal, lateral temporal
and occipital areas. The most important brain regions to
distinguish the neural patterns of each emotion are similar
to and complementary to the brain regions from the fMRI
analysis in [6].

It is worth noting that all five emotions exhibits specific
activation degree in the lateral temporal and frontal areas in
the beta and gamma bands. Although the neural patterns of
sad and neutral emotions are similar in the beta and gamma
bands, sad emotion has a medium level activation in the
frontal area whereas neutral emotion simply has a weak
response. These results indicate that high frequency bands
(alpha, beta, and gamma) have better discrimination ability
than low frequency bands (delta and theta).

V. CONCLUSIONS

In this paper, we have evaluated the discrimination ability
of EEG and eye movement signals for the five emotions
classification problem and the stability of EEG signal over
time. Experimental results have indicated that EEG signal

has better discrimination ability than eye movement signal,
and the feature level fusion method achieves the best classi-
fication performance.

The stability of the emotion classification model over
time has shown that the neural patterns are stable across
sessions. The frontal area has high gamma response for
disgust emotion. The fear emotion has a low gamma response
in the partial area, and relatively high gamma response in the
frontal, lateral temporal and occipital areas. Although sad and
neutral emotions have similar neural patterns in the beta and
gamma bands, neutral emotion has stronger activation in the
parietal and occipital sites. As for happy emotion, stronger
neural activities are observed in most brain areas in all five
frequency bands compared to the other emotions, especially
in the lateral and temporal area. The neural patterns found
in this paper are consistent with the findings in [6]. The
main difference among the neural patterns of emotions lies
in the alpha, beta, and gamma bands, which indicates that
high frequency bands have better discrimination ability than
the low frequency bands.
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