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Abstract—To build a subject-independent affective model
based on electroencephalography (EEG) is a challenging task due
to the domain shift problem caused by individual differences in
EEG data. In this paper, we prove a new generalization bound
based on Wasserstein distance for multi-source classification and
regression problems. Based on our bound, we propose two nov-
el Wasserstein-distance-based multi-source adversarial domain
adaptation methods (wMADA) for learning domain invariant and
task discriminative domain mappings by dynamically aligning
different domain mappings. We evaluate our methods on two
typical EEG datasets. The experimental results demonstrate
that our wMADA methods successfully handle the multi-source
domain shift problem in creating subject-independent affective
models and outperform the state-of-the-art domain adaptation
methods.

Index Terms—Affective brain-computer interface, EEG-based
emotion recognition, EEG-based vigilance estimation, multi-
source domain adaptation

I. INTRODUCTION

A major obstacle for applying aBCIs to the real-world sce-
narios is the structural variability of electroencephalography
(EEG) signals between different subjects, which causes the
domain shift problem and can not make a model trained by a
subject generalize well to another subject.

Domain adaptation (DA) is one of the promising ways
to dealing with the domain shift problem [1]. DA assumes
that the marginal distribution of the labeled source domain
is different from the unlabeled target domain while their
conditional distributions are the same. DA methods alleviate
the domain shift problem by mapping the two domains into
a common feature space where the marginal distributions
of these two domain mappings are similar. In recent years,
researchers have successfully built subject-independent EEG-
based emotion recognition models for aBCIs by applying
single-source DA methods [2]–[5]. And most of them consider
all the source subjects as one domain. However, different sub-
jects usually have different marginal distributions. As a result,
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typical single-source DA methods may lead to suboptimal
results when tackling these multi-source tasks.

In this paper, we view data from different subjects belong
to different domains and develop a multi-source subject-
independent approach to overcoming the domain shift problem
in two common aBCIs paradigms: EEG-based emotion recog-
nition and vigilance estimation. We give a new generalization
bound for both classification and regression problems which
have multiple source domains and propose a novel DA method
called Wasserstein-distance-based multi-source adversarial do-
main adaption (wMADA). Here, we introduce two versions of
wMADA: wMADA-α and wMADA-β. wMADA-α method
directly minimizes the bound without considering the relation-
ship between different source domain mappings. wMADA-
β method minimizes the bound while aligning multi-source
domain mappings by introducing a public discriminator.

II. METHODOLOGY

A. Theoretical Analysis

Here we use the dual form of Wasserstein-1 distance [6]:

W1(µS , µT ) =
1

K
sup

||f ||L≤K
Ex∼µS

[f(x)]−Ex∼µT
[f(x)], (1)

where ||f ||L ≤ K denotes the set of all K-Lipschitz continu-
ous functions f : Ω→ R.

Theorem 1: [7] Let µS , µT ∈ P(Ω) be two probability
measures. Assume H is the hypothesis class of K-Lipschitz
continuous functions with some certain K, then we have:

εT (h) ≤ εS(h) + 2KW1(µS , µT ) + λ, (2)

where λ is the combined error of the optimal hypothesis h∗

minimizes εS(h) + εT (h).
Shen et al. [7] proposed a learning bound for DA with

Wasserstein distance in the single source case. Here we
broaden the bound of Eq. (2) for the multi-source cases.

Theorem 2: Let H be a hypothesis class with K-Lipschitz
continuous functions , and {Si}ki=1 and T are k source
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Fig. 1. The architecture of the proposed wMADA-α and wMADA-β methods.
The two methods have the similar network architecture except for that
wMADA-α does not have a public discriminator. For the wMADA-α method,
all the components are trained simultaneously. For the wMADA-β method,
in the pre-training step, all the components except the private discriminators
are trained; in the self-adaptive training step, all the components are trained
together. Specially, we apply adversarial training with gradient reversal.

domains and the target domain, then, ∀αi ≥ 0,
∑k
i=1 αi = 1,

∀h ∈ H, we have:

εT (h) ≤
k∑
i=1

αi(εSi
(h) + 2KW1(µSi

, µT )) + λα, (3)

where λα is the error of the optimal hypothesis on the mixture
source domain

∑k
i=1 αiSi.

Proof 2.1: Denote S̃ =
∑k
i=1 αiSi as the mixed source

domain weighted by {αi}ki=1 of the k source domains, whose
distribution is µS̃ =

∑k
i=1 αiµSi . From Theorem 1, we have:

εT (h) ≤ εS̃(h) + 2KW1(µS̃ , µT ) + λα, (4)

and we can upper the bound of 2KW1(µS̃ , µT ) as follows,

2KW1(µS̃ , µT ) = sup
||f ||L≤2K

Ex∼µS̃
[f(x)]− Ex∼µT

[f(x)]

≤
k∑
i=1

αi sup
||f ||L≤2K

Ex∼µSi
[f(x)]− Ex∼µT

[f(x)]

=

k∑
i=1

αi2KW1(µSi
, µT ), (5)

Replacing εS̃(h) with
∑k
i=1 αiεSi

(h), we complete the proof.
Redko et al. discussed the convergence of empirical Wasser-

stein distance to its real distance [8]. The bound here is suitable
for both classification and regression problems.

B. wMADA-α

1) Framework: Inspired by our theoretical results, we first
propose wMADA-α, which is illustrated in Figure 1. Suppose
we sample from k labeled source domains {Si}ki=1 and one
unlabeled target domain {T}. The last term in the generaliza-
tion bound of Eq. (3) can be ignored under the assumption
of DA. Namely, we only need to minimize the training error

of source domains and the Wasserstein distance between each
source and target domain.

Our proposed wMADA-α method consists of a common
feature extractor, a main task classifier or regressor, and k
private discriminators. The feature extractor aims to map
all the domains to a common space. We denote the i-th
source mapping as xSi

and target mapping as xT . The private
discriminators, which align the source domain mapping with
target domain mapping, calculate the empirical Wasserstein
distance between the marginal distribution of each source
domain mapping and target domain mapping in an adversarial
manner. We use gradient reversal [9] to realize adversarial
training.

2) Loss: In the training phase, all the source domains and
target domain are first mapped into a common space with
the common feature extractor. We denote our main task loss
as LmainSi

for each source domain based on our main task,
where Si denotes source domain i. If the main task is a
classification problem, LmainSi

is the sum of typical cross-
entropy loss of each source domain. If it is a regression
problem, LmainSi

is the sum of root mean squared error. We
denote θf and θF as the parameters of the main task network
and common feature extractor, respectively.

Next, we need to calculate the Wasserstein distance between
different domain mappings. The output of each private dis-
criminator is denoted as di(x) which can be used to calculate
the empirical Wasserstein distance between xSi

and xT . With
the private discriminators, we aim to align each xSi

with
xT . In this way, we can minimize the empirical Wasserstein
distance between xT and xSi in an adversarial way [6],

min
θF

max
θdi

Ex∼xT
[di(x)]− Ex∼xSi

[di(x)], (6)

where θdi represents the parameters of di(x), and we define
the distance as:

Lwi = Ex∼xT
[di(x)]− Ex∼xSi

[di(x)]. (7)

For the constraint of K-Lipschitz continuousness, we use
gradient penalty [10] work to make the training process more
stable. The gradient penalty is as follows,

Lgradi = λ(||∇x̂di(x̂)||2 − 1)2, (8)

where x̂ is the random linear interpolation between xSi
and

xT , namely x̂ = βxT+(1−β)xSi
for some random β sampled

between 0 and 1.
According to the proposed generalization bound, the loss

on each domain will have a weight αi from the factors of a
convex combination. Here we define the weight as:

αi =
exp(LmainSi

+ Lwi
)

k∑
j=1

exp(LmainSj
+ Lwj

)

. (9)

We use this weight for two reasons: (a) this weight could
lead to a brief upper bound [11]; (b) it adaptively corresponds
to the main task loss and Wasserstein distance between differ-
ent domain mappings, and we give the following weight rule:
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the larger the loss and distance, the heavier the weight. The
larger loss means that the corresponding main task network
should be fully trained, so we need to give it a larger weight.
Besides, larger distance means a larger domain shift between
target and source domain mapping, and we need to use a larger
weight to reduce the distance.

The updating rule during the training is:

min
θf ,θF

k∑
i=1

αi(LmainSi
+ max

θdi

Lwi) +

k∑
i=1

min
θdi

Lgradi . (10)

C. wMADA-β

1) Framework: We now propose wMADA-β method which
aligns the target domain mapping with the multi-source do-
main mappings, and aligns source domain mappings with
each other simultaneously. The wMADA-β method illustrated
in Figure 1 has an extra public discriminator, which aligns
multi-source domain mappings with each other by constraining
all of the source domain mappings to one distribution with
adversarial training. The functions of the other components are
the same as the wMADA-α method. To better align different
domain mappings, the wMADA-β method has two training
steps: pre-training and self-adaptive training.

2) Loss: In the pre-training phase, all the source domains
and target domain are first mapped into a common space with
the common feature extractor. The loss LD for the public
discriminator is the cross-entropy for domain classification.
And other notations are the same as the wMADA-α method.
During this phase, we update the main task network and the
public discriminator according to the following rule:

min
θf ,θF

k∑
i=1

LmainSi
+ min

θD
max
θF
LD, (11)

where θD represents the parameters of the public discrimina-
tor. By training LD in an adversarial manner, we hope the
common feature extractor can fool the public discriminator
and make it more powerful. This process can finally reach
Nash Equilibrium, in which all source domain mappings will
have a similar marginal distribution. Namely, the multi-source
domain mappings are aligned in the first place.

In the self-adaptive training phase, we need to minimize
the bound in two aspects: (a) minimize the main task loss
and Wasserstein distance between target and different source
domain mappings by an adaptive weight; (b) train the public
discriminator in the same way described in the pre-training
phase to align the multi-source domain mappings. To better
align different domain mappings, not only do we need to
train the public discriminator to keep the similarity of different
source domain mappings, but also we need to use an adaptive
weight which both considers the relationship between source
and target domain mappings and the relationship between
multi-source domain mappings.

The output of the public discriminator is denoted as D(x)
which is a k-dimensional vector. It indicates the probability
that the input x belongs to the k source domain mappings.

We define the relative distance from xSi to the other source
domain mappings as follows:

si =
exp(KL(D(xSi)||U))
k∑
j=1

exp(KL(D(xSj )||U))

, (12)

where U is the uniform distributed matrix whose shape is like
D(xSi

) and elements are all 1/k. We use a softmax operation
on the KL-divergence between the public discriminator’s out-
put and a uniform distributed matrix which can indicate the
relative position among the source domain mappings. When a
source domain mapping is ‘further’ from other source domain
mappings, its si will be larger.

And now we can define the adaptive weight as:

αi =
exp(LmainSi

+ Lwi
+ si)

k∑
j=1

exp(LmainSj
+ Lwj + sj)

. (13)

Our intuition is, if xSi
has a higher main task error, a higher

distance from xT and is further from the other source domain
mappings, we give it a higher weight. Comparing with the
wMADA-α method, we introduce an si factor, which ensures
to align multi-source domain mappings with each other while
aligning target domain mapping with source domain mappings.
Besides, the weight is according with the weight rule men-
tioned in the wMADA-α method, the larger the loss and the
distance, the larger the weight.

So the updating rule during the self-adaptive training phase
is:

min
θf ,θF

k∑
i=1

αi(LmainSi
+ max

θdi

Lwi
) +

k∑
i=1

min
θdi

Lgradi

+ min
θD

max
θF
LD.

(14)

III. EXPERIMENTS

A. Datasets and Data Pre-processing

In this work, we evaluate different DA and our proposed
methods on two typical EEG datasets, SEED1 [12] and SEED-
VIG2 [13]. The SEED dataset contains the EEG signals of 15
participants. They were required to watch 15 well-prepared
video clips that can elicit exactly one of the three kinds
of emotion: positive, neutral, and negative. The SEED-VIG
dataset consists of the EEG signals and electrooculography
(EOG) signals recorded from 23 subjects. They were required
to drive in a simulated driving system for two hours to elicit
different vigilance state. For the SEED dataset, differential
entropy (DE) feature [14] has been extracted from 5 frequency
bands. For the SEED-VIG dataset, we use forehead EOG
and EEG signals. We extract the same feature following the
existing studies [4].

1http://bcmi.sjtu.edu.cn/∼seed/index.html
2http://bcmi.sjtu.edu.cn/ seed/download.html
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Fig. 2. Comparison of H-divergence and Wasserstein distance. (a) Change of H-divergence in MDAN. (b) and (c) Changes of Wasserstein distance in
wMADA-α and wMADA-β, respectively.

Methods SEED SEED-VIG SEED-VIG
Acc. Std. PCC Std. RMSE Std.

SVM/SVR 0.582 0.139 0.761 0.231 0.169 0.067
TCA 0.640 0.147 0.779 0.215 0.160 0.054
DANN 0.792 0.131 0.840 0.154 0.143 0.059
ADDA 0.812 0.061 0.844 0.134 0.141 0.051
WGANDA 0.866 0.047 0.852 0.098 0.154 0.053
M3SDA 0.868 0.053 0.852 0.081 0.141 0.055
MDAN 0.868 0.042 0.859 0.112 0.140 0.054

wMADA-α 0.880 0.045 0.869 0.104 0.139 0.050
wMADA-β 0.893 0.040 0.891 0.069 0.139 0.048

TABLE I
PERFORMANCE OF DIFFERENT DA METHODS.

B. Evaluation Details

We use leave-one-subject-out cross-validation, which is a
widely applied evaluation criterion in the existing subject-
independent aBCIs [2]–[5], to demonstrate the effectiveness
of the proposed methods. Specifically, we leave one subject
as the target domain for each time, and other subjects (14
subjects for SEED, 22 subjects for SEED-VIG) are regarded
as source domains.

The support vector machine (SVM)/support vector regressor
(SVR) is selected as the baseline method. We also compare the
results of TCA [15], DANN [9], ADDA [16], and WGANDA
[5]. For multi-source DA methods, we introduce two repre-
sentative methods to aBCIs: M3SDA [17] and MDAN [11].

IV. RESULTS

Figure 2 shows the normalized distances between the three
randomly selected source domain mappings and the target
mapping on the SEED dataset during the training of MDAN
[11], wMADA-α and wMADA-β methods. We pre-train the
private discriminators to make their outputs at the first iter-
ation could represent the Wasserstein distance. We can see
that Wasserstein distance is superior to H-divergence, and
converges much more stable. Besides, we can find that our
methods get a relatively smaller distance, which implies the
two corresponding domain mappings from our methods have
a more similar marginal distribution. This observation also
agrees with the previous theories [8] and results [6], [7].

Compared with wMADA-α, the distances in wMADA-β
are closer to each other, which implies that the distances
between target domain and different source domain mappings
are similar. Different source domain mappings have a similar
distribution and the public discriminator successfully aligns
multi-source domain mappings with each other while the
target and source domain mappings are aligned. Besides, the
converge values of the distances in wMADA-β are also smaller
than wMADA-α, which implies that the generalization bound
could approximate to its minimum when the source domain
mappings are aligned. Moreover, Figure 2(c) also shows that
the public discriminator can improve stability during the
training process.

Table I shows the performance of different DA methods
on the two datasets. For the SEED dataset, we use the mean
classification accuracy of all folds to estimate the performance
of different methods. We list the results of SVM, TCA, and
DANN from the existing work [3]. We implement ADDA,
WGANDA, M3SDA, and MDAN on the SEED dataset. Com-
paring with SVM, we see that DA methods significantly
improve the performance. Besides, multi-source DA methods
have higher accuracies. And our proposed wMADA-β method
outperforms the existing methods with a mean accuracy of
89.3%.

Since the SEED-VIG dataset is a dataset for the regression
problem, we use two measures, Pearson’s correlation coeffi-
cient (PCC) and root-mean-square error (RMSE) to estimate
the performance of different DA methods. The results of SVR,
TCA, DANN, and ADDA are from the existing work [4]. And
we implement WGANDA, M3SDA, and MDAN on the SEED-
VIG dataset. For PCC, multi-source DA methods have better
performance. The proposed wMADA-β method achieves the
best mean PCC of 0.891 among nine approaches. For RMSE,
our wMADA-β method also reaches the best performance with
a mean RMSE of 0.139. Moreover, wMADA-β is superior
to wMADA-α on the two datasets because the multi-source
domain mappings are aligned in this method.

As illustrated in Figure 3, the domain mappings produced
by different methods are visualized in a two-dimensional way
by using t-SNE to explain the effectiveness of the proposed
methods. From Figure 3(a), we see that the domain mappings
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Fig. 3. Two-dimensional visualization of source and target mappings from different DA methods on the SEED dataset: (a) TCA; (b) MDAN; (c) wMADA-β.
Here, different colors represent different emotions, different numbers represent different source domain mappings, and triangles represent the data from target
domain mapping. Note that the yellow circles shown in (b) and (c) denote overlapping areas between different emotions, and the overlapping areas in (a) are
omitted because there are too many overlapping areas.

are mixed up, which indicates the traditional single-source
DA methods can not work efficiently for the multi-source
tasks. Figure 3(b) illustrates the domain mappings generated
by MDAN. Although the mappings of different domains are
clustered, there exist four areas with overlapping between
different emotions. As we can see from Figure 3(c), not only
does different emotion has more clear classification boundary,
but also different target and source domain mappings are
distributed uniformly in the space in comparison with Figure
3(b). This observation is also consistent with Figure 2 since
wMADA-β method aligns the target domain mapping with the
source domain mappings and aligns the multi-source domain
mappings simultaneously. wMADA-β method successfully
finds a space where domain mappings are domain invariant
and task discriminative. And different domain mapping has
a similar marginal distribution. Therefore, the multi-source
domain shift problem has been handled.

V. CONCLUSIONS

In this paper, we have proven a new generalization bound
based on Wasserstein distance for multi-source DA on both
classification and regression problems. Based on the new
bound, we have proposed the wMADA-α method for deal-
ing with the multi-source domain shift problem and build-
ing subject-independent aBCIs models. And we also have
proposed wMADA-β by aligning the multi-source domain
mappings while aligning the target domain mapping with
the source domain mappings. We have evaluated the perfor-
mance of our methods and compared our methods with other
state-of-the-art single-source and multi-source DA methods
by conducting leave-one-subject-out cross-validation on two
public EEG datasets. The wMADA-β method has the best
performance with a mean accuracy of 89.3% on the SEED
dataset and with a mean PCC of 0.891 and a mean RMSE of
0.139 on the SEED-VIG dataset. And the experimental results
are in consistent with our theories.
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