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Abstract: Various theoretical results show that learning in conventional feedforward neural networks such 
as multilayer perceptrons is NP-complete. In this paper we show that learning in min-max modular (M3)  
neural networks is tractable. The key to coping with NP-complete problems in M3 networks is to decompose 
a large-scale problem into a number of manageable, independent subproblems and to make the learning of 
a large-scale problem emerge from the learning of a number of related small subproblems. 

1 Introduction 
One of the most important issues in supervised learning for feedforward neural networks is the computational 
complexity of the training problem, which asks how much computational effort is required to achieve good 
performance in the training phase. Judd 12, 31 showed that the following loading problem to be NP-complete: 
given a network specification and a set of training examples, does there exist a set of adjustable parameters 
for the network so that the network produces the correct output for all the examples ? Under the framework 
of Judd's loading problem, various theoretical results have been reported. All the results suggest that 
learning in feedforward neural networks is intractable [l ,  4, 61. 

On the other hand, using a refinement of the Probably Approximately Correct (PAC) learning model, 
M a s s  [8] proposed multilayer neural networks with piecewise polynomial activations and a fixed number of 
analog inputs, and showed that efficient learning in these networks is possible. However, it seems that how 
to select suitable single homogeneous neural networks for large-scale problems is still problematic. 

In fact, neuroanatomy and cognitive neuroscience provide a great amount of evidence showing that the 
information processing system in the brain consists of modules, which can function quite independently of 
each other. Modularity appears to be an important principle in the architecture of the brain [ll], and a key 
to understanding the emergence of learning in artificial neural networks [9]. 

This paper addresses the computational complexity of supervised learning problem for min-max modular 
(M3)  neural networks. The M3 network is a hierarchical, parallel, and modular learning framework proposed 
in our previous work [7]. Fig. 1 presents an overview of the M3 learning framework. In this paper we show 
that learning in M3 networks is tractable. The key to coping with NP-complete problems in learning of M3 
networks is to decompose a large-scale problem into a number of manageable subproblems and to make the 
learning of large-scale problem emerge from the learning of a number of related small subproblems. 

2 Task decomposition 
Let T be the training set for a I<-class classification problem, 

where zt  E Rn is the input vector, y, E RK is the desired output, and N is the total number of training 
data. 

We suggest that a I<-class problem as defined in (1) can be divided into (t) relatively smaller two-class 
subproblems [7]. The training set for each of the subproblems is given by 
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where E is a small real positive number, zjz) E Xi and zp) E X' are the training inputs belonging to class 
Ci and class Cj,, respectively, and Li denotes the number of data in Xi for i = 1, . . .  , I<. If the desired 
output of a training data is 1 - E ,  then the training data is called positive training data. Otherwise, negative 
training data. 

Sub-problems 
Task 
Decomposition - Problem 

I Solution 1 Concurrent 
Learning 

r).ll. 
Module 
Combination 

Figure 1: An overview of the min-max modular learning framework. 

Assume that the input set Xi is partitioned into Ni (1 5 Ni 5 L i )  subsets in the form 

(3)  
(ij) L'J)  X i j = { z ,  },gl f o r j = l , . . . , N i a n d i = l ,  . . . ,  I<, 

where z[~') E R" is the training input and U?dlXij = Xi. 
Various methods can be used for partitioning Xi into Ni subsets 171. A simple and straightforward 

approach is to divide Xi randomly. In this case, no domain specialists or a prior knowledge concerning the 
decomposition of the problems are required. We use the random decomposition method throughout this 
paper. 

According to the above partition of Xi ,  a I<-class classification problem can be divided into 

relatively smaller and simpler two-class subproblems. The training set for each of the subproblems is given 
by 

( 5 )  
L!*' L(?) 

1 - E ) l l = 1  U {(zpv), O } , Z 1  
T(U,u) = 

$3 
f o r u = l ,  . . . ,  Ni, v = 1 ,  . . . ,  N j ,  i = l ,  . . . ,  I<, a n d j = i + l , . . . , I i '  

where ziiU) E Xiu and zp") E X,, are the training inputs belonging to class Ci and class Cj, respectively. 
If the training set qy' ') has only two different elements in the form 

T!."?") $3 = {(z(ldu), 1 - E )  U (z?'), E ) }  (6) 
f o r u = l , . . . , L i , v = l , . . . , L j ,  i=l,...,Ii,andj=i+l,...,K, 

then this training set is obviously a linearly separable problem because any two different training data can 
always be separated by a hyper-plane. 

An important feature of the above task decomposition method is that each of the subproblems can be 
treated as a completely independent, non-communicating subproblem in the training phase. Consequently, 
all of the subproblems can be learned in a completely concurrent way. 
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3 Module combination 
After training of each of the network modules on the related subproblems, all of the individual trained mod- 
ules can be easily integrated into an M3 network according to  the following module combination principles. 

Theorem 1 (Minimization Principle) Suppose a two-class problem B is  divided into P relatively smaller 
two-class subproblems, Bi for i = 1, . . . , P,  and also suppose that all the subproblems have the same positive 
training data and hold different negative training data. If the P subproblems are correctly learned b y  the 
corresponding P individual network modules, M i  for i = 1, . . . , P ,  then the combination of the P trained 
network modules with an MIN unit produces the correct output for all the training inputs in  B ,  where the 
function of the MIN unit is t o  find a m in imum value f r o m  its multiple inputs. 

Proof. Let us consider the problem as the following two cases. 
Case 1: Let z be a positive training input belonging to  B.  According to the definition of Bi, all the P 

subproblems, Bi for i = 1, . . . , P ,  contain the same z. Since all of the subproblems are successfully learned 
by the corresponding P networks modules, Mi for i = 1, . . . ,  P ,  the output of each of the P network 
modules, h i ( z )  for i = 1, ... , P ,  satisfies 

I hi(%) - (1 - 6 )  )I S for i = 1, . - . ,  P, (7) 

where 6 is a positive real number, which denotes the error tolerance. 
Therefore, we have 

I: I minhi(x) - (1 - 6 )  15 S 
2 = 1  

Case 2 Let x be a negative training input belonging to  B.  According to  the definition of Bi, among 
the P subproblems, there are a t  most Q (1 5 Q < P )  subproblems, B,(i) for i = 1, . . . ,  Q, contain z, and 
the other R ( R  = P - Q) subproblems, B,(i) for i = 1, . . . , R, do not hold z. Since all of the subproblems 
are successfully learned by the corresponding networks modules, the outputs of Q modules satisfy 

l h , i ( z ) - ~ ) I < S  f o r i = l , . . . , Q  . (9) 

On the other hand, because x was not used as a training data for the other R network modules in the 
training phase, each of the R trained network modules might produce arbitrary output for z, that is, 

0 < h,i(x) 5 1 f o r i  = 1, . . . ,  R, (10) 

where the assumption we made is that  the range of the output for each of the network modules is between 
0 and 1. 

From (9) and (lo),  we have 
P 

I min i = l  h i ( z )  - E )  I< S 

Theorem 2 (Maximization Principle) Suppose a two-class problem B is  divided into P relatively smaller 
two-class subproblems, Bi f o r  i = 1, . . . , P,  and also suppose that all the subproblems have the same nega- 
tive training da ta  and hold different positive training data. If the P subproblems are correctly learned b y  the 
corresponding P individual network modules, Mi for i = 1, . . ' , P ,  then the combination of the P trained 
network modules with an MAX unit produces the correct output f o r  all the training input i n  B ,  where the 
function of the MAX unit is  t o  find a maximum value f r o m  its multiple inputs. 

Proof. The proof of this Theorem is omitted due to  space requirements. It can be proved following the 
0 

Let 9 denote the actual output vector of the M3 network for a I<-class classification problem, and let 
similar way as mentioned in Theorem 1. 

g(z)  denote the transfer function of the M 3  network. We may then write 

Y = g(z) = [gi(x) ,  . . '  1 g K ( z ) I T ,  (12) 

where y E RK, and g i ( z )  E R is called the discriminant function, which discriminates the patterns of class 
Ci from those of the rest classes. 
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Table 1: Performance comparison of LeNet and the M3 network on the handwritten digit problem. Note 
that the CPU time of LeNet was measured on SUN SPARCstation 1 [5], while the CPU time of the M3 
network was measured on SUN Ultra 30. 

Classifiers Error rates (%) I CPU time (sec.) 
Training Test I M ax. Total 

M3 

According to the minimization principle, the discriminant functions g i ( z )  of the M3 network for the ( z )  
two-class subproblems defined in (2) can be given by 

0.0 5.0 48 9401 

where the term b - h,i(x) denotes the inverse of h,.i(x) and b denotes the upper limit of the output value of 
each module. 

Similarly, according to the minimization and maximization principles, the discriminant function gi (z) 
of the M3 network for xy=i+l Ni x Nj two-class subproblems defined in (5) can be expressed as 

where the term b - maxf;, [minz ,  h$ '" (x)]  denotes the inverse of maxf:, [minz ,  h;:'r)(x)]. 

4 Coping with NP-complete Problems 
From experience of training neural networks, we know that small problems can be easily learned by means 
of existing learning algorithms. For example, it is easy for us to learn the XOR problem by using a three- 
layer perceptron and the back-propagation algorithm. Therefore, we naturally ask: can the learning of a 
large-scale problem emerge from the learning of a number of corresponding small subproblems ? We will 
give a positive answer to this question from the following two theorems. 

Theorem 3 (Arbitrary Partition) Suppose that there is  a learning algorithm A, which is eficient f o r  
learning two-class problems whose sizes are equal to or less than p .  If a IC-class problem T has a finite 
number (N) of training data, and if T is divided into a number of two-class subproblems according to  (2) 
and (5), then f o r  p (2 5 p 5 N) ,  there exist Ii' integers, Ni (1 5 Ni 5 Li) f o r i  = 1, . . .  , IC, that make the 
size of each of Ni x Nj two-class subproblems be equal to or less than p .  

Proof. Let cr = max{[L1/N11, . . . ,  ~ L K / N K ~ } ,  where rt1 denotes the smallest integer greater than or 
equal to t .  If (Y 5 p/2, then the number of training data in T:") of (5) is equal to or less than p .  

0 

In practical applications of neural networks, the value of p might depend on several factors such as the 
probability distribution of training data,  the capability of network modules, the training algorithms, and 
the computer power available. 

Therefore, let Ni = [ 2 L i / p ]  , then the size of each of the subproblems is equal to or less than p .  

Theorem 4 (Guaranteed Integration) If a IC-class problem T is divided into xEl x,"=i+l Ni x Nj 
two-class subproblems according to (2) and (5), and each of the subproblems is correctly learned b y  a cor- 
responding network module, then there is an M3 network which is just  a combination of all of the network 
modules, ELl Ni) MIN units, and (t) MAX units, such that the 
M3 network produces the correct output for all the training inputs i n  T .  

Ni x N, INV units, (IC + 

Proof. The results can be proved by using the minimization and maximization principles. 0 
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5 Experimental Results 
5.1 XOR Problem 
According to  the task decomposition method, the XOR problem (see Fig. 2(a)) was divided into four linearly 
separable subproblems: T('2 '1, T(lr2),  T('> '1, and T(2i2) ,  which are depicted in Fig. 2(b)-(e), respectively. 
Four perceptrons represented as M('1 '1, M('l2), M(211), and M(2,2) were selected to  learn T( ' , ' ) ,  T('l2), 
T(2i1), and T(212), respectively. The M3 network which consists of the four perceptrons is shown in Fig. 
1. The optimal boundaries formed by the four perceptrons are shown in Fig. 3(a)-(d), respectively. The 
responses of the combinations of individual modules and the whole M3 network are shown in Fig. 3(e)-(g), 
respectively. Comparing Fig. 2(a) with Fig. 3(g), we see that the M3 network forms optimal boundaries for 
the XOR problem. 

(a) (b) (c) (4 (e) 

Figure 2: Partition of the XOR problem into four linearly separable subproblems. (a) The training inputs 
for the original XOR problem, (b) T('l1), (c) T('l2),  (d) T(2*1), and (e) T(212), respectively. The black and 
white points represent the inputs whose desired outputs are '0' and ' l ' ,  respectively, and the grey represents 
only the background of the figures. 

(a) (b) (c) (4 (e) ( f ) (€9 
Figure 3: The responses of (a) M(','), (b) M(','), (c) M(2i1)1 (d) M('~'), (e) the combination of M ( l > l )  and 
M('12) with the MIN unit, (f)  the combination of M(2i1)  and M(2,2) with the MIN unit, and (g) the whole 
M3 network, respectively. The black and white represent the outputs of '0' and ' l ' ,  respectively. 

5.2 Handwritten Digit Recognition Problem 
The training set and test set for the handwritten digit recognition problem consist of 7291 and 2007 data, 
respectively. The image for each handwritten ZIP code data contains 16 pixel rows by 16 pixel columns, for 
a total 256 pixels. 

In [5), LeCun, et al., reported that three days were required for training a specific five-layer feedforward 
neural network (LeNet) on this problem'. Here, the original problem is decomposed into 9514 subproblems 
randomly, where N1 = 24, N2 = 20, N3 = 15, N4 = NF, = N7 = Ns = Nlo = 13, and N6 = Ng = 11. The 
number of training data in each of the subproblems is about 100. In the simulation, 9514 three-layer MLPs 
were selected for learning the corresponding subproblems. Each of the MLPs has five hidden units. All of the 
MLPs were trained by the backpropagation algorithm [lo]. The numbers of iterations and CPU times (sec.) 
required for training the 9514 modules are shown in Figs. 4(a) and 4(b), respectively. From Fig. 4(b), we 
see that each of 7372 subproblems can be learned within two seconds. The maximum CPU time (see Table 
1) for learning a single subproblem is about 48 seconds. This means that to  solve the handwritten digit 
recognition problem requires only 48 seconds, instead of three days, if all of the subproblems are learned in 
a complete parallel way. The total CPU time used for learning all 9514 subproblems and the performance 
of the M3 network are shown in Table 1. 

'In [5], 7291 handwritten digits and 2549 printed digits were used as training data, while only 7291 handwritten digits were 
used here. 
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Figure 4: Convergence of the 9514 network modules for learning the corresponding subproblems. (a) shows 
that most of the subproblems were successfully learned within 50 iterations. (b) shows that most of the 
subproblems were correctly learned within two seconds. 

6 Conclusions 
By breaking through the non-modular learning architecture of Judd’s loading problem, we have presented a 
more powerful modular learning framework, namely M3 learning framework. We show in this paper that the 
learning of a large-scale problem in M3 neural networks can emerge from the learning a number of related 
small subproblems. Since any large-scale problems can be easily divided into a number of independent 
subproblems as small as we expect and all of the subproblems can be learned in a completely concurrent 
way, learning in M3 neural networks is easy ! The importance of the result lies in the facts that  it provides 
us with a new approach to coping with NP-complete problems in neural network learning and it gives us 
an example showing the mechanism of emergence of learning in neural networks. 

References 
[l] A. L. Blum and R. L. Rivest, “Training a 3-node neural network is NP-complete”, Neural Networks, vol. 5,  

[2] J. S. Judd, “Learning in networks is hard”, Proc. of 1st International Conference on Neural Networks, pp. 

[3] J. S. Judd, Neural Network Design and the Complexity of Learning, MIT Press, 1990. 

[4] D. R. Hush, “Training a sigmoidal node is hard”, Neural Computation, vol. 11, pp. 1249-1260, 1999. 

[5] Y. LeCun et al., ”Handwritten digit recognition with a back-propagation network”, in Neural Information 
Processing Systems, D. S. Touretzky, Ed. San Mateo, CA: Morgan Kaufmann, pp. 396-404, 1990. 

pp. 117-127, 1992. 

685-692, IEEE, San Diego, California, June 1987. 

[6] J. H. Lin and J. S. Vitter, “Complexity results on learning by neural nets”, Machine Learning, vol. 6,  pp. 
211-230, 1991. 

[7] B. L. Lu and M. Ito, “Task decomposition and module combination based on class relations: a modular 
neural network for pattern classification”, IEEE Trans. Neural Networks, vol. 10, no. 5, pp. 1244-1256, 1999. 

[8] W. Maass, “Agnostic PAC-learning of function on analog neural networks”, Neural Computation, vol. 7,  

[9] M. Minsky, The Society of Mind, New York: Simon and Schuster, 1986. 

pp. 1054-1078, 1995. 

[lo] D. E. Rumelhart, G. E. hinton, and R. J. Williams, “Learning internal representation by error propagation”, 
in Parallel Distributed Processing: Exploration in the Microstructure of Cognition, vol. 1, D. E. Rumelhart, 
J. L. McClelland and PDP Researh Group Eds., Cambridge, MA: MIT Press, pp. 318-362, 1986. 

[ll] D. C. Van Essen, C. H. Anderson, and D. J.  Felleman, “Information processing in the primate visual 
systems: an integrated systems perspective”, Science, vol. 255, pp. 419-423, 1992. 

164 


