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Abstract 

Part of speech tagging systems using neural networks 
have been proposed by Ma, et al. They can tag the un- 
trained data at a practical level of accuracy by training 
a small Thai corpus with ten thousand order words. 
The multilayer perceptron (MLP) type of neural net- 
works used, however, was found to  converge slowly 
and took a very long time to  train even the above 
mentioned small amount of training data. This paper 
presents an alternative method for solving the POS 
tagging problems with the min-max modular neural 
network proposed by Lu and Ito. By using this mod- 
ular neural network, the part of speech tagging prob- 
lems can be broken down into a number of independent 
smaller and simpler subproblems, and all of the sub- 
problems can be learned by small network modules in 
parallel. 

1 Introduction 
Words are often ambiguous in terms of what part of 
speech (POS) they serve and POS tagging, which dis- 
ambiguates them in the context of the sentence, is 
an essential technique in natural language process- 
ing. This technique can be widely used in many areas 
of information processing including pre-processing for 
speech synthesis, post-processing for OCR and speech 
recognition, parser, machine translation, and informa- 
tion retrieval. A large number of POS taggers using 
rule-based (e.g., [l]), statistical (e.g., [a]), decision tree 
(e.g., [3]), and neural network (e.g., [4]) models have 
been proposed so far. These taggers have reached a 
high level of accuracy partly because of the very large 
amount of training data used (e.g., in the order of 
1,000,000 words for English). 

To construct a practical tagger that uses as few 
training data as possible, POS tagging systems that 

consists of multiple neural networks [5] or a single neu- 
ral network with elastic input [6] were proposed by Ma, 
et al. Both of these systems were more than 94% ac- 
curate (counting only the ambiguous words in POSs) 
when tagging untrained data from a small Thai corpus 
with 22,311 ambiguous words available for training. 
This accuracy is far higher than that of the Hidden 
Markov Model (HMM), a major method used for POS 
tagging [6]. The multilayer perceptron (MLP) type 
of neural networks used in the systems, however, was 
found to  be slow to converge and took a long time to 
train even the above mentioned small amount of train- 
ing data. It would therefore be difficult to  train a large 
amount of data  to  further improve tagging accuracy. 

This paper shows that this problem may be solved 
by adopting the module neural network proposed by 
Lu and Ito called a min-max modular network (or M3 
network for short) [7, 81. The M3 network can autc- 
matically break down complex learning problems into 
a number of independent smaller and simpler two-class 
subproblems which can then be automatically recom- 
bined into a solution to  the original problems. 

2 POS Tagging Problems 
In this paper, we suppose there is a lexicon: 

v = ( W l , W Z , .  . . ,d), (1) 

where the POSs that can be served by each word are 
listed, and there is a set of POSs: 

(2) r = (& 2,. . , , .'). 

Here, v is the number of registered words and y is the 
number of types of POSs. This means that unknown 
words that do not exist in the lexicon are not dealt 
with. The POS tagging problem therefore is to  find a 
POS ~t for each target word (the word to  be tagged) wt 

0-7803-5731-0~10.00 01999 IEEE V -356 



provided that the Y is decoded as follows: (wt E V I  t = 1 , .  . . , s) in a given sentence wlw2 . .  . w, 
by using contexts as follows: 

W t  +rt, t = l , . . . , s  (3) 

Here, W t  is the word sequence which is centered by 
the target word and has a length 1 + 1 + T ,  that is, 

wt = wt-1.. . wt . . . Wt+., (4) 

where t - 1 2 1, t + T 5 s. Tagging can thus be 
regarded as a classification problem by replacing the 
POS with class, which can therefore be handled by 
using a method like the neural network model. 

From the word sequence Wt shown in (4), by fixing 
the number of both the left and right words in three'), 
i.e., 1 = r = 3 ,  the input of the neural networks, de- 
noted by X ,  can be constructed as follows: 

x = (Xt-3,...,Xt,...,Xt+3) . (5) 

When word w is given in position p ( p  = t - 3 , .  . . , t+3), 
element xp is a pattern2) defined as 

xp = (ewl,ew2,.~. ,ewy)r (6) 

where y is the number of types of POSs. If w is a word 
that appears in the training data, then each bit ewi is 
obtained as follows3): 

Here Prob(ri 1.1) is the prior probability for ri that the 
word w can be and is estimated from the training data 
as 

ITi, WI Prob( rt Iw) = -, 
lw l 

where Iri,wI is the number of times both ri and w 
appear and lwl is the number of times w appears in 
all the training data. But if w is a word that does 
not appear in the training data, then each bit ewi  is 
obtained as follows: 

(9) 
if ri is a candidate 
otherwise, 

ewi = { 
where yw is the number of POSs that the word w can 
be. 

The output of the neural networks, denoted by Y ,  
is defined as follows: 

y = (Y1,Y2,.-,YJ, (10) 
')In Ref. [5, 61, the number of left and right words is variable. 
2)In Ref. [5,6], the pattern is weighted using information gain 

(denoted by IG) which can be obtained from the training data 
using information theory. 

3)There is more information available for constructing the in- 
put for the words on the left, because they have already been 
tagged. In previous systems proposed by Ma, et al., the in- 
puts for the words on the left are constructed using the already 
tagged results (see details in [5] or [SI). 

if yi 2 0.5 &'yj  < 0.5 for j # i 
Unknown otherwise. r(w) = 

where r(w) is 

3 POS 

(11) 
the tagging result for the word w. 

Tagging with Min-Max 
Module Networks 

3.1 M3 networks 

The central ideas underlying M3 networks are to use 
the class relations among the training data and to ap- 
ply a divide-and-conquer technique to task decompo- 
sition and module combination. 

With M3 networks, a Ii-class classification problem 
can be decomposed into relatively smaller and simpler 
(:) two-class subproblems. These two-class subprob- 
lems involve discriminating class Ci from class Cj where 
i = l , . . . ,  I i a n d j = i + l ,  Ii,whiletheexistence 
of training data belonging to the other K - 2 classes 
is ignored. If discriminating the patterns of class Cd 
from those of class C j  remains difficult for the network 
modules to learn after an initial attempt, the problem 
can be further divided into as many smaller two-class 
subproblems as a user requires. Since each of the two- 
class subproblems can be treated as a completely sep- 
arate classification problem, all of the two-class sub- 
problems can be learned by different network modules 
in parallel. Two module combination principles which 
provide practical guidelines for integrating individual 
trained modules have been proposed in [7, 81. After 
each of the two-class subproblems are learnt by a net- 
work module, all of the individual trained modules can 
be easily integrated into an M3 network according to 
the module combination principles. Consequently, a 
large-scale and complex K-class classification problem 
can be solved effortlessly and efficiently by learning a 
series of relatively smaller and simpler two-class sub- 
problems. 

3.2 Problem decomposition 

The Thai corpus used in this paper contains 10,452 
sentences randomly divided into two sets: one with 
8,322 sentences for training and another with 2,130 
sentences for testing. The training and testing sets 
used in the computer experiments contain, respec- 
tively, 22,311 and 6,717 ambiguous words that serve 
as more than one POS and are used for training and 
testing. In Thai, 47 types of POSs are defined [9], i.e., 
y = 47 [Eq. (2)], but 38 types appear in the Thai cor- 
pus used in the computer experiments. Since there are 
38 kinds of POSs, the POS tagging problem is consid- 
ered as a 38-class pattern classification problem. For 
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Table 1: Number of data belonging to each of 38 
classes in the Thai corpus - 
U 
L1 
L2 
L3 

L4 

L5 

L? 

L9 

LlO 

L11 

Ll2 

L 13 

- 

L6 

L8 

L14 
L15 

Ll6 

L17 

LlS 

L19 

No. of I 
Training 

3041 
72 

1444 
2400 
1582 
3008 

12 
3197 
1537 
48 1 
705 
787 
60 1 
124 
906 
90 

213 
875 
476 

kances 
Testing 

962 
13 

385 
70 1 
399 

1011 
0 

1008 
475 
176 
233 
226 
108 
38 

328 
30 
49 

214 
145 

- 
U 
L20 

L21 

L22 

- 

L23 
L24 

L 2 5  

L26 

L27 
L28 

L29 

L30 

L31 

L32 

L33 

L34 

L35 

L37 

L38 

L36 

- 

No. of I 
Training 

4 
76 
4 
9 

57 
32 
90 
30 
6 

88 
2 

177 
6 
8 

17 
20 
2 

131 
1 

stances 
Testing 

0 
17 
7 
2 

15 
11 
34 

5 
1 

23 
1 

58 
0 
0 
1 
3 
0 

37 
0 

the 22,311 training and 6,716 testing patterns, their 
class distributions are shown in Table 1. 

According to the task decomposition method [7, 81, 
the 38-class pattern classification problem can be di- 
vided into (7) two-class subproblems. Let xj be the 
training set for a two-class subproblem of discriminat- 
ing class Ci from class C j .  The two-class subproblems 
are defined by 

7. '3 - - {(XW 1 1 - +;;1 U { ( X ? ) ,  d}IC:l (12) 
for i = 1, . . .  , 38 and j = i + 1, . . .  , 38, 

where X i i )  E X i ,  X,( j )  E Xj and LS is the number 
of data of X i .  Here, Xi and X j  are the input subsets 
belonging to class Ci and class C j ,  respectively. 

From Table 1 and the definition of two-class sub- 
problems, we see that the number of training data 
for the smallest two-class subproblem ( 7 3 6 , 3 8 )  is only 
3, and the number of training data for the largest 
two-class subproblem (&) is 6,205. Although these 
two-class subproblems are smaller than the original 
problem, some of them are still too large for training. 
Therefore, the large two-class subproblems should be 
further decomposed. 

By using the fine decomposition method [7, 81, each 
of the large two-class subproblems can be divided into 
a number of relatively smaller ones in the form 

L(")  L(V) 
7'u'") '3 = { ( X i i u ) ,  1 - E ) } ~ ; ~  U { ( X p " ) ,  E ) } ~ : ~  

f o r u = l ,  . . . ,  Ni ,  v = l , . . . , N j ,  
i = 1 , . . . , 3 8 a n d j = i + l ,  . . . ,  38, 

(13) 

Table 2: Number of subsets belonging to each of 12 
large classes 

8 I No. of subsets 11 I No. of subsets 
Nl I 10 11 Ng I 5 

where X,(iu) E Xi,,  X?") E X j , ,  and Ni is the number 
of subsets of class Ci .  Here, Xi, and X j ,  are the uth 
and vth input subsets belonging to class C; and class 
C j ,  respectively. 

Table 2 shows the number of subsets belonging to 
each of the following large classes: c1, c3, c 4 ,  c 5 ,  c 6 ,  

Cs, c g ,  C11, C12, C13, c 1 5 ,  and C l S .  The number of sub- 
sets belonging to each of the remaining 24 classes is 1. 
For example, the training data of class c8 is divided 
into 8 subsets, each of which has just 300 patterns. Af- 
ter performing the above partitions, the original tag- 
ging problem is divided into 

38 38 

N i . N j  = 3 , 8 9 3  (14) 
d=l j = i + l  

smaller two-class subproblems. Thus, among the 3,893 
two-class subproblems, the number of training data of 
the largest subproblem (7$,'$2) is only 957. 

3.3 Parallel learning 

An important feature of M3 networks is that each of 
these two-class subproblems can be treated as a com- 
pletely separate classification problem in the learning 
stage. Consequently, all of the two-class subproblems 
can be learned in parallel. In the first round of learn- 
ing, 3,893 three-layer MLPs are selected as network 
modules to learn the 3,893 two-class problems. Each 
of the modules has 329 (= T X  ( l+ l+r)  = 47x 7) input, 
three hidden and one output units. In the simulation, 
the conventional backpropagation algorithm [ l l ]  was 
used. The momentums were all set t o  0.9, and the 
learning rates were all selected as 0.025. Training was 
stopped when the sum of the squared error was smaller 
than 0.05 or the total number of epochs reached 5,000. 
After the first round of learning, about 3,100 network 
modules had achieved the desired learning accuracy 
and the remaining 800 did not converge. In accor- 
dance with the module combination principles [7, 81, 
the 3,893 individual trained modules were integrated 
into an M 3  network shown in Figure 1. 
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X -  

Method 

HMM 
MLP 

Elastic MLP4) 
M3 network-1 
M3 network-:! 

I .................................................................. 

* .................................................................. > 

No. of Accuracy (%) 
Training Testing 

88.3 89.1 
1 96.7 92.6 
1 97.4 94.3 
3,893 98.2 93.2 
3,893 99.0 93.9 

,~ ........... L.- ................................................. _, 

d M 1 , 3 8  INV M 3 8 . 1  1 

4 M 3 7  38- INV M 38,371 

L ........... .................................................... 
,._._ ......... ‘i .................................................... I 
?.. ............. 1 .................................................. : 

Method 

Figure 1: The M3 Network for part of speech tagging. 

No. of No. of Networksize 
Data Iterations 

MLP 
Elastic MLP 

22,311 79 329x y x 3 8  
22,311 10555) 141 x x 38 

M3 network-1 
M” network-:! 

957 5000 329 x 3 x 1 
699 20,000 329 x 6 x 1 

4 Experimental Results 
Table 3 shows the results of experiments comparing 
the M3 network and other tagging methods. As shown 
in the table, the accuracy of the M3 network, trained in 
the manner described above (denoted by M3 network- 
1) was 98.2% for training data and 93.2% for the test- 
ing data. The M3 network was much more accurate 
in tagging the training data than were the other tag- 
ging methods and more accurate for tagging the test- 
ing data than were the HMM and single MLP meth- 
ods. In order to improve the tagging accuracy for the 
testing data, the unconverged 800 two-class subprob- 
lems were learned again by bigger three-layer MLPs, 
each of which had 6 hidden units. The learning rates 
were reduced to 0.011 and the total number of epochs 
was increased to 20,000. After the second round of 
learning, only about 90 modules did not converge. In 
this case (denoted by M3 network-2), the training data 
accuracy reached 99.0% and the testing data accuracy 
reached 93.9%. 

Table 4 shows the computational complexity of the 
M3 network and the existing neuro taggers in terms of 
three factors: the number of training data, the num- 
ber of iterations, and the size of networks. Because 
the computational complexity directly determines the 
computational time, the computational time of the M3 
network is therefore much fewer than that of the ex- 
isting neuro taggers. The data of M3 network shown 
in the table is for one module that takes most long 
computational time, which equals to that of the whole 
network because of the parallel learning. The data of 
elastic MLP is for one training stage that takes almost 
the whole computational time (see details in [6]). The 
number of iterations of the M3 network is much larger 
than that of MLP. It’s training accuracy, however, was 
much higher than that of MLP instead. 

5 Conclusion 
Although the POS neuro taggers previously proposed 
by Ma, et al. have already reached a high accu- 
racy when using a small amount of training data with 
ten thousand order words, they face the scaling prob- 
lem, i.e., the training of neural networks becomes in- 
tractable as the problem size becomes too large due 
to the use of conventional MLP neural networks. This 
paper has shown that an M3 network can deal with 
this problem by dividing a large-scale POS tagging 
problem into relatively smaller and simpler subprob- 
lems. The simulation results indicate that the M3 net- 
work can obtain almost the same generalization per- 
formance as the existing neuro taggers. In addition, 

4)Here shows the case of without using IG. 
5)This data is the case of without using IG. The number of 

iterations is reduced to the half by using IG. 
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the M3 network is superior to the existing neuro tag- 
gers in convergence speed and training accuracy. We 
belive that the M3 networks may provide an effective 
resolution for large-scale POS tagging problems. Our 
next work is to increse the order of the amount of the 
training data and see whether the M3 network can 
learn the data well and obtain a better tagging accu- 
racy for untrained data. 
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