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Abstract

It has been suggested that hippocampal rhythmical slow activity (theta rhythm) is related to
cognitive process and the genesis of P300 response. To test this hypothesis, hippocampal EEG
data from CA1 were recorded from rats trained to perform auditory discrimination oddball
paradigm. In well-trained rats, signi"cant changes in the hippocampal theta rhythm were
observed during an auditory oddball paradigm. Here we used an arti"cial modular neural
network with wavelet coe$cients to investigate whether changes in the hippocampal theta
rhythm are related to cognition of right tone objectively. However, an objective data interpreta-
tion with the modular neural network does not support the hypothesis that changes in theta
rhythm are related to cognitive process. In addition, it was con"rmed that changes in task-
related theta rhythm before/after learning the auditory oddball paradigm resulted from the fact
that training changed the character of the motor behaviour. � 2001 Elsevier Science B.V. All
rights reserved.

Keywords: P300; Hippocampal theta rhythm; Objective interpretation; Modular neural
network

1. Introduction

Theta rhythm is a local "eld potential also known as rhythmical slow-wave activity
(RSA), a sinusoidal-like EEG signal occurring at frequencies within the bandwidth
from 5 to 12 Hz. Theta's long popularity in brain research stems from the hope that it
may be linked to higher cognitive functions such as `attentiona, `motivational statesa,
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or `learninga [7]. Theta rhythm can be recorded from the hippocampal formation of
mammals during voluntary motor behaviours such as walking, running, rearing,
jumping, swimming, digging, manipulation of objects with the forelimbs, and orient-
ing head and body movements [18]. Theta rhythm from cortical surface in experi-
ments with human subjects during virtual spatial navigation has recently been
reported [6], and its possible connection to hippocampal theta rhythm has been
discussed [11]. On the other hand, it is widely believed that the late positive
component (P300) of event related potentials (ERP) re#ects the brain cognitive
processing associated with the detection of a target signal and the neuronal activity in
the hippocampus is involved in its generation [16]. Several investigators [1}4]
suggested that hippocampal theta rhythm is responsible for the genesis of P300
response. However, Vanderwolf [18}20] has suggested that many aspects of the
generalized patterns of electrical activity of the hippocampal formation and neocortex
(including theta rhythm and neocortical activation) are closely correlated with con-
current motor activity and other aspects are related to sensory inputs independent of
overt motor activity. Moreover, predictions from recent advances about neural code
[14,13] support Vanderwolf's suggestions. In this paper hippocampal EEG data from
rats trained to perform auditory discrimination oddball paradigm were analysed
using wavelet transform, and an objective data interpretation with the min}max
modular neural network was tried to clarify this long-standing issue.

2. Animal surgery and training

Eight male Long Evans rats between 300 and 400 g were housed in individual cages
with food and water provided until the behavioural training. A pair of 80 �m
varnish-isolated stainless-steel wires were placed in CA1 region (4.2 mm posterior
bregma, 2 mm lateral to midline, 2.5 and 3 mm ventral to the dura) for recording the
hippocampal "eld potentials. Pairs of stainless steel watch screws were "xed into the
skull over the cerebellum and nasal bone as ground and reference electrodes. One
week after surgery rats were water-deprived and trained in a chamber by means of
oddball paradigms [3], in which occasional &target' stimuli have to be detected in
a train of frequent &non-target' stimuli. We used a low frequency tone of 1 kHz (the so
called odd tone) as &target' stimuli and a high frequency tone of 2 kHz (the so called
frequent tone) as &non-target' stimuli. Tones were given with 50 ms duration and
84 dB intensity. The animals were rewarded by water whenever they discriminate
&target' tone. The recording and training chamber was a box (40 cm�40 cm�40 cm)
with a round open top of 28 cm diameter and a front glass door. A drinking tube,
3.5 cm above the #oor, protruded from the left sidewall. The tones could only be
represented after the rat removed its head from the water tube. Drinking was detected
by using an infrared light source and phototransistor located above the drinking tube.
Up to three drops of water were provided through the tube during each trial.
Hippocampal "eld potentials of 6 s duration including a 1.5 s period before the tone
were recorded in freely moving rats, ampli"ed, "ltered (1 Hz}1 kHz), digitised (2 kHz
sampling rate), and sorted by the stimuli and animal's behaviours. The tip locations of

1558 J. Shin et al. / Neurocomputing 38}40 (2001) 1557}1566



1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

the depth electrodes were veri"ed by light microscopy in the Nissl-stained sections
after the experiments.

3. Task-related changes in hippocampal theta rhythm

Shinba et al. [16] have suggested that P450 of rats may correspond to the human
P300, and that the neuronal activity in the hippocampus is involved in its generation.
Independently, Brankack et al. [3] have found P300-like task-related potentials in the
hippocampus of rats performing an auditory oddball paradigm and suggested that
hippocampal theta rhythm is responsible for the P300-like response. In well-trained
rats it was found that a signi"cant frequency increase of the hippocampal theta
rhythm about 300 ms after the odd tone but only if the animal's response was correct
[4]. After the non-target tone, no comparable changes have been observed irrespect-
ive of the rat's response. In untrained rats any comparable frequency changes after any
of the tones no matter how the rats respond were not found. However, conventional
averaging-based event-related potential, synchronized to repeated occurrences of
a speci"c event, su!ers from two major problems in studying hippocampal EEG; "rst,
ensemble averaging removes information about changes in frequency and amplitude
of the hippocampal theta rhythm during an oddball paradigm. Second, it su!ers from
detecting individual di!erences of single trial evoked-response potentials (ERPs). For
example, it has been found that target-like P300 appears even with nontarget stimuli,
which obviously suggest further investigation as to the reliability of selective event-
related data averaging when applied to cognitive brain function analysis [8].
To overcome above problems from ensemble averaging, we adopted wavelet

time}frequency analysis to investigate both amplitude and frequency changes in
hippocampal theta rhythm during an oddball paradigm, which has been found useful
in analysing nonstationary signals like task related single trial ERPs and oscillations
[17,5]. The hippocampal EEG from rats performing an Oddball-GO/NO-GO refer-
ence memory task was convolved by the Morlet wavelets w(t,w

�
) with a Gaussian

shape both in the time domain and in the frequency domain around its central
frequency w

�
:

=(t,w
�
)"e���� ��e���

����. (1)

These wavelets can be compressed by a scale factor a and shifted in time by
a parameter b. Convolving the signal and the shifted and dilated wavelet leads to
a new signal

S
�
(b)"

1

�a�=�
t!b

a �x(t) dt, (2)

where = is the conjugate of the complex wavelet and x(t) is the hippocampal
EEG signal. These new signals S

�
(b) are computed for di!erent scaling factors a.

In order to generate maps of theta activity, we extracted signal components between
5 and 12 Hz out of the time}frequency maps. Our data consisted of four classes

J. Shin et al. / Neurocomputing 38}40 (2001) 1557}1566 1559



1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

Fig. 1. A typical example (one from each class) of single trial and its wavelet transform of the hippocampal
theta rhythm during an auditory discrimination in well trained rats. Tones were given at zero second.
Colour coding is blue for close-to-zero values and red for close-to-maximum values.

(FR, FW, OR, OW), where `FRa means frequent tone and right behaviour (NO GO),
`FWa frequent tone and wrong behaviour (GO), `ORa odd tone and right behaviour
(GO), and `OWa odd tone and wrong behaviour (NO GO). A typical example (one
from each class) of single trial and its wavelet transform of the hippocampal theta
rhythm during an auditory discrimination in well trained rats is shown in Fig. 1.
Similarly to results using ensemble averaging [4], it was found that a signi"cant
frequency increase of the hippocampal theta rhythm about 300 ms after the odd tone
but only if the animal's response was correct (Fig. 1F). However, we do not know
whether this result is consistent in all single trials. Moreover, the interpretation of the
changes in hippocampal theta rhythm during an oddball paradigm with relation to
the cognitive brain function has not been con"rmed yet.

4. Objective data interpretation by an arti5cial neural network

It has proved di$cult either to verify or to disprove any given hypothesis concern-
ing the operating principles of even the simplest neural system. Major areas are so
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richly interconnected that there exists no good way of separating one function from
another. Moreover, people tend to see what s/he wants to see from this ambiguous
situation. Such subjective interpretations have been a crucial bottleneck to under-
stand brain function objectively. The same has been true for hypotheses related to
hippocampal rhythmical slow activity. Here we propose an alternative way to get rid
of the subjective interpretation problem by using an arti"cial neural network com-
bined with wavelet transform and try to answer two questions: (a) whether single trial
hippocampal EEG data contain su$cient information to distinguish rat's auditory
discrimination behaviours, and if so, (b) which is the most plausible one among
following three hypotheses related to task related changes in hippocampal theta
rhythm,

1. Whether changes in hippocampal theta rhythm are related to recognition of
correct tone.

2. Whether changes in hippocampal theta rhythm re#ect rat's decision to go.
3. Whether changes in hippocampal theta rhythm are a consequence of the fact that

training changed the character of the motor behaviour [18].

In this paper we used the min}max modular network [10] for classi"cation of the
hippocampal EEG data. Fig. 2 shows the relationship between the hippocampal EEG
single trial data, wavelet transform, and the min}max modular neural network. Two
main advantages of the min}max modular network over existing neural networks are
that any large and complex problem can be easily divided into a number of indepen-
dent subproblems small enough as a user expects [9] and all of the subproblems can
be e$ciently learned by small network modules in parallel. Consequently, a large set
of EEG data can be classi"ed e!ortlessly and e$ciently by using the min}max
modular network. Each single trial EEG signal was 6 s in duration and was downsam-
pled from 12,000 samples to 400 samples for 6 s, and 5 wavelet coe$cients over
hippocampal theta bandwidth (5}12 Hz) were extracted. Therefore, 400�5 (2000)
features extracted from each single trial EEG data are used as inputs. The hippocam-
pal EEG single trial data set consists of 1491 training data and 636 test data. The
number of attributes is 2000 and the number of classes is four (FR, FW, OR, OW).
Table 1 shows the data distributions in the training and test data sets. According to
the task decomposition method [10], the EEG single classi"cation problem was
decomposed into 1189 two-class subproblems randomly, where the training data sets
belonging to FR, FW, and OR are divided into 49, 6, and 15 subsets, respectively, and
the number of subsets belonging to OW is one. The number of training data in each of
the subprograms is about 40. Since each of the subproblem can be treated as
a completely separate two-class problem in learning stage, all of the subproblems can
be learned in parallel. In the simulation, the conventional backpropagation algorithm
[12] was used.
The momentums were all set to 0.9, and the learning rates were all selected as 0.03.

Training was stopped when the sum of the squared error was smaller than 0.01 or the
total number of epochs reached 1000. The 1189 three-layer MLPs were selected as
network modules to learn the corresponding 1189 subproblems. Each of the modules
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Fig. 2. Block diagrams to show the relationship between the EEG data, wavelet transform, and the
min}max neural network. (A) Supervised learning process using training data set; (B) Classi"cation of rat's
behaviour using the hippocampal EEG single trial data set.

Table 1
Number of data belonging to each of four classes in the EEG data set and the distributions of incorrect
outputs produced by the trained min}max modular network

Classi"cation by combination No. of instances No. of incorrect outputs
of stimulus and response

Training Testing Training Test

Frequent tone/NO-GO (FR) 1027 430 0 26
Frequent tone/GO (FW) 136 68 0 43
Odd tone/GO (OR) 307 128 0 15
Odd Tone/NO-GO (OW) 21 10 0 10

Total 1491 636 0 94

has 2000 input, six hidden, and one output units. The simulation results show that all
of the network modules successfully learned the corresponding subproblems within
1000 epochs. The number of average epochs and CPU time used for training each of
the network modules are 266 and 95 s at a HP workstation, respectively. Following
the module combination principles [10], the 1189 individual trained modules were
integrated into an M� network shown in Fig. 3. Its success rates on training and test
data, i.e., the learning accuracy and generalization performance, are 100% and 85.2%,
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Fig. 3. (A) The min}max modular network for classi"cation of hippocampal EEG signals, where MIN,
MAX, and INV denote three integrating units, the functions of MIN andMAX units are to "nd a minimum
value and a maximum value from their multiple inputs, respectively, and the function of the INV unit is to
invert its single input; (B) The detail plotting of M

��
network module in the min}max modular network,

where M��	��
��

denotes the network module trained for discriminating the data belonging to the uth subset of
class C

�
from the data belonging to the vth subset of class C

�
.
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Table 2
Detail classi"cation results by the min}max modular network

Class (� of test set) As `ORa As `FWa As `OWa As `FRa Don't know

OR (128) 113 0 0 13 2
FW (68) 3 25 0 38 2
OW (10) 0 2 0 8 0
FR (430) 8 17 0 404 1

respectively. The distributions of the incorrect outputs produced by the trained
M� network are also shown in Table 1. The neural network distinguished three
auditory discrimination behaviours (OR, FR and FW) successfully. Thus, it is quite
unlikely that changes in hippocampal theta rhythm are only related to correct
perception of right (odd) tone. Considering misclassi"ed cases in Table 2, most OW
(NO-GO) cases were classi"ed as FR (NO-GO) cases. But in OR (GO) and FW (GO)
cases were not misclassi"ed each other by the neural network. So it is also unlikely
that change in theta rhythm re#ects rat's decision to go.

5. Relationship between changes in theta rhythm and motor behaviour

From our video recording of rats' behaviour during oddball paradigm, it was found
that the rats moved around sni$ng and exploring the chamber ignoring frequent
tones but quickly walking to the water tube after odd tones. Moreover, the duration of
theta frequency increase after odd tone is correlated with walking time between odd
tones and drinking time in the water tube because no theta rhythm is found during
drinking water. As a result, these results support that theta rhythm is related to motor
activity and then change in hippocampal theta rhythm is a consequence of the fact
that training changed the character of the motor behaviour. Namely, training in this
experiment changed rats' motor behaviour to have quick movements toward the
water tube after correct (odd) tone, which result in theta frequency shifts in ensemble
average. Furthermore, Shin et al. [15] report that theta frequency change is correlated
with spontaneous wheel running speed within single trials even when the relationship
between mean theta frequency and mean wheel running speed has no signi"cant
correlation. Moreover, theta frequency shifts were observed even during spontaneous
deceleration periods without involving any cognitive task and learning.

6. Conclusion

Signi"cant changes in the hippocampal theta rhythm were found during an audi-
tory discrimination oddball paradigm. But, the interpretation of this phenomenon
was a real problem: whether these changes represent cognitive process or motor
activity? An objective interpretation by an arti"cial neural network does not support
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the hypothesis that task-related changes in hippocampal theta rhythm is related to
cognition of right tone. Furthermore, shifts of dominant theta frequency were corre-
lated with quick movements toward water after right tone when rat's movements were
measured together with task-related theta frequency changes. In other words, changes
in hippocampal theta rhythm before/after learning the auditory discrimination odd-
ball paradigm result from a consequence of the fact that training changed the
character of the motor behaviour.
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