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Abstract Non-negative matrix factorization (NMF) has been widely employed in
computer vision and pattern recognition fields since the learned bases can be inter-
preted as a natural parts-based representation of the input space, which is consistent
with the psychological intuition of combining parts to form a whole. In this paper,
we propose a novel constrained nonnegative matrix factorization algorithm, called
the graph regularized discriminative non-negative matrix factorization (GDNMF),
to incorporate into the NMF model both intrinsic geometrical structure and discrim-
inative information which have been essentially ignored in prior works. Specifically,
both the graph Laplacian and supervised label information are jointly utilized to
learn the projection matrix in the new model. Further we provide the corresponding
multiplicative update solutions for the optimization framework, together with the
convergence proof. A series of experiments are conducted over several benchmark
face datasets to demonstrate the efficacy of our proposed GDNMF.
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1 Introduction

Non-negative matrix factorization (NMF) was originally proposed to incorporate the
non-negative constraints into general matrix factorization [13, 14]. It aims to find
two non-negative matrices whose product provides a good approximation to the
original matrix. The nonnegativity properties lead to a parts-based representation
because they allow only additive, not subtractive, combinations. More particu-
larly, NMF represents data as a linear combination of a set of basis vectors, in
which both the combination coefficients and the basis vectors are non-negative.
This property is consistent with the psychological and physical evidence of the
parts-based representation in the human brain [16, 17, 22]. The advantages of
this parts-based representation have been observed in many real world problems
such as face recognition [15], document clustering [23] and DNA gene expression
analysis [5].

As one of the most challenging classification tasks in computer vision and pat-
tern recognition, face recognition has drawn many researchers’ attentions; many
techniques have been proposed in the past few decades. A face image of size
p × q pixels is usually represented by a p × q dimensional vector. However, these
p × q dimensional vectors are too large to allow fast face recognition and the
recognition accuracy is usually low. In order to deal with the high dimensional data
quickly and improve the recognition rate, some dimensionality reduction techniques
have been proposed. Among these dimensionality reduction methods, NMF and
its variants have been widely utilized in face recognition field. Here we give a
brief review on these models for their advantages as well as disadvantages. More
specifically, Donoho et al. [9] proved that NMF does not necessarily decompose
an object into parts, i.e., NMF can not obtain the parts-based representation on
some datasets. In order to overcome this problem and learn spatially localized,
parts-based representation of visual patterns, local non-negative matrix factorization
(LNMF) was proposed in [15]. The purpose of the LNMF is to impose the locality of
features on bases and make the representation suitable for tasks where the feature
localization is more important. However, LNMF ignores the data geometric structure
and the discriminative information although it could learn a more robust parts-
based representation than NMF. To use the data geometric structure, Cai et al. [6]
proposed another variant of NMF, which is called graph regularized non-negative
matrix factorization (GNMF). In the GNMF algorithm, the geometrical structure
of data is encoded by a k nearest neighbor graph. GNMF was specially designed
for clustering tasks, so it may not perform well for classification problems. By
imposing manifold regularization and margin maximization on NMF, another variant
of NMF called manifold regularized discriminative non-negative matrix factorization
(MD-NMF) was introduced in [11]. MD-NMF considered both the local geometry
of data and the discriminative information of different classes simultaneously. In
summary, these variants of NMF have their own properties in classification or cluster
tasks.

Recently, many researchers hold the idea that the data is more likely to reside on
a low-dimensional submanifold embedded in the high-dimensional ambient space. In
order to detect the underlying manifold structure, many manifold learning algorithms
have been proposed, such as locally linear embedding (LLE) [18], isometric mapping
(ISOMAP) [21], laplacian eigenmap (LE) [2]. All these algorithms made use of the
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so-called locally invariant idea [12], i.e., the nearby points were likely to have similar
embeddings. It has been shown that learning performance could be significantly
enhanced if the geometrical structure was exploited and the local invariance was
considered. In addition, the authors incorporated the labels into the dictionary
learning stage and obtained a discriminative dictionary, which was used in face
recognition and good performance was achieved in [24].

Inspired by the success in non-negative matrix factorization based on graph
regularized [6] and discriminative dictionary learning [24], in this paper, we put
forward a novel algorithm, called graph regularized discriminative non-negative
matrix factorization (GDNMF), which explicitly considers the local invariance and
label information. We encode the geometrical structure of data space by constructing
a k nearest neighbor graph and increase the discriminative ability of different classes
by considering the label information. Our goal is to find a parts-based representation
discriminative space in which two data points are sufficiently close to each other if
they are connected in the graph. To this end, we present a new matrix decomposition
objective function by integrating the graph structure and label information. We
also develop an optimization scheme to solve this objective function based on
multiplicative iterative updates of these three factor matrices. This generates a new
parts-based data representation which takes into account the geometrical structure
and discriminative information of the input space simultaneously. Moreover, the con-
vergence proof of our optimization framework is provided in Appendix. Experiments
show that our proposed approach achieves better recognition accuracy than some
recent variants of NMF.

The remainder of the paper is organized as follows: Section 2 introduces the basic
idea of existing variants of NMF. The proposed GDNMF model as well as the opti-
mization method are described in detail in Section 3. In Section 4, the comparative
results of face recognition on four widely used face datasets are reported. Finally,
conclusions are given in Section 5.

2 Related work

Let X be a data matrix of n m-dimensional samples x1, x2, · · · , xn, i.e., X =
[x1, x2, · · · , xn] ∈ R

m×n. Each column of X represents a face image with m dimen-
sions. Usually, m is very large and this may result in slow recognition speed and low
recognition accuracy. Thus, dimensionality reduction is necessary before recognition
and some newest variants of NMF are used as dimensionality reduction techniques.
This section first introduces the original NMF algorithm and then reviews three
variants of NMF.

2.1 Non-negative matrix factorization (NMF)

Non-negative matrix factorization (NMF) [13] decomposes a matrix X ∈ R
m×n

into a product of two matrices W ∈ R
m×r and H ∈ R

r×n (r � min (m, n)), i.e.,
X ≈ WH. Some algorithms for NMF have been raised in [4, 14], such as multiplica-
tive update algorithms, gradient descent algorithms and alternating least squares
algorithms.
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Multiplicative update rules were firstly considered in [14]. The first criterion
function of NMF is based on minimizing the Euclidean distance between X and WH.
The corresponding optimization problem is as follows:

min
W,H

‖X − WH‖2
F

s.t.W ≥ 0, H ≥ 0 (1)

where ‖ · ‖F denotes the matrix Frobenius norm, X ∈ R
m×n is a training sample

matrix, W ∈ R
m×r is called basis matrix and H ∈ R

r×n is coefficient matrix. All the
entries of X, W and H are non-negative. The well-known multiplicative update rules
are as follows:

Hqj ←− Hqj
(WTX)qj

(WTWH)qj

Wiq ←− Wiq
(XHT)iq

(WHHT)iq
(2)

Another criterion function of NMF is based on the Kullback-Leibler divergence,
and the corresponding optimization problem is as follows:

min
W,H

D(X ‖ WH)

s.t.W ≥ 0, H ≥ 0 (3)

where D(X ‖ WH) =
m∑

i=1

n∑

j=1
(Xij ln Xij

(WH)ij
− Xij + (WH)ij) is the Kullback-Leibler di-

vergence between matrices X and WH.
The corresponding multiplicative update rules for solving (3) are as follows:

Hqj ←− Hqj

m∑

i=1
WiqXij/(WH)ij

m∑

i=1
Wiq

Wiq ←− Wiq

n∑

j=1
HqjXij/(WH)ij

n∑

j=1
Hqj

(4)

The convergence of these multiplicative update rules (2) and (4) have been proved
in [14].

2.2 Local non-negative matrix factorization (LNMF)

By adding penalties to NMF, LNMF was introduced in [15] to obtain a robust part-
based representation. The corresponding optimization problem is as follows:

min
W,H

D(X ‖ WH) + α
∑

i, j
Uij − β

∑

i,i
Vii

s.t.W ≥ 0, H ≥ 0 (5)
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where U = WTW, and V = HHT , α, β >0 are some constants. Minimizing
∑

i, j Uij

suppresses over decomposition of the basis matrix W, while maximizing
∑

i,i Vii

encourages retaining components with important information.

2.3 Graph regularized non-negative matrix factorization (GNMF)

Recently, the graph regularized non-negative matrix factorization (GNMF) was
proposed in [6] to encode the data geometric structure in a nearest neighbor graph.
GNMF solved the following optimization problem:

min
W,H

‖X − WH‖2
F + λTr(HLHT)

s.t.W ≥ 0, H ≥ 0 (6)

where L is the graph Laplacian matrix [3], regularization parameter λ ≥ 0 controls
the smoothness of the new representation, and the Tr is the trace of matrix, i.e., the
sum of matrix diagonal entries.

2.4 Manifold regularized discriminative non-negative matrix
factorization (MD-NMF)

In order to incorporate the manifold regularization and the margin maximization into
NMF, MD-NMF was proposed in [11]. MD-NMF solved the following optimization
problem:

min
W,H

D(X ‖ WH) + α

2
Tr(WeWT) + β

2
Tr(HHT)

+ γ

2
Tr(H(L−1/2

c )TLgL−1/2
c HT)

s.t.W ≥ 0, H ≥ 0 (7)

where α, β and γ are the trade-off parameters and they are non-negative constants.
e = 1̄ − I, where 1̄ signifies the matrix whose elements are all one and I is an identity
matrix with appropriate dimensionality. Lg and Lc are two different Laplacian
matrices with respect to two different adjacent graphs.

3 Graph regularized discriminative non-negative matrix factorization (GDNMF)

Inspired by the work in [6, 24], we formulate our optimization problem by adding
supervised label information to the objective function of GNMF. The definition and
update rules of GDNMF are given below.

3.1 GDNMF model

Recent studies in spectral graph theory [7] and manifold learning theory [2] have
proved that the local geometric structure can be effectively modeled through a
k nearest neighbor graph on a scatter of data points. Considering a graph with
n vertices where each vertex corresponds to a data point, we seek its k nearest
neighbors and put edges between each data point xi and its neighbors. There are
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many choices to define a weight matrix C on the graph, such as ‘0-1 weighting’, ‘Heat
kernel weighting’ and ‘Dot-product weighting’. We construct our weight matrix with
respect to training set by using the ‘0-1 weighting’. The entries of our weight matrix
are defined by:

Ci, j =
{

1, if xi ∈ Nk(x j) or x j ∈ Nk(xi)
0, otherwise,

(8)

where Nk(xi) consists of k NNs of xi and they have the same label as xi, the choices
of k are discussed in our experiment studies section. C ∈ R

n×n, and a diagonal matrix
B ∈ R

n×n is obtained according to weight matrix C. Bii is the row (or equivalently

column, since C is symmetrical) sum of the weight matrix C, i.e., Bii =
n∑

j=1
Cij. L =

B − C is called graph Laplacian matrix and L ∈ R
n×n.

We also define another class indicator matrix S ∈ R
c×n and give the definition:

Si, j =
{

1, if y j = i, j = 1, 2, · · · , n, i = 1, 2, · · · , c
0, otherwise

(9)

where y j ∈ {1, 2, · · · , c} denotes the class label of the jth sample x j and c is the total
number of classes in training set X.

The GDNMF solves the following optimization problem:

min
W,H,A

‖X − WH‖2
F + λTr(HLHT) + γ ‖S − AH‖2

F

s.t.W ≥ 0, H ≥ 0, A ≥ 0 (10)

where A ∈ R
c×r is a non-negative matrix and is initialized randomly in our algorithm,

λ and γ are the non-negative regularization parameters.
In essence, GDNMF is a kind of novel supervised nonnegative matrix factor-

ization. We explicitly incorporate the graph Laplacian and label information into
the cost function of NMF. The second term and third term in (10) guarantee that
the learned bases can retain the intrinsic geometrical structure of data and have
discriminative ability respectively. Thus the learned bases are not only consistent
with the intrinsic geometrical structure but also with the discriminative power.

3.2 The Update Rules of GDNMF

Though the objective function in (10) is not jointly convex in the pair (W, H, A),
it is convex with respect to one variable in the (W, H, A) while fixing the others.
Thus, we extend the multiplicative update rules based on Frobenius norm of the
original NMF [14], aiming to find a local optimum. The objective function (10) can be
written as:

J = Tr((X − WH)T(X − WH))

+ λTr(HLHT) + γ Tr((S − AH)T(S − AH))

= Tr(XTX) − 2Tr(XTWH) + Tr(HTWTWH)

+ γ Tr(STS) − 2γ Tr(STAH) + γ Tr(HTATAH)

+ λTr(HLHT), (11)
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where we apply the matrix properties Tr(XY) = Tr(YX) and Tr(X) = Tr(XT). Let
�, � and � be the Lagrange multiplier for W, H and A, respectively. Then the
corresponding Lagrange function form of J is:

L f = Tr(XTX) − 2Tr(XTWH) + Tr(HTWTWH)

+ γ Tr(STS) − 2γ Tr(STAH) + γ Tr(HTATAH)

+ λTr(HLHT) + Tr(�TW) + Tr(�TH) + Tr(�TA) (12)

The partial derivatives of L f with respect to H, W and A respectively are:

∂L f

∂H
= 2WT(WH − X) + 2λHL + 2γ AT(AH − S) + � = 0 (13)

∂L f

∂W
= 2WHHT − 2XHT + � = 0 (14)

∂L f

∂A
= −2γ SHT + 2γ AHHT + � = 0 (15)

From the KKT conditions �qjHqj = 0, �iqWiq = 0 and �kqAkq = 0, we can get the
following equations:

[2WT(WH − X) + 2λH(B − C) + 2γ AT(AH − S)]qjHqj + �qjHqj = 0 (16)

(2WHHT − 2XHT)iqWiq + �iqWiq = 0 (17)

(−2γ SHT + 2γ AHHT)kqAkq + �kqAkq = 0 (18)

Therefore, we have the following updating rules for H, W, A.

Hqj ←− Hqj
(γ ATS + WTX + λHC)qj

(WTWH + γ ATAH + λHB)qj
(19)

Wiq ←− Wiq
(XHT)iq

(WHHT)iq
(20)

Akq ←− Akq
(SHT)kq

(AHHT)kq
(21)

Table 1 The algorithm of graph regularized discriminative non-negative matrix factorization
(GDNMF)

Input: Data matrix X ∈ R
m×n, graph Laplacian matrix L ∈ R

n×n, indicator matrix
S ∈ R

c×n, parameters λ, γ , r
Initialization: Randomly initialize three non-negative matrices W ∈ R

m×r ,
H ∈ R

r×n and A ∈ R
c×r

Repeat
1. Update H by rule (19)
2. Update W by rule (20)
3. Update A by rule (21)

Until Convergence

Output: Basis matrix W
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Table 2 Statistics of the four
datasets

Dataset Number of Dimensionality Number of
samples classes

Yale 165 1,600 15
ORL 400 1,024 40
UMIST 575 1,600 20
PIE 1,428 1,024 68

Regarding these three updating rules, we have the following theorem and this
theorem is proved in our Appendix.

Theorem The objective function O1 = ‖X − WH‖2
F + λTr(HLHT) + γ ‖S − AH‖2

F
in (10) is nonincreasing under the updating rules in (19), (20) and (21).

We can iteratively update W, H, and A until the objective value of O1 does not
change or the number of iteration exceed the maximum value. The procedure is
depicted in Table 1.

4 Experimental results

In this section, we compare the proposed GDNMF with four representative algo-
rithms, which are NMF [14], LNMF [15], GNMF [6] and MD-NMF [11], on four
face datasets, i.e., Yale [1], ORL [19], UMIST [10] and PIE [20]. The important
statistics of the four datasets are summarized in Table 2. Figure 1 shows example
images of Yale, ORL, UMIST and PIE datasets. All the face images used in our
experiments are manually aligned and cropped. Each face image is represented as
a column vector and the features (pixel values) are then scaled to [0,1] (divided
by 255). We randomly select (3, 5, 7) images from each subject as training set
and the rest as test set. The training set is used to learn basis matrix for the low-
dimensional space. The test set is utilized to report the accuracy of face recognition
in the obtained low-dimensional space. The accuracy is calculated as the percentage
of samples in the test set that are correctly classified using the k nearest neighbor
rule. In all our experiments, we employ 1-nearest neighbor classifier. During the
process of calculating the basis matrix W, all the variants of NMF and original NMF

(a) (b)

(c) (d)

Fig. 1 Face image examples of the a Yale, b ORL, c UMIST, and d PIE datasets
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Fig. 2 Face recognition accuracy on the Yale dataset. We randomly selected a three, b five, and
c seven images from each person to train a model and used the rest images in the dataset for test,
so we had three types of partitions on this dataset. We conducted five trials for each partition and
compared the performance of different algorithms based on the averaged accuracy of the five trials
on each dimension for each type of the partition

algorithms are repeated 300 iterations. Furthermore, similar to Guan et al. [11], the
projection matrices in all algorithms based on NMF are (WTW)−1WT rather than
W. These trials are independently conducted five times and the averaged accuracy is
reported. In addition, it is worth noting that we use multiplicative update rules for
all the variants of NMF and original NMF in order to get a fair time comparison. All
experiments are conducted in MATLAB, which is executed on a server with an Intel
X5650 CPU (2.66GHz and 12 cores) and 32GB RAM.

4.1 Yale face dataset

The Yale face dataset [1] contains 165 grayscale images in GIF format of 15
individuals. There are 11 images per subject, one per different facial expression or
configuration: center-light, w/glasses, happy, left-light, w/no glasses, normal, right-
light, sad, sleepy, surprised, and wink. Each image is normalized to 40 × 40 pixel

Table 3 Best accuracy on the Yale dataset

Algorithm 3 Train 5 Train 7 Train

NMF [13] 0.6283(65) 0.6867(100) 0.7400(70)
LNMF [15] 0.6383(50) 0.6889(80) 0.7733(75)
GNMF [6] 0.6450(110) 0.7089(120) 0.7467(70)
MD-NMF [11] 0.6483(75) 0.7044(110) 0.7600(90)
GDNMF 0.7600(55) 0.8244(65) 0.8833(50)

Bold entries denote the correct classification accuracy and the corresponding dimensionality of our
GDNMF algorithm. The values outside the brackets represent the classification accuracy and the
values in the brackets show the corresponding dimensionality. The bold fonts are used to emphasize
that our GDNMF algorithm is better than other several methods in most cases
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Fig. 3 Face recognition accuracy on the ORL dataset. We randomly selected a three, b five, and
c seven images from each person to train a model and used the rest images in the dataset for test,
so we had three types of partitions on this dataset. We conducted five trials for each partition and
compared the performance of different algorithms based on the averaged accuracy of the five trials
on each dimension for each type of the partition

array and reshaped to a vector. Figure 2 gives that the average accuracy versus the
dimension of the subspace. According to Fig. 2a–c, it can be seen that GDNMF
outperforms all other algorithms in most situations. Table 3 shows the best accuracy
and corresponding dimension of all the algorithms. From Table 3, we can see that
our GDNMF is ten percentage points higher than the other best algorithm.

4.2 ORL face dataset

The ORL face dataset [19] consists 400 images of 40 different subjects in PGM
format. Each subject has 10 images. Subjects were asked to face the camera and
no restrictions were imposed on expression; only limited side movement and limited
tilt were tolerated. For most subjects, the images were shot at different times and
with different lighting conditions, but all the images were taken against a dark
homogeneous background. Some subjects were captured with and without glass.

Table 4 Best accuracy on the ORL dataset

Algorithm 3 Train 5 Train 7 Train

NMF [13] 0.7943(60) 0.8860(35) 0.9283(115)
LNMF [15] 0.8171(120) 0.9010(115) 0.9467(110)
GNMF [6] 0.8021(40) 0.8870(60) 0.9333(65)
MD-NMF [11] 0.7986(35) 0.8950(60) 0.9317(60)
GDNMF 0.8579(105) 0.9300(110) 0.9583(110)

Bold entries denote the correct classification accuracy and the corresponding dimensionality of our
GDNMF algorithm. The values outside the brackets represent the classification accuracy and the
values in the brackets show the corresponding dimensionality. The bold fonts are used to emphasize
that our GDNMF algorithm is better than other several methods in most cases
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Fig. 4 Face recognition accuracy on the UMIST dataset. We randomly selected a three, b five, and
c seven images from each person to train a model and used the rest images in the dataset for test,
so we had three types of partitions on this dataset. We conducted five trials for each partition and
compared the performance of different algorithms based on the averaged accuracy of the five trials
on each dimension for each type of the partition

Each image is normalized to 32×32 pixel array and reshaped to a vector. Figure 3
displays that the average accuracy versus the dimension of the subspace. Table 4
illustrates the best accuracy and corresponding dimension of all the algorithms.

4.3 UMIST face dataset

The UMIST face dataset [10] contains 575 images in PGM format of 20 people.
Each people covering a range of poses from profile to frontal views. Each image
is normalized to 40×40 pixel array and reshaped to a vector. Figure 4 shows that
the average accuracy versus the dimension of the subspace. From Fig. 4a–c, we can
find that our GDNMF outperforms all other algorithms in most situations. Table 5
depicts the best accuracy and corresponding dimension of all the algorithms.

Table 5 Best accuracy on the UMIST dataset

Algorithm 3 Train 5 Train 7 Train

NMF [13] 0.6777(55) 0.8067(35) 0.8759(20)
LNMF [15] 0.6854(10) 0.8198(20) 0.8869(20)
GNMF [6] 0.6823(120) 0.8072(35) 0.8805(30)
MD-NMF [11] 0.6777(30) 0.8143(50) 0.8777(35)
GDNMF 0.7371(45) 0.8623(60) 0.9159(85)

Bold entries denote the correct classification accuracy and the corresponding dimensionality of our
GDNMF algorithm. The values outside the brackets represent the classification accuracy and the
values in the brackets show the corresponding dimensionality. The bold fonts are used to emphasize
that our GDNMF algorithm is better than other several methods in most cases
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Fig. 5 Face recognition accuracy on the PIE dataset. We randomly selected a three, b five, and c
seven images from each person to train a model and used the rest images in the dataset for test,
so we had three types of partitions on this dataset. We conducted five trials for each partition and
compared the performance of different algorithms based on the averaged accuracy of the five trials
on each dimension for each type of the partition

4.4 PIE face dataset

The CMU PIE face dataset [20] contains 68 human subjects with 41,368 face
images as a whole. Each person under 13 different poses, 43 different illumination
conditions, and with 4 different expressions. In our experiments, a subset of images
with pose ID C27 and different illumination conditions is used, and thus, there are 21
images for each subject. Each image is normalized to 32×32 pixel array and reshaped
to a vector. The average accuracy versus the dimension of the subspace is shown
in Fig. 5. Table 6 gives the best accuracy and corresponding dimension of all the
algorithms.

Table 6 Best accuracy on the PIE dataset

Algorithm 3 Train 5 Train 7 Train

NMF [13] 0.9864(120) 0.9989(105) 1.00(110)
LNMF [15] 0.9369(120) 0.9781(120) 0.9952(120)
GNMF [6] 0.9884(120) 0.9983(105) 1.00(90)
MD-NMF [11] 0.9907(120) 0.9989(120) 1.00(120)
GDNMF 1.00(110) 1.00(80) 1.00(50)

Bold entries denote the correct classification accuracy and the corresponding dimensionality of our
GDNMF algorithm. The values outside the brackets represent the classification accuracy and the
values in the brackets show the corresponding dimensionality. The bold fonts are used to emphasize
that our GDNMF algorithm is better than other several methods in most cases
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Fig. 6 Computation time versus the number of training samples of each class on the a Yale, b ORL,
c UMIST, and d PIE

4.5 Computation time and computational complexity analysis

In order to have a fair time comparison, in our experiments, we only utilize mul-
tiplicative update rules to solve all the optimization problems appeared in several
variants of NMF including NMF, LNMF, GNMF, MD-NMF and GDNMF. Figure 6
illustrates that the computation time versus the number of training samples of each
class on the four datasets. The computation time is the total time of five trials for each
types of partitions. In each trial, the dimensionality of basis matrix changes from 5 to
120 and the increasing step size is 5. From the comparison results reported in Fig. 6,

Table 7 Computational
operation counts for each
iteration in NMF and GDNMF

Algorithm NMF
Addition 2mnr + 2(m + n)r2

Multiplication 2mnr + 2(m + n)r2 + (m + n)r
Division (m + n)r
Overall O(mnr)

Algorithm GDNMF
Addition 2mnr + (2m + 4n + 2c)r2 + (2n + kn + cp)r
Multiplication 2mnr + (2m + 4n + 2c)r2+

(3n + kn + m + cp + c)r
Division (m + n + c)r
Overall O(mnr)
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Table 8 Parameters used in
computational complexity
analysis

Parameters Description

m Number of features
n Number of data points
r Number of factors
c Number of class
p Number of training samples obtained

from each class
k Number of nearest neighbor

we can see that the computation time of GDNMF is slightly higher than NMF and
GNMF, but much lower than MD-NMF and slightly lower than LNMF. This reason
is that the model of MD-NMF is more complex than our model.

Furthermore, we give the computational complexity analysis of standard NMF
and our GDNMF based on the multiplicative update rules. Specifically, we analyze
the computational operation counts for each iteration in formulas (2) and (19)–(21).
According to the update rules, we can easily count the arithmetic operations of
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Fig. 7 Face recognition accuracy of our GDNMF under different λ and γ on the a Yale, b ORL,
c UMIST, and d PIE
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Fig. 8 Face recognition accuracy of our GDNMF under different k on the a Yale, b ORL, c UMIST,
and d PIE

each iteration in NMF. The results are summarized in Table 7. For GDNMF, it is
noteworthy that C is a sparse matrix. If we use a k nearest neighbor graph, there
are k nonzero elements on each column of C. Thus, we only need knr addition
and multiplication to compute HC. For indicator matrix S, there are one nonzero
element on each column of S and p nonzero elements on each row of S. So, we
need nr addition and multiplication to compute ATS, and need cpr addition and
multiplication to compute SHT . The arithmetic operations of GDNMF are also given
in Table 7. Meanwhile, the explanation of parameters used in Table 7 are presented
in Table 8.

Besides the multiplicative updates, GDNMF also needs O(p2m) to construct the
weight matrix C and needs O(pc) to construct the indicator matrix S. Suppose the
multiplicative updates stop after t iterations, the overall cost for NMF is O(tmnr)
and the overall cost for GDNMF is O(tmnr + p2m + pc).

4.6 Parameter selection

We also utilize the same way proposed in Guan et al. [11] to select our parameters in
our proposed algorithm. More specifically, in the proposed GDNMF (10), there are

Table 9 k setting on Yale,
ORL, UMIST, and PIE
datasets

Dataset Yale ORL UMIST PIE

Partition 3 5 7 3 5 7 3 5 7 3 5 7
k 2 3 6 2 1 2 1 3 4 2 4 6
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two regularization parameters, i.e., λ and γ . It is time-consuming to select all these
parameters based on the grid search. Fortunately, λ and γ affect the performance
slightly if they are set in feasible ranges. In our experiments, for the Yale, ORL,
UMIST and PIE datasets, we randomly select three images from each class to form
the training set and the rest as test set. These trails are independently performed
five times, and the average recognition accuracy is reported. Figure 7 presents the
face recognition accuracy of our GDNMF under different λ and γ on the four face
datasets. The classification accuracies do not change when each of λ and γ is selected
from a range. The proposed GDNMF model (10) is stable when varying λ and γ
within (4, 10) and (3, 9) respectively. In all the above experiments, we set λ = 6 and
γ = 5 in our GDNMF algorithm.

Another important parameter in our GDNMF algorithm is the k used in (8) to
construct the weight matrix C. We study its effect on classification accuracy on the
four datasets, we randomly select (3, 5, 7) images from each class as training set
and use the remainder images for test. Similar to Guan et al. [11], k varies from 1
to (T N)/(CN) − 1 wherein T N is the training samples number and CN is the class
number. Figure 8 demonstrates that the face recognition accuracy of our GDNMF
under different k on the four face datasets. Table 9 presents the optimal value of k
with which the best classification accuracy is achieved on the Yale, ORL, UMIST
and PIE datasets respectively. It is worth noting that the face recognition accuracies
of our GDNMF under different k are equal to 1 on the PIE dataset, in our proposed
algorithm, we set k = (T N)/(CN) − 1 for PIE.

5 Conclusions

By introducing the geometrical structure and discriminative information of data, we
have presented an efficient graph regularized discriminative non-negative matrix
factorization. As a result, GDNMF can have more discriminative power than the
conventional NMF and its several variants. Further, we show the corresponding
multiplicative update rules and convergence studies. Evaluations on four datasets
have revealed both higher recognition accuracy and lower time complexity of the
proposed algorithm in comparison to those of the state-of-the-art algorithms.
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Appendix (Proof of Theorem)

In order to prove Theorem, we need to show that O1 is non-increasing under the
updating steps in (19), (20) and (21). For the objective function O1, we need to fix H
and A if we update W, so, the first term of O1 exists. Similarly, we need to fix W and
H if we update A, the third term of O1 exists. Therefore, we have exactly the same
update formula for W and A in GDNMF as in the original NMF. Thus, we can use
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the convergence proof of NMF to show that O1 is nonincreasing under the update
step in (20) and (21). These details can be found in [14].

Hence, we only need to prove that O1 is non-increasing under the updating step
in (19). We follow the similar process depicted in [14]. Our proof make use of an
auxiliary function similar to that used in the Expectation-Maximization algorithm
[8]. We first give the definition of the auxiliary function.

Definition G(h, h
′
) is an auxiliary function of F(h) if the following conditions are

satisfied.

G(h, h
′
) ≥ F(h), G(h, h) = F(h) (22)

The above auxiliary function is very important because of the following lemma.

Lemma 1 If G is an auxiliary function of F, then F is non-increasing under the update

h(t+1) = arg min
h

G(h, h(t)) (23)

Proof F(h(t+1)) ≤ G(h(t+1), h(t)) ≤ G(h(t), h(t)) = F(h(t))
Now, we show that the update step for H in (19) is exactly the update in (23) with

a proper auxiliary function.
Considering any element hab in H, we use Fab to denote the part of O1 which is

only relevant to hab . It is easy to obtain the following derivatives.

F
′
ab =

(
∂O1

∂H

)

ab
= [2WT(WH − X) + 2λH(B − C) + 2γ AT(AH − S)]ab (24)

F
′′
ab = 2(WTW)aa + 2λBbb − 2λCbb + 2γ (ATA)aa (25)

It is enough to show that each Fab is nonincreasing under the update step of
(19) because our update is essentially element-wise. Consequently, we introduce the
following lemma. 
�

Lemma 2 Function

G(h, h(t)
ab ) = Fab (h(t)

ab ) + F
′
ab (h(t)

ab )(h − h(t)
ab )

+ (WTWH + γ ATAH + λHB)ab

h(t)
ab

(h − h(t)
ab )2 (26)

is an auxiliary function of Fab .

Proof We only need to prove that G(h, h(t)
ab ) ≥ Fab (h) because G(h, h) = Fab (h) is

obvious. Therefore, we first consider the Taylor series expansion of Fab (h).

Fab (h) = Fab (h(t)
ab ) + F

′
ab (h(t)

ab )(h − h(t)
ab )

+ [(WTW)aa + λBbb − λCbb + γ (ATA)aa](h − h(t)
ab )2 (27)
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We compare the (27) with (26) to find that G(h, h(t)
ab ) ≥ Fab (h) is equivalent to

(WTWH + γ ATAH + λHB)ab

h(t)
ab

≥ (WTW)aa + λBbb − λCbb + γ (ATA)aa (28)

In fact, we have

(WTWH + γ ATAH)ab =
r∑

q=1

(WTW)aqh(t)
qb + γ

r∑

q=1

(ATA)aqh(t)
qb

≥ (WTW)aah(t)
ab + γ (ATA)aah(t)

ab (29)

and

(λHB)ab = λ

n∑

j=1

h(t)
aj B jb ≥ λh(t)

ab Bbb ≥ λh(t)
ab Bbb − λh(t)

ab Cbb (30)

Thus, (28) holds and G(h, h(t)
ab ) ≥ Fab (h). We can now demonstrate the conver-

gence of Theorem: 
�

Proof of Theorem Replacing G(h, h(t)
ab ) in (23) by (26) results in the following update

rule:

h(t+1)
ab = h(t)

ab − h(t)
ab

F
′
ab (h(t)

ab )

2(WTWH + γ ATAH + λHB)ab

= h(t)
ab

(γ ATS + WTX + λHC)ab

(WTWH + γ ATAH + λHB)ab
(31)

Since (26) is an auxiliary function and Fab is nonincreasing under this update rule.

�
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