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Abstract— Electroencephalography (EEG) recordings are of-
ten obscured by physiological artifacts that can render huge
amounts of data useless and thus constitute a key challenge in
current brain-computer interface research. This paper presents
a new algorithm that automatically and reliably removes
artifacts from EEG based on blind source separation and
support vector machine. Performance on a motor imagery task
is compared for artifact-contaminated and preprocessed signals
to verify the accuracy of the proposed approach. The results
showed improved results over all datasets. Furthermore, the
online applicability of the algorithm is investigated.

I. INTRODUCTION

Physiological artifacts in electroencephalography (EEG)
recordings are a key problem in EEG-based brain-computer
interfaces (BCI) that aim at providing a non-muscular com-
munication channel between human and machine. Such a
system might help patients who are locked in their own bod-
ies because of severe sicknesses to communicate with their
surroundings. By analyzing certain features of their brain
signals, one can enable them, e.g. to control the mouse cursor
of a computer [1]. Unfortunately, the recorded EEG is often
obscured by physiological artifacts - most prominently eye
movement (electrooculography (EOG)) and muscle move-
ment (electromyography (EMG)) artifacts. These unwanted
signals make analysis of the recordings much more difficult
and can even be mistaken for the physiological phenomena
of interest - thus, eventually driving the BCI system [2].

Early studies used techniques of avoiding and rejecting ar-
tifactual signal trials to handle artifacts. These approaches are
simple but might yield a huge loss of data. More advanced is
the linear filtering method. This technique, however, is also
prone to loss of information. Linear regression works well
for EOG artifacts, but it is not applicable to remove EMG
artifacts because it needs a reference channel. For a thorough
and detailed review of the impact of artifacts on EEG-based
BCI research and methods please refer to [3].

The most promising approach is to use blind source sep-
aration (BSS) techniques to separate the recordings into un-
correlated components [4] [5]. There are a lot of algorithms
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for BSS that all employ the same underlying model: The
M recorded EEG signalsx(t) = [x1(t), x2(t), · · · , xM (t)]T

are assumed to be linear mixtures of the underlyingN
componentss(t) = [s1(t), s2(t), · · · , sN (t)]T :

x = As. (1)

In general, the number of sourcesN and the mixing matrix
A are unknown. For simplicity of description, it is usually
assumed thatM = N . The recordings are separated into the
components with the help of the unmixing matrixW (with
A ≈ W

−1) that has been calculated by the BSS algorithms:

s = Wx. (2)

It is further assumed that in the course of this process
artifacts and wanted EEG signals are separated into distinct
components. Thus, one just has to identify the artifactual
ones, and perform signal reconstruction without them, i.e.
setting the corresponding rows ofW to 0, to obtain artifact-
free data. This identification is usually done by manual
inspection which is time-consuming and possibly biased [3],
[6]. It has been shown that this approach can successfully
separate EEG signals from EOG [7] and EMG [8] artifacts.
Of the few presented automatic systems a lot either focussed
on EOG only, or did not consider online applicability [9].

This paper presents an algorithm that has been designed
to meet those needs: An universal preprocessing filter that
automatically and reliably removes EOG and EMG artifacts
from EEG recordings without the need for further visual
inspection. The automatic design is based on two different
source separation algorithms and support vector machine
(SVM). Furthermore, we performed benchmarks to demon-
strate that the proposed algorithm is also online-applicable.

II. METHODS

A. Recording of Training Data

In order to obtain recordings for SVM training, eight
healthy male subjects between 21 and 29 were asked to per-
form 11 movements that generate various kinds of EOG and
EMG artifacts of different magnitude: Head bending, teeth
clenching, forehead movement, head turning, swallowing,
eye blinking, eye rolling, making a fist, arm stretching, leg
stretching, and finally performance of a random movement
that the subject wanted to do at that moment.

The sessions were recorded using a 64-channel NeuroScan
system. The recordings were done at a sampling frequency of
1kHz, using an activated highpass filter at 0.01 Hz, lowpass
filtering at 100 Hz, and a notch filter at 50 Hz to suppress
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Fig. 1. Block diagram of the proposed artifact removal algorithm

power line noise. To shorten computation time the recorded
data have later been downsampled to 250 Hz.

The stimuli to perform the different movements were
presented in random order - 20 times for each artifact. The
structure of one trial was as follows: A short 1 sec long phase
of black screen was followed by a screen that said “attention”
- also for 1 sec. Then the instruction to generate the specific
artifact was presented for 7 sec. Finally, each trial ended
with a short black screen for relaxation of random length
between 2-4 sec. The recordings were done in 4 sessions,
each lasting approximately 12 min, with a 5 min in between.
Thus, resulting in more than 100000 components for SVM
classifier training.

In order to use the components that were extracted from
the recordings for training the SVM classifiers, they had
to be visually inspected and labeled into 3 classes: EOG-
containing, EMG-containing, or artifact-free ones. Record-
ings that were heavily contaminated with artifacts often
yielded a lot of components that contained artifacts but also
significant neural activity. In order to avoid loss of important
EEG information only components with very strong EOG or
EMG signals were labeled as such. As a result, one has to
accept the risk of not removing all of the artifactual activity
from the EEG - a trade-off between removing unwanted
artifacts and preserving desired information that always has
to be considered when performing artifact removal.

B. Choice of BSS algorithm

Choosing the right BSS algorithm for source decomposi-
tion in artifact removal applications and evaluating the qual-
ity of the yielded components is a rather difficult task. We
applied two different algorithms: Infomax (an independent
component analysis (ICA) algorithm) from the EEGLAB
toolbox [10], and Amuse (BSS algorithm) from the ICALAB
toolbox [11]. The main difference between these two algo-
rithms is that Infomax yields truly statistically independent
components, while Amuse just returns uncorrelated signals.
For Infomax a step-limit of 32 was selected to limit com-
putation to a reasonable amount. During labeling it became
apparent that Amuse extracted EOG artifacts from the orig-
inal recordings much better than Infomax: The components
contained less neural activity and were also fewer in numbers
for each decomposition. On the other hand, the performance
of EMG-contaminated trials by Infomax was superior to
that of Amuse. Thus, it was decided to incorporate both
algorithms into the final design: Amuse to extract EOG
artifacts, and Infomax to reliably obtain high-quality EMG
components.

C. Classification of Artifact Components

Feature extraction was done for the 7 sec blocks of artifact
performance. Three sets of features were used: component
location, spectral information, and time-series information.
Welch’s algorithm was applied to calculate the power spec-
trum density (PSD) from 1 to 50 Hz. Subsequently, the
PSD was used to calculate the relative energy in 5 Hz-
wide frequency bins - thus yielding 10 such bins. Spectral
information is particularly useful for the classification task
at hand, because EOG and EMG have typical spectra that
often discriminate them from each other and the desired
neural activity - with EOG showing much more energy at
lower frequencies and EMG artifacts typically contaminating
the entire frequency range of interest. The elements of
the calculate mixing matrixA represent the topography of
the components and were therefore also used as features.
These are particularly useful for identifying EOG artifacts
as these obviously often originate at frontal head regions.
Finally, time-series information were incorporated by using
autoregressive (AR) model parameters to detect sudden high-
amplitude changes in the signals [12]. With AR models one
faces the problem of choosing the appropriate model order.
A model of size 6 was selected, as this value minimized the
error of the classification rate during 10-fold cross-validation
(CV).

Classification of the EOG and EMG artifacts using the
described feature vector was done with an SVM classifier
with RBF kernel [13] - one SVM classifier for each kind of
artifact. The training sets contained 2000 randomly selected
samples, with one half being artifact-contaminated and the
other half artifact-free. 10-fold CV yielded a good classifi-
cation accuracy of over90% for both tasks.

D. Design of the Filter

Figure 1 depicts the block diagram of the proposed algo-
rithm. Firstly, the original recordingsxorig are decomposed
into their corresponding componentssorig by using Amuse,

sorig = WAmusexorig. (3)

Then these components are classified with the first SVM
classifier into EOG and artifact-free ones. With the help of
the probability estimatespi of the SVM classifier, an entity
matrix EEOG is constructed, whereEEOG(i,i) = 0 if pi is
greater than a threshold-valuetEOG. This threshold value
has to be chosen such that the measure of quality of the
final application is maximized, i.e. classification rate of a
BCI system that uses the artifact-free EEG recordings. In



addition, this threshold value is necessary as most decom-
posed components will contain both, artifacts and desired
neural activity. ThereforetEOG is a means of changing the
bias of the whole preprocessing artifact filter either towards
removing a lot of artifacts or preserving vital information.
Thus, the EOG-free recordingsxno EOG can be expressed
as follows:

xno EOG = AAmuseEEOGsorig. (4)

For EMG removal this process is repeated, the only real
difference being that Infomax is applied for source separa-
tion. Another entity matrixEEMG with EEMG(i,i) = 0 for
pi > tEMG is calculated. Putting all this together the final
artifact-free recordingsxclean have the following form:

xclean = AInfomaxEEMGWInfomaxxno EOG. (5)

Note that the unmixing matricesWAmuse andWInfomax

have to be recalculated every 7 sec, as the topography of the
underlying components can only be expected to be stable for
short periods of time. This is the main difference between
the proposed approach and traditional off-line methods.

III. RESULTS AND DISCUSSION

A short 16-channel subset of the raw EEG recordings from
posterior head regions is shown in Fig. 2. Strong artifacts
caused by muscle activity are visible across all channels.
It can clearly be seen that such strong EMG disturbance
masks the less energetic neural information and is very
likely to render the corresponding trials useless for automatic
information extraction.
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Fig. 2. Raw EEG recordings with strong muscle artifacts.

The signals from Fig. 2 after artifact removal are shown in
Fig. 3. Obviously, most of the EMG artifacts that disturbed
analysis of the original EEG recordings are now gone.
Only small amounts of artifactual activity are still visible.
Despite of the remaining small artifacts, the signal quality
has improved dramatically. Moreover, when comparing the
signals at the time steps without artifacts it becomes apparent
that the desired original neural information remained almost
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Fig. 3. Processed EEG after artifact removal (signals correspond to those
depicted in Fig. 2).

untouched. Thus, the proposed approach can be a very
effective and promising technique for artifact removal.

We further verified these results by comparing the clas-
sification rates on a two-class motor imagery task for pre-
processed and unprocessed EEG signals. For this purpose
the dataset IIIa from the BCI competition III (provided
by Schlögl [14]) has been selected. Several reasons led
to this choice. First of all, the recording settings between
our experiment and Schlögl’s experiment are very similar.
The data were also recorded with a 64-channel Neuroscan
amplifier using a sampling frequency of 250 Hz and it has
been filtered between 1 and 50 Hz. Unfortunately, only
60 channels were provided. Therefore the location feature
could not be used for SVM classification, but 10-fold CV
learning delivered only slightly downgraded performance
(the classification rate is about90%) for this smaller feature
vector. Secondly, the signals were also affected by various
artifacts. Thus, the recordings are predestined for artifact
removal.

The 4 classes of movements that had to be discriminated
(left hand, right hand, tongue, and foot movement) were
paired in 6 groups to yield the 2-class motor imagery
datasets. To solve this task, common spatial pattern (CSP)
and AR features were used for feature extraction and linear
discrimination analysis (LDA) was employed for classifica-
tion. The resulting classification performances are shown in
Table I. The first column shows the results for the 2-class
subsets of recorded data, while the last column holds the
average classification rate over all subsets.

The performance for subject one (k3b) did only improve
slightly, which is not too surprising as the original average
classification of94.26% was already very high - apparently
there were only little artifacts present in this recording.
Considering this fact it is actually very good that the artifact
removal did not downgrade the performance by unnecessarily
removing wanted EEG activity from the signals. For the
second subject (k6b) the original classification was much
worse with only an average success of67.5%. The data that
have been processed by the proposed algorithm, on the other



TABLE I

COMPARISON OF THE MOTOR IMAGERY PERFORMANCE FOR THE ORIGINALDATA AND THE DATA AFTER ARTIFACT REMOVAL .

Dataset Task 1/2 Task 1/3 Task 1/4 Task 2/3 Task 2/4 Task 3/4 Average

k3b (orig) 93.3% 91.1% 97.8% 97.8% 96.7% 88.9% 94.2%

k3b (clean) 93.3% 93.3% 97.8% 97.8% 96.7% 90.0% 95.0%

k6b (orig) 58.3% 55.0% 68.3% 65.0% 66.7% 91.7% 67.5%

k6b (clean) 61.7% 63.3% 81.7% 66.7% 66.7% 93.3% 72.2%

l1b (orig) 70.0% 70.0% 86.7% 63.3% 75.0% 60.0% 70.8%

l1b (clean) 75.0% 75.0% 86.7% 70.0% 88.3% 66.7% 77.0%

hand show improved results of almost5 percentile. Thus, for
a lot of trials the analysis of the original data was much more
difficult due to present artifacts that masked the underlying
neural activity of interest. However, the overall classification
rate is still relatively low considering the simple task at hand.
But this fact could also be caused by poor performance of the
subject on the actual motor imagery task during recordings.
The movement discrimination rate on the original dataset
of the third and last subject (l1b) was3 percentile better
than that for the preceding one: An average classification
success of70.8% was achieved. Again, the preprocessing to
remove EOG and EMG artifacts yielded a great improvement
in performance of more than6 percentile. In summary, it is
clear that the proposed algorithm is very effective when it
comes to removing artifacts that have been caused by eye or
muscle movement and still leaving valuable brain activity in
the EEG mostly unchanged.

Furthermore, we investigated whether or not our artifact
removal algorithm can be used for online applications. There-
fore we ran several benchmarks on one of our servers (Intel
Xeon E5440 with 8 Cores and 2.83 GHz, 16 GB RAM,
running Matlab 2009a using only a single core): Processing
a 7 sec long block of EEG recordings (64-channels, 250 Hz
sampling frequency) took less than 4 sec. Therefore, it is
possible to use the described approach for online usage if a
delay of 4 sec is acceptable for the application at hand.

IV. CONCLUSIONS

In this paper, we have presented a new algorithm that
uses BSS and SVM techniques to remove EOG and EMG
artifacts from EEG recordings. In contrast to many other
existing approaches, this is done automatically without the
need for further human supervision. Additionally, the pro-
posed algorithm is online applicable for applications that
can accept a 4 sec delay. Our experimental results on an
independently recorded dataset for BCI motor imagery tasks
verified that the preprocessing yields signals that contain
much less artifacts and still hold the desired neural activity.

In the future, we will incorporate this algorithm into our
real-time vigilance estimation system for driving simulation.

We expect to obtain improved overall application results for
that task, too.

REFERENCES

[1] J. R. Wolpaw, N. Birbaumer, D. J. McFarland, G. Pfurtscheller, and
T. M. Vaughan, “Brain-computer interfaces for communication and
control,” Clinical Neurophysiology, vol. 113, pp. 767–791, 2002.

[2] T. M. Vaughan, W. J. Heetderks, L. J. Trejo, W. Z. Rymer, M.Wein-
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