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Multichannel Blind Deconvolution of
Nonminimum-Phase Systems Using

Filter Decomposition
Liqing Zhang, Andrzej Cichocki, Member, IEEE, and Shun-ichi Amari, Fellow, IEEE

Abstract—In this paper, we present a new filter decomposition
method for multichannel blind deconvolution of nonmin-
imum-phase systems. With this approach, we decompose a doubly
finite impulse response filter into a cascade form of two filters: a
causal finite impulse response (FIR) filter and an anticausal FIR
filter. After introducing a Lie group to the manifold of FIR filters,
we discuss geometric properties of the FIR filter manifold. Using
the nonholonomic transform, we derive the natural gradient on
the FIR manifold. By simplifying the mutual information rate,
we present a very simple cost function for blind deconvolution of
nonminimum-phase systems. Subsequently, the natural gradient
algorithms are developed both for the causal FIR filter and for
the anticausal FIR filter. Simulations are presented to illustrate
the validity and favorable learning performance of the proposed
algorithms.

Index Terms—Blind deconvolution, independent component
analysis, natural gradient, nonmimimum-phase systems.

I. INTRODUCTION

RECENTLY, blind deconvolution has attracted consider-
able attention in signal processing and neural network

societies. The objective of blind deconvolution is to recover
the original source signals and/or to estimate the channel
filters, given the noisy measurements (the sensor signals),
without the knowledge of the system transfer function. This
kind of problem arises in various applications, such as digital
telecommunications, speech enhancement, and biomedical
signal processing. A number of methods have been developed
to deal with the blind deconvolution problem. These methods
include the Bussgang algorithms [1]–[4], the higher order
statistics approach [5]–[11], and the second order statistical
approach [12]–[16]. The high-order statistical methods ex-
plicitly exploit the high-order spectra to estimate the channel
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transfer function and source signals. The second-order sta-
tistical approach has also been brought into consideration
since Tong et al. [12] first presented the blind identifiability
of single-input multiple-output (SIMO) linear channels from
only the second-order statistics. Identifiability of blind decon-
volution has been further discussed for SIMO systems [13] and
multiple-input multiple-output (MIMO) systems [14]–[16]. For
further information, see the two recent books in [17] and [18].

Generally speaking, second-order statistical methods rely on
the separability of noise and signal subspaces, which requires
some prior knowledge of the length of the unknown channels
to be identified. When noise is present, high-order statistical
methods can be effective under appropriate initialization but
may suffer from slow convergence and local convergence.

The natural gradient, which was developed by Amari et al.
[19], and the relative gradient developed by Cardoso et al. [20],
improve learning efficiency in blind separation and blind de-
convolution [21]. For doubly infinite impulse response (IIR) fil-
ters, the natural gradient algorithm was developed by Amari et
al. [22]. However, in practice, it is necessary to use doubly fi-
nite impulse response (FIR) filters as demixing models. In con-
trast to doubly IIR filters, the doubly FIR filters do not have
self-closed multiplication and inverse operations in the mani-
fold of FIR filters with a fixed length. In general, the product
of two FIR filters with a given length makes a new filter with a
greater length, as does the inverse operation.

The main objective of this paper is to develop an efficient
learning algorithm for training the doubly FIR filters for blind
deconvolution. First, a doubly noncausal FIR filter is decom-
posed into two one-sided FIR filters, an anti-causal FIR filter,
and a causal FIR filter. With this filter decomposition, we derive
a very simple cost function for multichannel blind deconvolu-
tion of nonmimimum-phase systems. Some geometrical struc-
tures, such as the Lie group, on the differential manifold of
one-sided FIR filters are discussed, and the natural gradient on
the differential manifold is derived by introducing a nonholo-
nomic transform. Then, the natural gradient learning algorithm
is presented to train both the causal FIR filter and anticausal FIR
filter. Results from simulations are presented to illustrate the va-
lidity and learning performance of the proposed algorithms.

The filter decomposition has two main purposes. One is to
keep the demixing filter stable during training, and the other is
to use the natural gradient algorithm for training one-sided FIR
filters efficiently. We should stress that the filter decomposition
approach is not only applicable to blind deconvolution but also
to other identification problems of noncausal FIR filters.
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II. PROBLEM FORMULATION

For a convolutive mixing model, we consider multichannel,
linear time-invariant (LTI), and noncausal systems of the form

(1)

where is an -dimensional matrix of mixing coeffi-
cients at time-lag , which is called the impulse response at
time , is an -dimensional vector
of source signals with mutually independent components, and

is the vector of the sensor signals.
The objective of multichannel blind deconvolution is to retrieve
the source signals using only the sensor signals and cer-
tain knowledge of the source signal distributions and statistics.
To fulfil this task, we employ another multichannel LTI system
as a demixing model

(2)

where is an -dimensional vector
of the outputs, and is an -dimensional coefficient ma-
trix at time lag . We use the following notations for the mixing
filter and demixing filter:

(3)

(4)

where is the -transform variable, as well as the back-shift
operator in the sense . Thus, the mixing
and demixing model can be simply rewritten as

(5)

In order to ensure that the mixing filter is invertible, we im-
pose the following constraints on the mixing filter.

1) The filter is stable, that is, the impulse response
satisfies the absolutely summable condition

(6)

where denotes the Frobenius matrix norm.
2) The filter is of full rank on the unit circle

; this implies that it has no Smith zeros on
the unit circle.

The set of filters , satisfying the above two conditions,
is referred to the invertible class as . The class is closed
with respect to the convolution and inverse operations. In the
following discussion, we assume, for simplicity, that both the
mixing and demixing filters are in the class . It is worth noting
that the conditions imposed on the mixing filter are quite gen-
eral. Here, we do not assume any other conditions, such as ir-
reducibility. Such irreducibility of the mixing filter is necessary
in subspace-based methods [12]–[16].

The global transfer function is defined by
. The blind deconvolution task is to find a demixing

filter such that

(7)

where is a permutation matrix,
diag , and is a nonsingular
diagonal scaling matrix.

In practice, it is necessary to use a doubly finite multichannel
filter as a demixing model

(8)

where is a given positive integer. We denote the set of all
doubly FIR filters of length as

(9)

In general, the product of two filters in makes a filter
with length , which no longer belongs in . This
makes it difficult to introduce the natural gradient on the mani-
fold of doubly FIR filters.

Two key issues need to be resolved in training the noncausal
demixing filter. First, how is the demixing filter kept
stable during training? In other words, the trained demixing
filter needs to be kept stable when its filter length
tends to infinity. Second, what learning algorithms should be
used to efficiently train the demixing filter?

In attempting to seek a stable demixing filter, we suggest
the decomposition of the doubly FIR filter into two one-sided
FIR filters: one a causal FIR filter and the other an anticausal
filter. For the one-sided causal FIR filter, the natural gradient
algorithm has been developed [23]. However, such a approach
cannot be directly used to train noncausal filters. In this paper,
we will apply the filter decomposition and nonholonomic trans-
form to solve the training problem of noncausal filters.

III. FILTER DECOMPOSITION

In order to explore the geometric structures on the mani-
fold and develop an efficient learning algorithm for

, we present a novel filter decomposition approach and de-
fine operations for one-sided FIR filters in the Lie group frame-
work.

For single channel blind equalization, a filter decomposition
approach was proposed by Labat et al. [24]. They presented a
novel unsupervised (blind) adaptive decision feedback equal-
izer via a cascade of four devices, whose main components are
a purely recursive filter and a transversal filter. Nandi et al. [25]
proposed alternative recursive filter structures for equalization
of severely distorted channels by using decomposing the equal-
izer into a cascade of a recursive prewhitening filter adapted
with second-order statistics and a phase equalizer adapted with
higher order statistics. The main purpose of the cascade is to
split the difficult task of unsupervised equalization into several,
but easier, subtasks.
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In this paper, we apply the filter decomposition approach
to multichannel blind deconvolution problems. The purpose of
the filter decomposition is to find an efficient way to train the
demixing filter. To begin, let us decompose a noncausal filter

in into a cascade form of two FIR filters

(10)

where is a causal FIR filter, and

is an anticausal FIR filter with a
constraint ; is the identity matrix. The coefficients of
three filters satisfy the following relations:

for (11)

The blind deconvolution process presented in this paper is il-
lustrated in Fig. 1. With this decomposition, it becomes much
easier to discuss the invertibility of doubly finite multichannel
filters in the Lie group sense, which will be introduced in the
next section.

Directly analyzing the structure of the inverse filter ,
we will find that it is plausible to use a cascade form of a one-
sided filter and an anticausal filter as a demixing model. For
simplicity, assume that the mixing filter is an FIR filter

det (12)

Assume that has no null values on the unit circle. Consid-
ering the FIR filter as a matrix of polynomials of , we
can express the determinant of as

(13)

where is a nonzero constant, , , and are certain natural
numbers, for , and for

. Usually, and are referred to as the zeros
of filter . If all the zeros are located in the interior of the
unit circle on the complex plane, the filter is minimum
phase. Otherwise, the filter is nonminimum phase. Now,
the inverse of can be calculated by

(14)

where is the adjoint matrix of . On the other hand,
the components of can be expanded in the fol-
lowing way:

(15)

(16)

This means that if the zero is located in the interior of the
unit circle, we can expand the factor as a causal

Fig. 1. Illustration of filter decomposition for blind deconvolution.

filter; otherwise, we need to expand the factor as
an anticausal filter. Hence, the inverse of is expressed by

(17)

where

(18)

(19)

It is easily seen from (18) and (19) that and
decay exponentially to zero as tends to infinity. The asymp-
totic decay rate is dominated by the poles closest to the unit
circle. Generally, the inverse filter of is a noncausal filter
of infinite length. Due to the asymptotic decay of these two
one-sided filters, we can use two one-sided FIR filters to ap-
proximate filters and , respectively. The approxi-
mation will cause a model error in blind deconvolution. If we
make the length of the demixing filter sufficiently large, how-
ever, the model error will become negligible due to the decay
properties of two filters and . The length of the
demixing filter depends on the zeros of the mixing filter that are
closest to the unit circle. If the zeros of the mixing filter are close
to the unit circle, then we need to choose a longer filter length
according to the decay properties of the demixing filter.

From the above analysis, we see that the inverse of the mixing
filter can be expressed in the form of filter decomposition (10). It
should be pointed that if the FIR filter is a minimum-phase
filter, then the inverse will be a causal filter. In gen-
eral, the filter is used to invert the minimum-phase por-
tion, and is used to invert the maximum-phase portion
of the mixing filter. Therefore, we can further assume that the
causal FIR filter is minimum phase, i.e., its inverse is also
a causal filter. Similarly, we assume that the inverse of the anti-
causal filter is also an anticausal filter.

In the following sections, we will develop the natural gradient
algorithm to adjust the parameters of both the causal filter
and anticausal filter .

IV. GEOMETRIC STRUCTURES ON THE FIR MANIFOLD

In this section, we discuss the geometrical structures on the
manifold of FIR filters . First, we introduce a Lie group to
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the manifold of FIR filters in order to define self-closed multi-
plication and inverse operations. Using the nonholonomic trans-
form, we derive the natural gradient of a cost function defined
on the manifold.

In the following discussion, we use the notation to
denote the subset of , having the constraint that is
nonsingular. In order to discuss geometrical structures of non-
singular FIR manifold , we first introduce the tangent
space on manifold . Given an FIR filter ,
a tangent vector, which is denoted by , is an infinitesimal
displacement at on manifold . The set of tangent
vectors at a point forms a vector space called the tangent
space of at . The tangent space of at
is given by

(20)

where , are arbitrary ma-
trices. The tangent space at a point on manifold

is intuitively the vector space obtained by locally lin-
earizing around .

The dimension of the tangent space is the same as that
of the manifold . The tangent space is an

-dimensional Euclidean space. Because it is different from
the filters in the manifold , the first matrix of the filter

is not necessarily nonsingular.
We say that a manifold is Riemannian if it is equipped with

the Riemannian metric [26]. There are at least two critical prob-
lems needed to be solved in the optimization problem on the
Riemannian manifold. One is how to keep the updated filter on
the manifold, and the second is to find the optimal search direc-
tion during iterations. In the Riemannian manifold, the deriva-
tive of the cost function is not the steepest ascent direction if the
Riemannian metric is not the identity matrix. The natural gra-
dient has been introduced to define the steepest ascent direction
[21]. In the following sections, we will investigate the geometric
structures of the nonsingular FIR manifold and find the natural
gradient direction for the optimization problem of blind decon-
volution.

A. Lie Group

A Lie group [26] is a group that is also a differential mani-
fold such that for any , , the multiplication

and inverse are smooth maps. The Lie group
approach has been successfully applied to matrix groups to de-
rive efficient algorithms for optimization problems [21], [27].
Using the uniform properties of the Lie group, the natural gra-
dient was derived on the matrix manifolds, such as nonsingular
matrix [21], orthogonal matrix [28], [29], and nonsquare matrix
[30]. In this paper, we further apply the Lie group approach to
the manifold of FIR filters. The main purpose of introducing a
Lie group to manifold is to define self-closed operations
on the manifold .

First, we introduce the Lie multiplication of two filters ,
in the following way:

(21)

where is the truncating operator such that any terms
with orders higher than in the polynomial are omitted.
Explicitly, we define the Lie multiplication as

(22)

Once the Lie multiplication is defined, the Lie inverse of a filter
, which is denoted by , is defined by solving the fol-

lowing equation:

(23)

where is the identity matrix. With a simple calculation, we
obtain the explicit expression of the Lie inverse as follows:

(24)

where are recurrently defined by

(25)

(26)

Now, it is easily verified that both and remain
in the manifold . The multiplication of and
maps ( , ) to , whose elements are multi-
variable polynomials. From the definition of the Lie inverse, the
elements of Lie inverse are multivariable rational polyno-
mials. We see that both the Lie multiplication and Lie inverse are
smooth maps. Therefore, the manifold with the above
operations forms a Lie Group. The identity element is .
Moreover, the Lie group has the following properties:

(27)

(28)

The result that a left and right inverse of an FIR filter coincide
is inherited trivially from the standard result of linear algebra.
Here, we give a simple example to illustrate the Lie group op-
erations. Consider , , and ,

. The Lie inverse is . It is easy to
verify

(29)

The geometric interpretation of the inverse filter in the Lie
group sense is given as follows. Suppose is a minimum-
phase FIR filter of length , and is its Lie inverse. We
see that the product of the two filters in the ordinary
sense is a filter with length , which is not the identity matrix.
However, the truncated filter is
equal to the identity matrix. If the coefficients of both and
its decay exponentially, and their filter lengths are chosen
sufficiently large, the truncation error will become negligible.

After defining Lie group, we can easily introduce to the
FIR manifold a Riemannian metric. Furthermore, the natural
gradient on the FIR manifold can be defined by the Riemannian
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metric. For more detailed information about the Riemannian
metric of an FIR manifold, see Zhang et al. [23]. In this paper,
we mostly avoid sophisticated mathematical concepts and
derivations and attempt to derive the natural gradient on the
FIR filter via a nonholonomic transform. We will further give
a geometric interpretation about the nonholonomic transform
and natural gradient in the next section.

In the same way, we can introduce a Lie group to the man-
ifold of the anticausal filters, which is denoted as

. For any ,
, we define the multiplication of the two filters

as

(30)

and the inverse of filter is given by solving the following
equation:

(31)

It should be emphasized here that the Lie inverse of filter
still lies in the manifold , whereas the

Lie inverse is in the manifold .

B. Natural Gradient

In this section, we introduce the natural gradient on manifold
via a geometric approach. For a cost function

defined on the Riemannian manifold , the natural gra-
dient is the steepest ascent direction of the cost func-
tion . We use the following notations for the derivative
of cost function :

(32)

where ,
.

When the parameter space is Euclidean, the natural gradient
becomes the ordinary derivative of the cost function. The main
idea of this approach is to first define a search direction locally
in a certain coordinate system such as the tangent space; then,
the search direction is projected back onto the parameter space.
Consider that is a local coordinate system and that is
a variation in the vicinity of . In order to remove the effect
of individual filter on the search direction, we define a map
between the differential variables and for the blind
deconvolution problem

(33)

where is the differential operator. The modified search direc-
tion has a uniform property that the tangent vector in

is mapped onto the tangent vector in at the
unit filter . Thus, the search direction is almost indepen-
dent of specific filter since the effect of is removed
by in the new search direction.

It should be noted that is a nonholonomic form, which
has a definite geometrical meaning and proves to be useful in
blind separation algorithms [31]. A differential form is
holonomic if there exists a differential map from to
such that . If it is not holonomic, we say that
the differential form is nonholonomic.

The differential form is well defined, which repre-
sents the modified search direction in the blind deconvolution
setting. Now, we first define a search direction for . For
a Euclidean space, the steepest descent direction is given by the
derivative of the cost function, i.e.,

(34)

Therefore, the gradient descent learning rule for is defined
by

(35)

Since the search is performed in the tangent space, we need
to project the search direction back onto the original manifold
via the nonholonomic transform (33). Recalling the relationship
between and , we obtain the updating rule for
as follows:

(36)

This search direction is consistent with the natural gradient de-
fined by the Riemannian metric [23]

(37)

Using this derivation, we have a clear geometric interpretation
of the natural gradient on the FIR filter manifold (see Fig. 2). It
should be mentioned that the nonholonomic transform is related
to the relative gradient and is important in order for learning
algorithms to have the equi-variance property [20].

In the following discussion, we will employ the non-
holonomic transform technique to derive efficient learning
algorithms to train both the causal and anticausal FIR filters.

V. COST FUNCTION FOR NONCAUSAL FIR FILTER

The objective of blind deconvolution is to find a demixing
filter such that the output of the demixing model is
spatially mutually independent and temporally identically
independently distributed (i.i.d.). In order to derive a cost
function for blind deconvolution, we consider the output
signals , as stochastic
processes. For any and , is considered to be a random
variable. In this paper, we employ the Kullback–Leibler diver-
gence to measure the mutual independence of the output signal.
Assume that is the joint probability density
function (pdf) of , and is the marginal
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Fig. 2. Geometric interpretation of the natural gradient on the FIR filter
manifold.

pdf of for and . The Kull-
back–Leibler divergence between and
is defined by

(38)

which measures the mutual independency and i.i.d. property be-
tween the stochastic processes . Since the pdfs and

are unknown in the blind deconvolution setting, we need to
simplify the cost function in order to implement the natural gra-
dient approach. Amari et al. [32] introduce the following cost
function for online statistical learning:

det

(39)

where is the imaginary unit of complex numbers, and the path
integral is over the unit circle of the complex plane. Pham
[33] simplifies the mutual information rate (38) via upbound
estimation and derives the same cost function as (39). Taleb et
al. [34] also present the same cost function for blind inversion
of Wiener systems. Now, the problem becomes how to solve the
first term of the cost function (39). Amari et al. [32] introduce a
nonholonomic transform and derive a natural gradient algorithm
for IIR filters. However, such a nonholonomic transform is not
available for doubly FIR filters because the associative law fails
in the manifold of doubly FIR filters.

In this paper, we use the filter decomposition approach and
derive a very simple cost function for blind deconvolution. The
cost function (39) can be also rewritten as

det

(40)

Assume that the demixing filter has the decomposition
, where both and are

one-sided FIR filters. With this filter decomposition, we have

det det det
(41)

Because is assumed minimum phase and causal, we can
explicitly calculate the following integral:

det det (42)

Similarly, because is assumed maximum phase and an-
ticausal, we have

det det (43)

where . Combining (41) and (43) leads to the following
lemma.

Lemma 1: If , then

det det (44)

In summary, we obtain the following cost function for blind
deconvolution:

det (45)

The first term in the cost function is introduced to prevent the
matrix from being singular.

VI. LEARNING ALGORITHMS

In this section, we develop learning algorithms both for the
causal filter and anticausal filter via the nonholonomic trans-
form. For the causal FIR filter, we employ the natural gradient
algorithm to train . Now, the key issue is how to train the
anticausal filter , which is critical to blind deconvolu-
tion of nonmimimum-phase systems.

Assume that the demixing filter has the decomposition
(10). For simplicity, we introduce the intermediate variable ,
which is defined as

(46)

(47)

For an matrix , we use tr to represent
the trace of matrix , which is defined by tr . To
calculate the natural gradient of the cost function, we consider
the differential of the cost function

det (48)

Using the relation det tr [21], we have

tr (49)
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where is the vector of non-
linear activation functions, which is defined by

for

(50)
Now, we introduce the nonholonomic transforms both for the
causal filter and the anticausal filter as follows:

(51)

(52)

In particular

(53)

(54)

The differential transform has a definite geometric interpreta-
tion and is very important for us to develop an learning algo-
rithm with the equivariant property [20], [21]. Actually, consid-
ering the relation (47) and letting the anticausal filter
be fixed, we have

(55)

(56)

This means that if we adopt as a local coordinate system,
the variation of the channel output depends only on the
variation , given . In other words, the search direc-
tion does not depend explicitly on the mixing filter
but depends on the variation of the channel output. This prop-
erty allows us to derive a learning algorithm with the equivariant
property [20]. Furthermore, the nonholonomic transforms not
only make the derivation of the algorithms simple but also lead
to much more efficient and reliable learning algorithms. Using
the nonholonomic transforms, we can easily calculate

(57)

Substituting (53) and (57) into (49), we obtain

(58)

Now, we easily obtain the derivatives of the cost function with
respect to and

(59)

(60)

for ; . As discussed in the previous
section, the nonholonomic variable can be considered to
be a coordinate system in the tangent space . Since the
tangent space is Euclidean, the natural gradient is defined by
the derivative of the cost function. Thus, the gradient descent
algorithms for and are given by

(61)

(62)

for ; . Using the differential rela-
tions (51) and (52), we present learning algorithms that update
the filters and as follows:

(63)

(64)

The learning algorithm (63) can be rewritten in matrix form as

(65)

for . In particular, for , 1, we have

(66)

(67)

Similarly, we can also give the explicit expression of the natural
gradient algorithm for the anticasual FIR filter

(68)

for . In particular, for , we have

(69)

Theoretically, the function activation functions ,
depend on the pdfs of sources, which are unknown

in a blind deconvolution setting. It is not necessary to precisely
estimate the pdfs of sources to train the demixing filter. One im-
portant factor in determining the activation functions is that the
stability conditions of the learning algorithm must be satisfied
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[23], [31]. For QAM signals, the cubic function is a good activa-
tion function. For more detailed information about the activation
function selection, see Amari et al. [31].

It should be noted that the natural gradient algorithm for the
causal FIR filter is consistent with the one for the instantaneous
mixture. If the causal FIR filter becomes a matrix, the natural
gradient algorithm (63) will reduce to the algorithm for the in-
stantaneous mixture [19].

For the noncausal demixing filter, it is important for an algo-
rithm to adjust the demixing filter such that its coefficients decay
on both sides, i.e., tends to zero if or .
The filter decomposition approach is designed to meet such re-
quirements.

One interesting question is how the interaction between the
two filters is captured correctly by using the derived algorithms.
Theoretically, both algorithms are the gradient descent method,
which are derived from minimizing the same cost function,
whose minimum is the solution. Geometrically, if the cascade
form of the two filter is considered as a two-layer network (see
Fig. 3), the learning algorithm for is considered to be
an error back propagation through channel . First, we give
an geometric interpretation of the ordinary gradient

(70)

The derivation shows that the derivative of with re-
spect to can be calculated through nodes ,

. This is similar to the error back propagation in
training multilayer neural networks. The natural gradient algo-
rithm [23] is the steepest direction on the manifold of FIR fil-
ters, which is the modified direction from the ordinary gradient.
Thus, the interaction between the two filters can be captured
correctly by using the derived algorithms.

VII. NUMERICAL IMPLEMENTATION

In this section, we consider the efficient implementation of
learning algorithms for blind deconvolution of nonmimimum-
phase systems. We introduce the following notations:

(71)

(72)

and

(73)

Then, we can rewrite (46) and (47) into the following matrix
form:

(74)

(75)

Fig. 3. Information back propagation through the two layer neural network.

A. Filter Length

The filter length of the demixing model is a critical parameter
for blind deconvolution. Generally speaking, the longer filter
length will give better performance in the absence of noise
due to the decay properties of the demixing filter. However, a
longer filter length will increase computing cost. To derive the
best cost/benefit ratio, we need to introduce a criterion in order
to choose an adequate filter length. Some statistical criteria
for model selection, such as the minimum description length
(MDL) [35] and the Akaike information-theoretic criterion
(AIC) [36], can be used to determine the appropriate length of
the demixing filter. In this paper, we employ a slightly modified
minimum description length (MDL) as the criterion for filter
length selection. We define the criterion as

MDL (76)

The first term of the right side is slightly different from original
MDL criterion in order to fit the model selection principle for
blind deconvolution. The filter length is chosen to minimize
MDL over all natural integers.

B. Natural Gradient Learning for

The natural gradient algorithm (63) can be rewritten equiva-
lently in the following matrix form:

(77)

where the matrix is defined as

...
...

...
. . .

...

(78)

and the matrices are defined by

for (79)

From (77), it is observed that the natural gradient algorithm (63)
is different from the one proposed in [22]. The difference comes
from the fact that the matrix in this paper is a low-triangle
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matrix, whereas in [22], it is a full one. This is because the effect
of the noncausal part is included in the latter.

C. Natural Gradient Learning for Anticausal Filter

The natural gradient algorithm for can be imple-
mented in the same way

(80)

where the matrix is defined as

...
...

...
. . .

...

(81)

and the matrices are defined by

for (82)

In the learning algorithm (80), we see that is fixed to .
Computer simulations show that the natural gradient algorithm
has much better convergence properties and performance than
the ordinary gradient algorithm.

VIII. SIMULATIONS

A number of computer simulations have been performed to
investigate the validity and performance of the proposed natural
gradient learning algorithms. We will illustrate simulation re-
sults in the following sections.

A. Performance Criterion

To evaluate the performance of the proposed learning algo-
rithms, we employ the multichannel intersymbol interference
[37], [38] denoted by as a criterion

(83)

where is the
global transfer function. It is easy to show that if and
only if is of the form (7). In order to remove the effect of
a single numerical trial on evaluating the performance of algo-
rithms, we use the ensemble average approach, that is, for each
trial, we obtain a time sequence of , and then, we take the
average of over differential trials to evaluate the perfor-
mance of the algorithms.

B. Causal FIR Filters

In order to evaluate the performance of the learning algorithm
(63), we randomly choose minimum-phase filters as the mixing

Fig. 4. M performance of the natural gradient algorithm.

model and use causal FIR filters to recover source signals. We
present three examples to demonstrate the behavior and perfor-
mance of the learning algorithm (63). In these examples, the
mixing model is a multichannel ARMA model as follows:

(84)

where , , and . The matrices and are ran-
domly chosen such that the mixing system is stable and min-
imum phase. The source signals
are randomly generated i.i.d signals uniformly distributed in the
range ( 1, 1), and is the Gaussian noise with zero mean and
a covariance matrix . The nonlinear activation function is
chosen to . The learning rate is another important
factor to consider when implementing the natural gradient algo-
rithm. The strategy used in our studies is to update the learning
rate by for every 200 itera-
tions. The initial value is set to .

Example 1: This example is considered to demonstrate
the learning dynamics of the natural gradient algorithm. A
large number of simulations show that the natural gradient
algorithm can easily recover the source signals in the sense
of if the filter length is appropriately
chosen. Fig. 4 illustrates a 100-trial ensemble average
performance of the natural gradient learning algorithm and
the ordinary gradient algorithm. It can be seen that the natural
gradient algorithm usually requires less than 2000 iterations to
obtain satisfactory results, whereas the ordinary gradient algo-
rithm requires more than 10 000 iterations to obtain satisfactory
results since there is a long plateau in the ordinary gradient
learning.

Example 2: This example is presented to show the noise
tolerance of the natural gradient algorithm in the presence of
noise levels ranging from 5 to 30 dB. There were 100 trials
conducted with additive noise varying from 5 to 30 dB.
Fig. 5 plots the average ISI index for 100 trials versus the
signal-to-noise ratio (SNR). We can see from this simulation
that the average ISI index keeps below 0.1 if the SNR .

Example 3: Here, we consider an example to show how to
choose the best filter length for the demixing model. We choose
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Fig. 5. M index for different noise levels from�5 to 30 dB. The horizontal
axis indicates the noise level, and the vertical axis indicates the intersymbol
inference index after convergence.

Fig. 6. Coefficients of the mixing filterH(z).

the ARMA model as a mixing system that is stable and min-
imum phase. Fig. 6 illustrates the coefficients of the transfer
function , where the th subfigure plots the coefficients
of the transfer function up to order
80.

We use the MDL criterion to choose the filter length. Fig. 7
shows the MDL index (upper curve) and the cost function

(lower curve) for different filter lengths. We
observed that the cost function does not decrease significantly
if we further increase the filter length when . According
to the MDL criterion, is the best length for the
demixing model.

Fig. 8 illustrates the coefficients of the global transfer
function after 2000 iterations, where the

th subfigure plots the coefficients of the transfer function
up to order 80.

Fig. 7. MDL index and the cost function E[l(y;W(z))] for different filter
lengths of the demixing model. The continuous line shows the MDL index
with respect to filter length N , and the dash line shows the cost function
E[l(y;W(z))] with respect to filter length N .

Fig. 8. Coefficients ofG(z) of the causal system after 2000 iterations.

C. Nonmimimum-Phase Mixture Cases

In this simulation, the sensor signals are generated by the mul-
tichannel ARMA model (84), of which the matrices are ran-
domly chosen such that the mixing system is stable and non-
mimimum phase. The zero and pole distribution of the mixing
system are plotted in Fig. 9. It is easy to verify that the system is
stable and nonmimimum phase. In order to estimate the source
signals, learning algorithms (77) and (80) have been used to
train the demixing model. The filter length is selected using the
MDL criterion. Figs. 10 and 11 illustrate the coefficients of the
global transfer function at the initial state
and after 6000 iterations, respectively, where the th sub-
figure plots the coefficients of the transfer function

. Figs. 12 and 13 show the coeffi-
cients of the causal filter and the anticausal filter .
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Fig. 9. Zero and pole distributions of the mixing ARMA model.

Fig. 10. Coefficients ofG(z) of the noncausal system at the initial state.

Fig. 11. Coefficients ofG(z) of the noncausal system after convergence.

It is easy to see that the coefficients of both filters decay as the
delay number increases.

In order to compare the learning performance of different al-
gorithms, we also use the Bussgang algorithm to train an FIR
filter with the same initialization and filter length as the filter

Fig. 12. Coefficients of the causal filter L(z).

Fig. 13. Coefficients of the anticausal filterR(z ).

decomposition approach. Computer simulations show that if the
mixing system is nonmimimum phase, the Bussgang algorithm
is very slow. There are significant differences in learning per-
formance between the conventional transversal equalizers and
the filter decomposition approach. The main reason for the dif-
ference is that the conventional equalizer does not utilize the in-
vertibility property of the demixing filter. In the manifold of the
invertible noncausal filter, the steepest ascent direction is not de-
fined by the ordinary gradient. Therefore, the algorithm derived
from the ordinary gradient does not give the best convergence
rate.

The filter decomposition approach utilizes the invertibility
property of the noncausal filter and introduces the natural gra-
dient of causal filters as a search direction. Thus, the filter de-
composition algorithm performs better than the conventional
equalizer.

IX. CONCLUSION

A new filter decomposition approach is presented in this
paper for multichannel blind deconvolution of nonmim-
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imum-phase systems. Geometrical structures, such as the Lie
group and the natural gradient, are introduced on the manifold
of FIR filters. Natural gradient-based algorithms are developed
to update the demixing filters. It should be mentioned that
the filter decomposition approach is also applicable to other
problems of estimating noncausal filters.

A large number of computer simulations have been per-
formed to demonstrate the efficiency and performance of the
proposed algorithms. It is observed from these simulations
that the natural gradient algorithm usually requires only 2000
iterations to obtain satisfactory results, whereas the ordinary
gradient algorithm requires more than 10 000 iterations to
obtain satisfactory results since there is a long plateau in the
ordinary gradient learning. Therefore, the learning plateau in
blind deconvolution may be overcome by using the natural
gradient approach.
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