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Abstract

Recently, bubble coding for natural image sequences has
been proposed. This method unified three important statis-
tical properties: sparseness, temporal coherence, and to-
pographic dependencies. However, this approach does not
consider the overcomplete case. It is widely believed that
the overcomplete representation is more efficient than the
complete representation. In this paper, we use Bayesian
estimation to extend the bubble coding into overcomplete
case. Based on a quasi-orthogonality in a high-dimensional
space, the prior probability of the mixing matrix is derived.
Instead of examining basis coefficient, we investigate the
dot product between basis functions and whitened observed
data vectors for their sparseness and the advantage in the
Bayesian model. Based on the bubble detector definition, an
approximation of the prior probability of this dot product
is given. Simulation results suggest that the overcomplete
bubble coding can be achieved by a Bayesian inference. The
model is promising in a wide variety of applications, such
as image processing and pattern recognition.

1 Introduction

It is widely assumed that neurons in the visual cortex are
better tuned to the stimuli that they are more often exposed
to. This property, known as the efficient coding hypothesis,
has become an important computational principle for the
design of sensory systems [1, 2]. Motivated by this hypoth-
esis, many computational models investigated the statisti-
cal properties of natural signals. Among these discoveries,
three statistical properties have been extensively discussed:
sparseness, temporal coherence, and topographic dependen-
cies. By applying sparseness or temporal coherence crite-
ria on natural images (or sequences), the extracted features

indicate similarities, such as shape and orientations to the
classical receptive fields (CRFs) in V1 in the human visual
cortex[11, 5]. By using topography criterion, the energy
topographic dependencies of responses of simple cells are
modelled by a two-layer network for natural images. This
criterion leads to topographic independent component anal-
ysis (TICA) model [6]. When TICA model is performed
on natural images, the emerging topography is qualitatively
similar to the observed properties of complex cells in V1.
Furthermore, Hyvärinen et al. based on the concept of
bubble-like spatiotemporal activities of neurons, developed
a unified framework that combines all these three proper-
ties [7]. The bubble in the model means that the responses
of simple cells are contiguous both in space and time.

However, the limitation of the bubble coding is that it
does not allow for an overcomplete representation – a case
where the number of basis functions is larger than the di-
mensionality of input signals. An important assumption of
bubble coding is the existence of the inverse matrix of mix-
ing matrix, which is only suitable for the complete case.

In this paper we propose a Bayesian method to gener-
alize the bubble coding into an overcomplete basis. This
method extends bubble coding and ordinary overcomplete
ICA model in several ways that are relevant to the efficient
coding. First, we reformulate the ordinary overcomplete
ICA into a hierarchical fashion, which extends the basic
single-layer sparse coding scheme. In comparison, ordi-
nary ICA methods only capture linear structures of the input
data since only one stage is involved. In the overcomplete
case, the basis functions learned by our method can promise
the appearance of this topographic organization. Second,
our model yields overcomplete representations while ordi-
nary bubble coding only produces complete representations
for natural image sequences. Overcomplete representations
generally provide more efficient representations than the
complete case, and have been widely used in fields of com-



putational perceptions and pattern recognitions [10]. Previ-
ously, some computational models have been proposed for
the overcomplete representations [12, 9, 8].

The paper is organized as follows. In the next section,
we propose a Bayesian method to estimate basis functions
and bubble activity in an overcomplete case for natural im-
age sequences. The gradient descent algorithm for learning
the mixing matrix A is given. In section 3, we apply the
model to natural image sequences. In this section, several
properties of our basis functions are analyzed. Finally, we
discuss the contribution of our work in section 4.

2 Overcomplete Spatiotemporal Bubbles

A simple model for natural images is the linear genera-
tive model, where the input data x are assumed to be gener-
ated as a linear transformation of basis functions:

x = As =

N
∑

i=1

aisi, (1)

where x = (x1, x2, ..., xM )T is a vector of observed
data, ai is the ith column of the mixing matrix A. s =
(s1, s2, ..., sN )T is a vector of basis coefficient. In a corti-
cal interpretation, the coefficient si models the response of
a simple cell, and A is closely related to the classical recep-
tive fields (CRFs) of neurons [11].

To make the model hierarchical, we consider a two-layer
neural network as in bubble model [7]. The simple cells
are assumed to be arranged in a 2-D grid. The squared
outputs of simple cells are pooled to complex cells in the
second layer. The pooling weight between ith complex
cell and jth simple cell is described by a neighborhood
function h(i, j). Typically, if the cells are close enough
to each other, h(i, j) = 1; otherwise, h(i, j) = 0. In
order to incorporate spatiotemporal pooling into consider-
ation, we further formulate the neighborhood function to
h̃(i, j, τ) = h(i, j)φ(τ), where τ is a time lag (delay) and
φ(τ) is a temporal smoothing kernel. Thus, the output of a
bubble detector at point i during time t can be formulated
as:

bi(t) =
∑

τ

N
∑

j=1

h̃(i, j, τ)s2

i . (2)

2.1 Bayesian Inference

In this paper, we estimate the model by maximum a pos-
teriori (MAP) approach. From a Bayesian viewpoint, the
purpose of our model is to estimate most probable basis
functions. In other word, we want to maximize the poste-
rior probability of basis functions given natural images se-
quences. We first whiten the observed data x to z = Vx,

where V is the whitening matrix. To factorize the posterior
probability of the parameters, we have:

P (A|z) =
P (z|A)P (A)

P (z)
. (3)

Note that P (z) does not depends on A. Now we turn to the
problem of learning likelihood P (z|A) and the prior proba-
bility of mixing matrix P (A).

2.1.1 Likelihood of The Model

The likelihood P (z|A) can be derived with several assump-
tions: (1) the norms of basis vectors are set to unity; (2) the
variance of basis coefficients can differ from unity. Now,
we examine the vector y = (y1, ..., yi, ..., yN )T = AT z,
where yi is the dot product between the ith basis vector and
the whitened data vector:

yi = aT
i z = aT

i As = si +
∑

j 6=i

aT
i ajsj . (4)

The first item si is the ith basis coefficient and the sec-
ond term is Gaussian especially in the overcomplete case.
Therefore, the dot product is very likely to have sparse
marginal distributions. We can then place factorable sparse
on dot product: P (y) ≈ C

∏N

i=1
Pyi

(yi), where C is a con-
stant. Thus, the probability of z(t), t = 1, ..., T for T obser-
vations given A can be approximated as follows:

P (z(t)|A) = P (y) ≈ C

N
∏

i=1

Pyi
(yi) = C

N
∏

i=1

pyi
(aT

i z(t)).

(5)
Maximizing the sparseness of dot product yi is sufficient to
provide an approximation of the basis function. Now, we
can examine the dot product yi instead of the basis coeffi-
cient si. Clearly, better approximations of the prior proba-
bility of dot product would allow the model to capture more
accurate structures in images. The accuracy of the prior
probability is more important especially in overcomplete
cases [10]. Based on the two-layer network, we consider
an approximation of the prior probability of dot product,
which is derived in the Bubble model. A approximation of
the prior probability in the temporal bubble model is derived
as:

P̃ (y) =
∏

i

exp
(

G(bi(t))
)

. (6)

where bi(t) is the output of bubble detector given by Eq.
(2). The function G(ξ) has a similar role as the log-density
of components in basic ICA, and it should be convex for
non-negative variable ξ to enforce sparseness of bubbles.
Many heuristically chosen functions can be used, such as
the form: G(ξ) = −α

√
ξ + ε + β, where α is the scaling

constant and β is the normalization constant. The bubble



pooling given by h̃(i, j, τ) is considered fixed, and only the
first-layer connections A are estimated, so this likelihood is
a function of the ai only.

2.1.2 Prior Probability of Mixing Matrix

Obviously, an overcomplete representation means that the
number of basis functions are large. In other words, the ba-
sis vectors are randomly distributed into a high-dimensional
space. In high-dimensional space, there is a useful prop-
erty called quasi-orthogonality [8]. This property is previ-
ously presented by Hecht-Nielsen [4]: there exists a much
larger number of almost orthogonal than orthogonal di-
rections in a high-dimensional space. Therefore, in high-
dimensional space even vectors having random directions
might be sufficiently close to be orthogonal. The probabil-
ity for the dot product between two randomly drawn basis
vectors: P (aT

i aj) can be obtained in terms of this quasi-
orthogonality. Then the prior probability of mixing matrix
A can be conducted as follows

p(A) = cm

∏

i<j

(

1 − (aT
i aj)

2
)

m−3

2 , (7)

where cm is a constant. The detailed derivation of Eq. (7)
can be obtained in [8].

2.1.3 Posterior Probability of Mixing Matrix

According to the Eq. (3), (5), (6) and (7), we obtain the
log-probability of posterior L = logP(A|z(t)) for T ob-
servations z(t), t = 1, ..., T as follows

L ∝
T

∑

t=1

N
∑

i=1

G(bi (t)) + αT

∑

i<j

log(1 − (aT
i aj )

2 ) + C , (8)

where α is a constant that is related not only to cm, but also
to the approximations we have made.

2.2 Learning Rule

Our goal is to minimization of objective function L with
respect to A. In practice, it is not necessary to compute the
value of the bubble detector for all values of t. For simplic-
ity, only one output of the bubble detector for each sampled
spatiotemporal patch z(t) from the image sequence is com-
puted. Then a simple version of bi(t) is derived as follows:

bik =
N

∑

j=1

h(i, j)
T

∑

t=1

φ(T/2 − t)(aT
i zk(t))2 (9)

Note that since the sampling of a spatiotemporal patch au-
tomatically introduces limits for temporal integration, the
temporal smoothing kernel is defined to φ = 1 in this case.

The learning algorithm of mixing matrix can be derived by
maximizing the log-posterior of Eq. (8) and using gradient
ascent method

∂L
∂ar

∝
K

∑

k=1

T
∑

t=1

zk(t)
(

aT
r zk(t)

)

N
∑

i=1

h(i, j)g(bik)

+αT
∑

i<j

−2aT
i aj

1 − (aT
i aj)2

dr, (10)

where the function g is the derivative of function G. dr is
the r-th column vector of matrix D = [0, ..., aj , ..., ai, ...0],
where aj is the i-th column vector and ai is the j-th column
vector. Note that we estimate the overcomplete basis func-
tions under a generative model, however, it is unnecessary
for an additional step to make the filter wi to be orthogo-
nal. After each iteration during learning process on the ba-
sis functions, only the norm of the basis functions ar need
to be set to unity.

3 Simulations

We test the overcomplete spatiotemporal bubble model
on natural image sequences. The data are ob-
tained from a video of forest, which is available on
http://bcmi.sjtu.edu.cn/˜malibo/data/. The training set con-
sists of 16×16 pixels at 20 consecutive time points. Princi-
ple component analysis is used to reduce the dimensions of
the input data from 256 to 100. Hyvärinen’s bubble model
is applied to learn complete basis functions. In this case, a
set of 100 basis functions are arranged on a 10 × 10 2-D
torus grid (i.e. opposite side are connected to each other) to
avoid the border effects. The learned complete basis func-
tions with neighborhoods size of 3 × 3 are shown in Fig. 1.

Figure 1. Basis functions learned by ordinary
bubble model from natural image sequences
in complete case.

The effects of overcomplete cases are investigated in
depth. For 2 × overcomplete case, a set of 200 basis func-
tions are arranged on a 10 × 20 2-D torus grid. Whereas



Figure 2. Basis functions learned by our
model from natural image sequences in 2×
overcomplete case.

for 4× overcomplete case, a set of 400 basis functions are
arranged on a 20 × 20 2-D torus grid. The basis functions
are initialized to random values and are updated as Eq. (10).
After each updating of basis functions, the norm of the basis
functions ar need to be set to unity.

Figure 3. Basis functions learned by our
model from natural image sequences in 4×
overcomplete case.

The learned basis functions of 2× and 4× overcomplete
case with neighborhoods size of 3 × 3 are shown in Fig. 2
and Fig. 3. We can see that overcomplete basis functions
are well learned and they are quite similar to the complete
ones obtained by Hyvärinen’s bubble model. They demon-
strate a clear topographic organization for location, orienta-
tion and frequency. These three parameters of two nearby

basis vectors are similar and mostly change smoothly in the
topographic map.

To analyze the tiling properties of the estimated basis
vectors, we fitted each basis vector with a Gabor function by
minimizing the squared error between the estimated basis
vectors and the model Gabor. Figure 4 shows distributions
of parameters obtained by fitting Gabor functions in com-
plete, 2× overcomplete and 4× overcomplete case. We can
see that the distribution of the centers is quite uniform inside
the sampling window. Orientations and spatial frequencies
are quite independent from each other. With the increasing
of the level of overcompleteness, the scattering points in the
plot of location, orientation and spatial frequency become
denser and more uniform. And the distribution of phase is
much closer to be uniform.
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Figure 4. Distributions of parameters derived
by fitting Gabor function with some overcom-
plete levels. The leftmost column (A-C) is a
complete case, the middle column is 2× over-
complete case and the rightmost column is
4× overcomplete case. (a) Center location
within a patch. (b) Joint distribution of ori-
entation and spatial frequency (plotted in the
upper-half plane) (c) Histograms of phase of
Gabor fitted (mapped to range 0 ◦˜ 90 ◦)

We also illustrate the responses of complex cells (the out-
puts of bubble detectors) for a short image sequences (60
frames) in Fig. 5. We use the learned basis functions in 2×
overcomplete case, in which a set of 200 basis functions are
arranged on a 10× 20 2-D torus grid. The responses of ninth
and tenth row of complex cells for a short period are shown.



We can see that the image sequences indeed produce spa-
tiotemporal bubble activities. Surely, the clusters of activity
are both spatially and temporally contiguous. And complex
cells show more intense sparse topographic activations.

(a) The responses of tenth row of complex cells

(b) The responses of ninth row of complex cells

Figure 5. Bubble activities of complex cells.
We use the learned basis functions in 2×
overcomplete case, in which a set of 200 ba-
sis functions are arranged on a 10×20 2-D
torus grid. The responses of two nearby row
of complex cells are shown. The horizontal
axis is the time, the vertical axis is the cell
number. Blue color is negative value. Red
color is positive value.

4 Summary and Discussion

We have proposed a Bayesian method for learning over-
complete bubbles from natural image sequences. This is
based on two useful properties: (1) quasi-orthogonality
of basis vectors in a high-dimensional space; (2) the dot
product between basis function and whitened data vector
is certain to have sparse marginal distributions. Simula-
tion results suggest that overcomplete bubble coding can be
achieved by a Bayesian inference. An important concern in
the our model is how we can generalize the ordinary bubble
model into an overcomplete case by a Bayesian inference.
The bubble coding is an extension of basic ICA and they
have the same assumption of existence of the inverse matrix
of mixing matrix (W = A−1). Only complete representa-
tions for natural signals can be produced.

Another issue presented in this paper is the relevance
of the learned basis functions to neurobiological interpreta-
tion. The examination of overcomplete basis functions for
natural image sequences suggest that some of the similar-
ity of the properties of complex cells in V1 can be derived

by efficient coding principle. A spatiotemporal bubble is
more similar to the activity of a complex cell with a space-
time-separable receptive field [3]. This model may offer
new insights into other aspects of the response properties
of neurons at a higher level of cortical processing. In ad-
dition, overcomplete bubbles model is also promising in a
wide range of fields, such as signal processing and pattern
recognition.
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