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This study explores the feasibility of integrating unsupervised and supervised segmenta-
tion of Chinese texts for enhancing performance beyond the present state-of-the art, focus-
ing on the critical role of the former in enhancing the latter. Following only a pre-defined
goodness measure, unsupervised segmentation has the advantage of discovering many
new words in raw texts, but it has the disadvantage of inevitably corrupting many known.
By contrast, supervised segmentation conventionally trained only on a pre-segmented cor-
pus is particularly good at identifying known words but possesses little intrinsic mecha-
nism to deal with unseen ones until it is formulated as character tagging. To combine
their strengths, we empirically evaluate a set of goodness measures, among which descrip-
tion length gain excels in word discovery, but simple strategies like word candidate prun-
ing and assemble segmentation can further improve it. Interestingly, however, accessor
variety and boundary entropy, two other goodness measures, are found more effective in
enhancing the supervised learning of character tagging with the conditional random fields
model. All goodness scores are discretized into feature values to enrich this model. The suc-
cess of this approach has been verified by our experiments on the benchmark data sets of
the last two Bakeoffs: on average, it achieves an error reduction of 6.39% over the best per-
formance of closed test in Bakeoff-3 and ranks first in all five closed test tracks in Bakeoff-4,
outperforming other participants significantly and consistently by an error reduction of
8.96%.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Word segmentation is a primary task for computer processing of many East Asian languages including Chinese, because in
the written forms of these languages word boundaries are not explicitly marked with any overt delimiters such as white
space. Written Chinese appears in the form of sequence of characters rather than words. Thus, the task of word segmentation
is to convert a text as a sequence of consecutive characters into a sequence of correctly delimited words. It is a special case of
tokenization for language processing that involves more complicated problems than one would think at the first glance
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[47,11,30,29]. Various approaches have been explored by scholars to tackle the two main causes of segmentation errors,
namely, segmentation ambiguities and unknown (or out-of-vocabulary, OOV) words. Numerous efforts have also been de-
voted to examine and maximize the effectiveness of various kinds of language resource and linguistics information. For
example, the critical role that morphemes and part-of-speeches can play is examined via morpheme-based lexical chunking
in a recent study [9]. However, not until recent years have machine learning techniques been successfully applied to this
particular task [49,31]. The rapid growth of large scale segmented corpora has brought in essential training data to enable
the application of these techniques and the Bakeoffs,2 in particular, have provided an international forum for examining and
comparing their effectiveness in a comprehensive way [37,5,24], in addition to providing indispensable benchmark data sets for
verifying and comparing the effectiveness of different supervised and unsupervised learning models.

Conventionally, supervised segmentation assumes a pre-segmented (or labeled) corpus for training a statistical model
that can infer the optimal segmentation for an input sentence. Minimally, it assumes a bare vocabulary as a set of known
words, either pre-defined or extracted from the pre-segmented training corpus. These words form the structural backbone
of the model, and the optimal parameters of the model are to be obtained via training. However, regardless of whether the
training is conducted on labeled or unlabeled data, or even both, its purpose is to determine the parameters in association
with word sequences, not to determine the words. In principle, this kind of supervised training for a word-based model can
hardly bring in any intrinsic mechanism for inferring OOV words. Unfortunately, among the two main causes of segmenta-
tion error, OOV words account for several times more errors than ambiguities [15], because a word-based statistical model
trained on a labeled corpus of only known words has a strong power of disambiguation via probability estimation but little
means to deal with unknown words.

In contrast, unsupervised segmentation does not rely on any given language resource such as a pre-defined vocabulary or
a pre-segmented corpus. It is assumed to perform without any labeled data for training. In fact, it is intended to derive a
vocabulary from scratch from unsegmented texts, in a way to estimate the likelihood of a substring being a true word by
virtue of some pre-defined heuristics or a goodness measure. Usually, a goodness measure for this purpose is formulated
in terms of statistical theory to capture our empirical observations of language characteristics in real data, rather than to
express theoretical linguistic insights. Thus, it is not a surprise that linguistically-driven heuristic rules are often applied
to remedy some idiosyncratic shortcomings of a statistics-based goodness measure for performance enhancement. Further-
more, it is worth noting that unsupervised segmentation is different from, and more complex than, word extraction. The for-
mer aims to carry out the segmentation task for a text, for which a decoding algorithm is indispensable; whereas the latter
only needs to derive as the final output a list of word candidates from an unsegmented corpus [3,50,6], and hence may or
may not involve segmenting the whole corpus into individual words.

Several studies have explored unsupervised segmentation of Chinese texts into words by various means and for various
purposes [38,34,10,8,33,40,19]. These studies were formulated in very diverse ways, involving many kinds of heuristic rules.
To our knowledge, however, there has not yet been any comprehensive evaluation to examine and compare the performance
of different approaches in a consistent way using authoritative large scale ‘‘gold standard” data sets, such as the multi-stan-
dard ones for the Bakeoffs. Certainly, it is also more than interesting to take a close look at how these approaches correspond
with different segmentation standards.

Considering that a statistical goodness measure represents, to a great extent, human observations of the global distribu-
tional characteristics of substrings throughout a given corpus of raw texts, one may proceed to exploit such characteristics to
facilitate supervised learning of word segmentation. So far, supervised learning has only made use of local information about
individual characters and/or substrings within the scope of a sentence, resorting to little global information derived from a
whole large scale corpus.

This study explores the role that such global information, derived by various goodness measures, can play in both unsu-
pervised and supervised segmentation. In particular, it focuses on examining four representative goodness measures for
word discovery, namely, frequency [27], description length gain [21,20], accessor variety [6,7], and boundary entropy
[44,3,16,19], aiming at exploring an effective way of applying them to enhance supervised segmentation.

Each of these measures is integrated into two baseline segmentation frameworks for a comprehensive evaluation. One is a
generalized decoding algorithm to realize unsupervised segmentation with a goodness measure as objective function. The
other is the conditional random fields (CRFs) model [23] for supervised segmentation via character tagging, conventionally
trained only on a pre-segmented corpus. The latter is a state-of-the-art approach that has set new performance records in the
field, as illustrated in [52,55], although its efficiency is yet to be further enhanced by various means [58,59]. All scores given
by the goodness measures are discretized in the same way for use as feature values in the CRFs model. No other heuristic
rules or prior knowledge are involved in this framework, so as to ensure a fair way of comparing the effectiveness of these
goodness measures in enhancing the performance of the CRFs model. In this situation, among all evaluation measures in use,
the error reduction rates indicating any further improvement over the existing performance records are particularly worth
highlighting. All evaluations, for both supervised and unsupervised segmentation, are conducted on the benchmark data sets
for Bakeoff-3 [24]. The main reason is that they are significantly larger than others and hence can provide technically more
reliable evaluation results.
2 The International Chinese Word Segmentation Bakeoffs, at http://www.sighan.org/{bakeoff2003,bakeoff2005,bakeoff2006} and http://www.china
language.gov.cn/bakeoff 08/bakeoff-08_basic.html, conventionally referred to as Bakeoff -1, -2, -3 and -4, respectively.

http://www.sighan.org/
http://www.chinalanguage.gov.cn/
http://www.chinalanguage.gov.cn/
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The article is organized as follows. The next section presents the four representative goodness measures for unsupervised
segmentation (including unknown word extraction) that are to be integrated into the supervised segmentation using the
CRFs model. The experimental settings for their evaluation are given in Section 3. The evaluation results for unsupervised
segmentation and its enhancement of supervised segmentation are reported in Sections 4 and 5, respectively. Conclusions
are presented in Section 6, including a summary of our major contributions and an outlook for future work.
2. Goodness measure

In principle, both word discovery and unsupervised segmentation without any pre-segmented data for training or any
prior knowledge about word form have to resort to some pre-defined criterion for estimating the likelihood of a candidate
being a true word, resulting in a goodness score assigned to the candidate. There are also other types of goodness measure for
unsupervised segmentation which do not quantify the word likelihood of a candidate. Instead, they indicate how good it is to
segment a substring (or join two) at a certain point, e.g., mutual information (MI) [38,28,4,39,50], t-test [40], and Ando–Lee
criterion [1], to name but a few. Inevitably, however, an ad hoc threshold is needed for a decision by any of these measures.
The threshold may be manually specified according to one’s experience or empirically determined in terms of available data,
segmented or unsegmented. Other disadvantages of these measures include: (1) setting a threshold means imposing a brute-
force heuristic rule upon a criterion for unsupervised processing; (2) contextual local information has no role to play in
determining a segmentation; and (3) more critically, such a measure can only support a binary decision about a possible
breaking point, not an optimization over a whole sentence searching for its best segmentation.

This study focuses on a number of representative goodness measures for unsupervised segmentation that allow both local
and global information to interact with each other in the optimization process to derive the best segmentation for a sentence
without any ad hoc threshold setting. Given a goodness measure M, we have a set of word candidates
W = {hwi,gM(wi)iji = 1, . . . ,n} from an input corpus C of unlabeled texts, where wi is a substring in C and gM(wi) the scoring
function by virtue of M. Working on an input sentence, the generalized decoding algorithms to be given in Section 4.1 will
assume this setting for each goodness measure given below in this section.

2.1. Frequency

Frequency alone is hardly a sound estimator for how likely a substring is to be a true word, although one may feel that a
more frequently occurring substring seems to have a better chance. Statistical substring reduction [27] is an attempt to turn
frequency into a workable word-hood criterion. Its underlying assumption is that among two overlapping substrings of the
same frequency, the shorter one is redundant and hence can be discarded as a word candidate.

For the purpose of adapting this kind of frequency after substring reduction (FSR) to a decoding algorithm, a goodness
scoring function is defined as follows:
gFSRðsÞ ¼ log pðsÞ; ð1Þ
where p(s) is the frequency of a substring s. That is, the log value of the frequency is assigned to s as its goodness score. The
purpose here is certainly not to approximate the number of bits (by log base 2) needed for encoding s, but to fit the frequency
to a decoding algorithm in a similar way as the scoring functions for other goodness measures.

2.2. Description length gain (DLG)

This goodness measure is formulated in [21,20] for word discovery via unsupervised segmentation of an input sentence
into word candidates that give the optimal sum of compression effect. A compression-based approach to supervised segmen-
tation of Chinese can be found in [42], which identifies words with the greatest compression effect according to a compres-
sion model trained, instead, on a pre-segmented corpus.

The DLG resulted from extracting all occurrences of a substring xixi+1. . .xj (also denoted as xi� � �j) as a word candidate from a
corpus X = x1x2. . .xn is defined as:
DLGðxi���jÞ ¼ LðXÞ � LðX½r ! xi���j� � xi���jÞ; ð2Þ
where X[r ? xi� � �j] represents the resultant corpus from replacing all instances of xi� � �j with a new symbol r throughout X and
� denotes the concatenation of two substrings. L(�) is the empirical description length of a corpus in bits. Following the clas-
sic information theory [36], it can be estimated in terms of the Shannon–Fano or Huffman coding as:
LðXÞ ¼: � jXj
X
x2VX

p̂ðxÞlog2p̂ðxÞ; ð3Þ
where j � j denotes the length of a string in number of characters, VX is the character vocabulary of X and p̂ðxÞ the frequency of
x in X. For a given word candidate w, we define gDLG(w) = DLG(w).
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2.3. Accessor variety (AV)

It is proposed in [6] as a statistical criterion to measure the word likelihood of a substring for word extraction from raw
texts of Chinese. The AV of a substring s is defined as:
3 http
4 We
AVðsÞ ¼minfLavðsÞ;RavðsÞg; ð4Þ
where the left and right accessor variety Lav(s) and Rav(s) are, respectively, the number of distinct predecessor and successor
characters.

This method clearly follows Harris’s [13,14] idea for identifying morphemes in an unfamiliar language that a string of
phonemes is more likely to be a true morpheme if it appears in a larger number of distinct contexts. It is reported to have
particular strength in dealing with low-frequency words. In [6], however, a threshold is set to filter out substrings whose AV
values are so low that they are otherwise quantified as potentially meaningful word candidates, and a number of heuristic
rules have to be applied to handle candidates consisting of a word and adhesive characters in a strong collocation that the AV
is powerless to differentiate from true words. Various ways of combining AV value and word length into an effective target
function for unsupervised segmentation are explored in [7].

In order not to diverge from our focus on examining the capacity of AV alone in unsupervised segmentation, all heuristics
of these kinds as used for word extraction in [6] are discarded. Similar to the treatment for FSR, the log AV value of a word
candidate is used in the decoding over an input sentence for identifying the best segmentation for it. That is, we define
gAV(w) = logAV(w) for a word candidate w.

2.4. Boundary entropy (BE)

This criterion is applied to unsupervised segmentation in a number of previous works [44,3,16,19]. The local entropy for a
given substring xi� � �j is defined as:
hðxi���jÞ ¼ �
X
x2V

pðxjxi::jÞ log pðxjxi::jÞ; ð5Þ
to quantify the average branching uncertainty after (or before) xi� � �j, where p(xjxi� � �j) is the co-occurrence probability of xi� � �j
with character x. There are two types of h(xi� � �j), namely hL(xi� � �j) and hR(xi� � �j), corresponding to the left and right directions to
extend the substring xi� � �j [44].

In a similar way to (4), we have hmin(�) = min{hR(�),hL(�)}. Accordingly, we define gBE(w) = hmin(w) for a word candidate w
involved in the decoding for deriving the optimal segmentation of a sentence in terms of BE.

In principle, Harris’s idea underlies both AV and BE; that is, the branching uncertainty is higher at a boundary in between
language units such as morphemes or words than at other places. In this sense, it is justifiable to consider these two mea-
sures the discrete and continuous formulations of the same idea.
3. Experimental settings

The experiments reported below are conducted on all four data sets from Bakeoff-3 [24], whose corpus sizes in number of
both characters and words are summarized in Table 1. Each set consists of a training and a test corpus, for use to train and
test a supervised segmentation model respectively. For unsupervised segmentation, however, we will use the raw texts of
the training corpora for training, and their annotated versions as the gold standard for evaluation. The main reason for
not using the correspond ing test corpora is that the training corpora are much larger in size and hence can produce more
reliable statistics and experimental results.

Segmentation performance is evaluated by word F-measure conventionally defined as F = 2RP/(R + P), where the re-
call R and precision P are, respectively, the proportions of the correctly identified words to all words in the gold stan-
dard in question and to those in a segmenter’s output. All evaluation results will be presented as F-scores, if not
otherwise specified. A scoring tool for calculating these scores is available from the official website of SIGHAN.3 How-
ever, in order to compare with related works by others, we will also use word boundary F-measure Fb = 2RbPb/(Rb + Pb) as
an auxiliary evaluation metric, where the word boundary recall Rb and precision Pb are defined, respectively, as the pro-
portions of the correctly recognized word boundaries to all boundaries in the gold standard and a segmenter’s output
[21,1].

The recall of OOV words, ROOV, was used in all previous Bakeoffs as one of the most important performance indicators for
supervised segmentation, revealing the capacity and effectiveness of a supervised segmentation strategy in OOV word detec-
tion. Nevertheless, it is widely recognized that the F-measure for OOV words, FOOV, defined in a similar way as F and Fb above,
is a more comprehensive and less biased metric for assessing the performance of OOV detection. It is hence adopted for this
research to supersede the conventional ROOV.4
://www.sighan.org/bakeoff2003/score.
owe thanks to an anonymous reviewer for pushing hard for this supersedure.
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Table 1
Bakeoff-3 corpora.

Corpus AS CityU CTB MSRA

Training (M) Character 8.42 2.71 0.83 2.17
Word 5.45 1.64 0.5 1.26

Test (K) Character 146 364 256 173
Word 91 220 154 100

Table 2
Performance comparison.

Max
Length

Goodness
Measure

Training corpus

AS CityU CTB MSRA

2 FSR 0.400 0.454 0.462 0.432
DLG/d 0.592 0.610 0.604 0.603
AV 0.568 0.595 0.596 0.577
BE 0.559 0.587 0.592 0.572

7 FSR 0.193 0.251 0.268 0.235
DLG/d 0.331 0.397 0.409 0.379
AV 0.399 0.423 0.430 0.407
BE 0.390 0.419 0.428 0.403
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4. Unsupervised segmentation

4.1. Decoding algorithms

Two generalized decoding algorithms are formulated for inferring the optimal segmentation for a given plain text, which
is usually a sentence at a time. The first one, henceforth referred to as algorithm I, implements a Viterbi search for the best
segmentation S* for a text T as follows:
5 We
S� ¼ argmax
w1 ���wi ���wn¼T

Xn

i¼1

gðwiÞ; ð6Þ
with respect to all wi 2 T and hwi,g(wi)i 2W.
Another one, henceforth algorithm II, mimics the so-called ‘‘maximal match” segmentation but is guided by a goodness

scoring function instead of word length. It works as follows to carry out a direction-constrained best-first search that repeat-
edly outputs the best current word w* at the beginning of T and keeps its remainder T = t* for the next round of search,
fw�; t�g ¼ argmax
wt¼T

gðwÞ; ð7Þ
with each hw,g(w)i 2W. This algorithm will back off to the forward maximal match algorithm if the goodness function is set
to word length. In this sense, it is a generalization of the latter. Symmetrically, it has a backward version that works the other
way around.

An unsupervised segmentation method, henceforth algorithm III, to work with BE is provided in [19]. It works as follows:
if g(xi� � �j+1) > g(xi� � �j) for any two overlapping substrings xi� � �j and xi� � �j+1, then a segmentation point is located right after xi� � �j+1.
This algorithm also has both a forward and a backward version. The union of the segmentation outputs from both versions is
taken as the final output of the algorithm. Among the three algorithms given in Jin and Tanaka-Ishii [19], this one proves to
give the best performance.5

4.2. Performance comparison

Note that a decoding algorithm requires a goodness score for each word candidate involved, including single-character
ones. There are two ways to obtain this score, one by a goodness measure in use, if applicable, and the other by default value
setting, usually to 0, for special treatment of some cases. For example, all single-character candidates having a negative DLG
score will be assigned a default value for the decoding. We will use ‘‘/d” to indicate the experiments involving default value
setting. This setting can speed up the decoding significantly at the cost of no significant difference in segmentation perfor-
mance, thanks to its (side-) effect of discarding all substrings that occur only once in the training corpus in question.
owe thanks to Zhihui Jin and Kumiko Tanaka-Ishii for providing the technical details of their algorithms through personal communications.



Table 3
Performance comparison: AV vs. BE.

Max
Length

Goodness
Measure

Training corpus

AS CityU CTB MSRA

2 AV(I) 0.568 0.595 0.596 0.577
AV(II)/d 0.485 0.489 0.508 0.471
AV(II) 0.445 0.366 0.367 0.387

BE(I) 0.559 0.587 0.592 0.572
BE(II)/d 0.485 0.489 0.508 0.471
BE(II) 0.504 0.428 0.446 0.446

7 AV(I) 0.399 0.423 0.430 0.407
AV(II)/d 0.570 0.581 0.588 0.572
AV(II) 0.445 0.366 0.368 0.387

BE(I) 0.390 0.419 0.428 0.403
BE(II)/d 0.597 0.604 0.605 0.593
BE(II) 0.508 0.431 0.449 0.446

2 3 4 5 6 7

0.35

0.4

0.45

0.5

0.55

0.6

 The Range of Word Length

 F
−m

ea
su

re

BE/(2): AS
BE/(2): CityU
BE/(2): CTB
BE/(2): MSRA
DLG/(1): AS
DLG/(1): CityU
DLG/(1): CTB
DLG/(1): MSRA

Fig. 1. Performance vs. word length.
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Algorithm I is first applied to carry out unsupervised segmentation of the raw texts of all Bakeoff-3 training corpora with
the aid of the above goodness measures. Both word candidates and their goodness scores are derived from the raw texts. The
performance of these measures is presented in Table 2, where ‘‘Max Length” is the maximal length allowable for the word
candidates in an experiment and the best performance in a set of experiments on each corpus for comparison purpose is
marked in boldface (likewise in other tables hereafter). In this way we examine the effectiveness of a goodness measure
in identifying true words of various lengths. The majority of Chinese words are of 1 character or 2, and very few exceed
7. From the table we can see that (1) FSR underperforms significantly, (2) DLG has the strongest performance on short words
whereas AV outperforms all others as the max length gets larger, and (3) BE has a performance closely and consistently com-
parable to that of AV.

Algorithm II performs forward and backward segmentation with the corresponding version of AV and BE measure, i.e., Lav/
hL for the backward and Rav/hR for the forward respectively, and then their outputs are merged into one. That is, all segmen-
tation points by either of them count towards the final. A further performance comparison of AV and BE is conducted with
this algorithm, and the results are presented in Table 3. We can see that the former has a better performance on shorter
words with algorithm I and the latter performs better on longer ones with algorithm II. Interestingly, AV/d and BE/d achieve
exactly the same F-scores on all four corpora. How segmentation performance varies along with word length is plotted into
curves as in Fig. 1, with DLG and BE as examples. It shows that DLG performs better on words of length 2 and BE on longer
ones.

4.3. Word candidate pruning

Although a good number of word candidates are given up by the default goodness threshold 0, the total number of them is
very large for any of the four goodness measures, as presented in Table 4. It shows that FSR generates the largest set of word
candidates and DLG the smallest. Interestingly, again, AV and BE generate exactly the same candidate lists for all corpora.

Besides word length, the number of word candidates is another crucial factor to affect segmentation performance. The
initial candidate set is simply all substrings in the input corpus not exceeding the word length constraint. In fact, it is of little
help to include substrings of length >7 in the candidate set, for no more than 0.0001% of Chinese words are of 7 characters or



Table 4
The number of word candidates by default setting.

Goodness
Measure

Training Corpus

AS CityU CTB MSRA

FSR 2009 K 832 K 294 K 661 K
DLG 543 K 265 K 96 K 232 K
AV 1153 K 443 K 160 K 337 K
BE 1153 K 443 K 160 K 337 K

2 3 4 5 6 7

0.4

0.45

0.5

0.55

0.6

0.65

 The Range of Word Length

 F
−m
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su

re
100% size
89% size
79% size
74% size
70% size
65% size
62% size
48% size
38% size

2 3 4 5 6 7
0.4

0.45

0.5

0.55

0.6

0.65

 The Range of Word Length

 F
−m

ea
su

re

100% size/(1)
38% size/(1)
32% size/(1)
19% size/(1)
10% size/(1)
100% size/(2)
27% size/(2)
19% size/(2)
16% size/(2)
13.5% size/(2)
11% size/(2)
4.5% size/(2)

Fig. 2. Performance vs. candidate pruning rate: DLG and BE.
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more, according to our statistics from all Bakeoff corpora. Reducing the number of candidates is one of the plausible ways to
enhance the quality of the candidate set as a whole. Since each candidate has a goodness score to indicate how good it is, a
straightforward way to do so is to prune off those whose scores are too low. To examine how segmentation performance is
affected by such pruning and then decide the optimal pruning rate, we conduct a series of experiments with each goodness
measure. Fig. 2 presents two of them, one with DLG (on the left) and the other with BE, both on CityU training corpus. It
indicates that appropriate pruning does lead to significant improvement with little change of these measures’ respective
advantages on two-character words and longer ones. Interestingly, each goodness measure has a stable and similar perfor-
mance in a range of pruning rates around the optimal one, e.g., 62–79% for DLG and 11–19% for BE, as illustrated in Fig. 2.

The optimal pruning rates found through experiments for the four goodness measures are presented in Table 5 and their
corresponding performance in Table 6, showing a remarkable improvement over the default setting. Again, the pruning does
not affect the advantage of DLG on two-character words and AV/BE on longer ones. Among the four measures, DLG achieves
the best overall performance because of its particular strength in dealing with short words. Without doubt, it is the over-
whelming number of two-character words in Chinese that allows it to triumph.

4.4. Ensemble unsupervised segmentation

Although word candidate pruning by a proper percentage cut does bring about promising performance improvement, it is
infeasible to determine the optimal pruning rate in practice for an arbitrary unlabeled corpus without knowing its gold



Table 5
Optimal rates (%) of candidate pruning.

Decoding algorithm Goodness measure

FSR DLG AV BE

(I) 1.8 70.0 12.5 20.0
(II) – – 8.0 12.5

Table 6
Performance via candidate pruning by optimal percentage cut.

Max
Length

Goodness
Measure

Training corpus

AS CityU CTB MSRA

2 FSR(I) 0.501 0.525 0.513 0.522
DLG(I)/d 0.710 0.650 0.664 0.638
AV(I) 0.616 0.625 0.609 0.618
BE(I) 0.613 0.614 0.605 0.611
AV(II)/d 0.585 0.602 0.589 0.599
BE(II)/d 0.591 0.599 0.596 0.593

7 FSR(I) 0.444 0.491 0.486 0.486
DLG(I)/d 0.420 0.447 0.460 0.423
AV(I) 0.517 0.568 0.549 0.544
BE(I) 0.501 0.539 0.510 0.519
AV(II)/d 0.623 0.624 0.604 0.615
BE(II)/d 0.630 0.631 0.620 0.622

Table 7
Performance of ensemble segmentation.

Max
Length

Goodness
Measure

Training corpus

AS CityU CTB MSRA

2 FSR(I) 0.629 0.635 0.624 0.623
DLG(I)/d 0.664 0.653 0.643 0.650
AV(I) 0.641 0.644 0.631 0.634

7 BE(I) 0.640 0.643 0.632 0.634
AV(II)/d 0.595 0.637 0.624 0.610
BE(II)/d 0.593 0.635 0.620 0.609

DLG(I)/d + AV(II)/d 0.672 0.684 0.663 0.665
DLG(I)/d + BE(II)/d 0.660 0.681 0.656 0.653
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standard segmentation in advance. A parameter-free method to tackle this problem is to let the available goodness measures
to do the pruning for each other, so as to obtain a better candidate set than they can individually.

A straightforward method for this is to have the intersection of individual candidate sets as pruning result. An underlying
assumption here is that the agreement of several sound criteria may come up with a more reliable decision than any indi-
vidual one of them. As the above four goodness measures are concerned, only DLG and AV (or BE) are needed in order to get
this result, because under the default setting both AV and BE result in the same set of candidates and DLG generates only a
subset of what FSR does, according to our observations.

Whether this intersection set of word candidates is really better than those before the reciprocal pruning can be verified
by putting it into experiments of optimal segmentation with each of these goodness measures, to see if any further improve-
ment can be achieved. The results of our experiments are presented in Table 7, showing that algorithm I achieves a marvel-
ous improvement on short words with all goodness measures except DLG, as compared to Table 6. Interestingly, however,
DLG still keeps its performance at the top despite some slip-back.

More importantly, however, is it possible to push for any further improvement by virtue of this intersection set, the best
candidate set obtainable so far in an unsupervised manner? A possibility for this certainly lies in how well the strengths of
various goodness measures can be put together so as to remedy their weaknesses reciprocally. Since DLG and AV/BE are
known to be particularly strong in recognizing two- character words and longer ones respectively, but relatively weak
the other way around, a simple strategy to combine them is to enforce all words of length >2 in the AV/BE segmentation
upon the corresponding parts in the DLG segmentation. As expected, this ensemble method gives a better overall perfor-
mance than all others that have been tried so far, as presented at the bottom of Table 7.



Table 8
Performance comparison of decoding algorithms on the CTB, MSRA and PKU corpus.

Max
Length

Goodness
Measure

CTB MSRA PKU

/d – /d – /d –

2 AV(I) 0.535 0.546 0.519 0.529 0.529 0.538
AV�ðIÞ 0.607 0.607 0.612 0.612 0.616 0.616

AV(II) 0.440 0.381 0.417 0.361 0.429 0.374
AV�ðIIÞ 0.538 0.538 0.522 0.522 0.531 0.531

AVðIIIÞ 0.382 0.084 0.362 0.084 0.375 0.085
AV�ðIIIÞ 0.458 0.458 0.431 0.431 0.441 0.441

BE(I) 0.533 0.544 0.516 0.526 0.526 0.534
BE�ðIÞ 0.607 0.607 0.610 0.610 0.615 0.615

BE(II) 0.440 0.476 0.417 0.475 0.429 0.488
BE�ðIIÞ 0.538 0.538 0.522 0.522 0.531 0.531

BE(III) 0.382 0.440 0.362 0.465 0.375 0.469
BE�ðIIIÞ 0.458 0.458 0.431 0.431 0.441 0.441

6 AV(I) 0.360 0.368 0.331 0.345 0.313 0.325
AV�ðIÞ 0.407 0.407 0.393 0.393 0.372 0.372

AV(II) 0.571 0.381 0.570 0.361 0.588 0.373
AV�ðIIÞ 0.645 0.645 0.651 0.651 0.663 0.663

AV(III) 0.382 0.377 0.363 0.432 0.376 0.453
AV�ðIIIÞ 0.461 0.461 0.435 0.435 0.445 0.445

BE(I) 0.357 0.363 0.327 0.337 0.309 0.319
BE�ðIÞ 0.405 0.405 0.391 0.391 0.370 0.370

BE(II) 0.602 0.485 0.611 0.488 0.624 0.501
BE�ðIIÞ 0.651 0.651 0.667 0.667 0.676 0.676

BE(III) 0.382 0.572 0.363 0.614 0.376 0.624
BE�ðIIIÞ 0.463 0.463 0.437 0.437 0.447 0.447
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4.5. Comparison of algorithms

In [19], algorithm III works with BE and is evaluated with the PKU Corpus6 of 1.1 M words as gold standard, but its word
candidate set is extracted from the 200 MB Contemporary Chinese Corpus of several years of the People’s Daily.7 For the purpose
of comparison, we carry out an evaluation with a similar setting to compare this algorithm with the other two, using the raw
texts of three training corpora of Bakeoff-3 in GB code, including the PKU corpus, with word candidates extracted from the unla-
beled texts of People’s Daily (1993–1997), of 213 MB and about 100 M characters. With the aid of the AV/BE criteria, a total of
4.42 M candidates up to 6-characters8 long are extracted.

The evaluation results are presented in Table 8, with ‘‘*” indicating reciprocal pruning of word candidates, in contrast to
the default pruning by goodness score >0 as before. A performance comparison in terms of boundary F-measure on the PKU
corpus is also given in Table 9.9 Unfortunately, both tables provide no evidence in favor of algorithm III. Even more undesirable
is that this algorithm gains no significant performance improvement via candidate pruning.

4.6. Comparison with supervised segmentation

Empirical evidence is provided in [15] for an estimation of the degree to which the four segmentation standards involved
in Bakeoff-3 differ from each other. As quoted in Table 10, a consistency rate above 84.8% is found among the four Bakeoff-3
corpora. It seems realistic not to expect unsupervised segmentation to surpass the agreement of these gold standards, and
thus reasonable to take this figure as the topline of its performance. On the other hand, it is shown in [53] that words up to 2
characters long account for more than 90% of all words in Chinese texts and single-character words alone for about 50%.
Thus, it is reasonable to take as the baseline the performance of the brute-force guess of every single-character as a word.

Furthermore, unsupervised segmentation needs to be conducted in a comparable manner in order to ensure a fair com-
parison with supervised segmentation. The latter usually involves training on a pre-segmented training corpus (optionally
joined with the raw texts of a test corpus) and then evaluation on the test corpus. For each test track of Bakeoff-3, we first
extract word candidates from the raw texts of both the training and test corpora with the aid of the above reciprocal pruning,
6 http://icl.pku.edu.cn/icl_groups/corpus/dwldform1.asp.
7 http://ccl.pku.edu.cn:8080/ccl_corpus/jsearch/index.jsp.
8 This is to keep consistent with [19], where the maximum n-gram length is set to 6.
9 The best boundary precision, recall and F-score reported in [19] are 0.88, 0.79 and 0.833 respectively, whereas our re-implementation of the same

algorithm gives a slightly higher F-score 0.837 under a similar experimental setting.

http://icl.pku.edu.cn/icl_groups/corpus/dwldform1.asp
http://ccl.pku.edu.cn:8080/ccl_corpus/jsearch/index.jsp


Table 9
Performance comparison by boundary F-measure on the PKU corpus.

Max
Length

Goodness
Measure

Algorithm

I/d I II/d II III/d III

2 AV 0.758 0.763 0.747 0.762 0.762 0.382
AV* 0.821 0.821 0.803 0.803 0.781 0.781

BE 0.756 0.760 0.747 0.803 0.762 0.750
BE* 0.820 0.820 0.803 0.803 0.781 0.781

6 AV 0.695 0.700 0.830 0.762 0.762 0.728
AV* 0.728 0.728 0.865 0.865 0.783 0.783

BE 0.696 0.699 0.849 0.810 0.762 0.837
BE* 0.728 0.728 0.872 0.872 0.784 0.784

Table 11
Comparison of performance against supervised segmentation.

Max
Length

Goodness
Measure

Test corpus

AS CityU CTB MSRA

Baseline 0.389 0.345 0.337 0.353

2 DLG(I)/d 0.597 0.616 0.601 0.602
DLG�ðIÞ=d 0.655 0.659 0.632 0.655

AV(I) 0.577 0.603 0.597 0.583
AV�ðIÞ 0.630 0.650 0.618 0.638

BE(I) 0.570 0.598 0.594 0.580
BE�ðIÞ 0.629 0.649 0.618 0.638

7 AV(II)/d 0.512 0.551 0.543 0.526
AV�ðIIÞ=d 0.591 0.644 0.618 0.604

BE(II)/d 0.518 0.554 0.546 0.533
BE�ðIIÞ=d 0.587 0.641 0.614 0.605

DLG�ðIÞ=dþ AV�ðIIÞ=d 0.663 0.692 0.658 0.667

DLG�ðIÞ=dþ BE�ðIIÞ=d 0.650 0.689 0.650 0.656

Worst closed 0.710 0.589 0.818 0.819
Best closed 0.958 0.972 0.933 0.963

Table 10
Consistency rate among Bakeoff-3 segmentation standards.

Test corpus Training corpus

AS CityU CTB MSRA

AS 1.000 0.926 0.959 0.858
CityU 0.932 1.000 0.935 0.849
CTB 0.942 0.910 1.000 0.877
MSRA 0.857 0.848 0.887 1.000
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and then perform unsupervised segmentation of the test corpus as guided by each goodness measure. The segmentation out-
puts are evaluated with reference to the gold standard of each track respectively.

The evaluation results are presented in Table 11, together with the best and worst official results of Bakeoff-3 closed test
for a comparison. Unsurprisingly, the unsupervised segmentation is far from being capable of competing against its super-
vised counterpart, according to the difference of their performance. However, these experiments confirm a positive effect
that the best combination of goodness measures achieve an F-score in the range of 0.65–0.7 on all test corpora involved,
without using any prior knowledge other than the pre-defined goodness measures for extracting word candidates from unla-
beled texts.

4.7. Discussion

Note that the DLG criterion is applied to perform segmentation so as to maximize the overall compression effect concern-
ing all substrings involved, which is a global effect throughout the entire corpus of texts in question. Thus it works well when
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incorporated into a framework for probability maximization, favoring highly frequent but independent substrings, in partic-
ular, the long ones. Many unsupervised segmentation criteria are prone to the issue of long word bias, i.e., over preferring
long substrings; so is DLG. This explains why its performance on long words is not as good as on short ones.

Both the AV and BE measures estimate the branching uncertainty at an end of a given substring. They are more concerned
with local uncertainty information about a substring, instead of any kind of global effect on a whole corpus resulted from
having the substring as a word. This may explain why greedy search via maximal matching can benefit more from these
two measures than the Viterbi search can.

Clearly, these two measures share a similar underlying idea. In our view, they actually present different formulations, one
discrete and the other continuous, of the same phenomenon, to which we refer as branching uncertainty. The fact that both
AV and BE derive an identical set of word candidates from the same corpus by the default pruning certainly provides a piece
of empirical evidence to support this view.

5. Integration of unsupervised and supervised segmentation

5.1. Baseline system

The baseline system of supervised learning for Chinese word segmentation that we attempt to further enhance with the
aid of unsupervised segmentation is a state-of-the-art one that achieved the best performance in all closed tests in the last
two Bakeoffs [53,55]. It is a successful application of the conditional random fields (CRFs) model [23] to formulate the prob-
lem of word segmentation as a supervised learning task through character tagging.

CRFs are a statistical sequence modeling framework that is reported to outperform other popular learning models, includ-
ing MaxEnt (maximum entropy), in a number of natural language processing applications [35]. CRFs modeling is first applied
to Chinese word segmentation in [31], treating it as a binary decision task to determine whether a character is the beginning
of a word in a sentence. Accordingly, to segment a sentence is to infer the optimal sequence of such decisions, via tagging (or
labeling), for all characters in the sentence in terms of a CRFs model that has been trained on an available pre-segmented
corpus.

A CRFs model assigns the following probability to a label sequence for a sequence of characters, which is usually a
sentence,
10 http
11 In f
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where y is a label sequence, s a character sequence, Z a normalization term, fk a feature function with kk as its weight, C the
tag (or label) set in use, and c indexes into a character in the character sequence to be tagged. For CRFs learning, we use the
CRF++ package,10 with necessary modifications to speed up its training on large scale pre-segmented corpora.

It is shown in [53] that the CRFs learning achieves a better performance of word segmentation for Chinese with a 6-tag set
than with any others. Hence this tag set, in company with six selected feature templates of character n-gram, is adopted in
our current work for establishing the baseline system. The six tags are B, B2, B3, M, E and S, to mark the first, second, third,
other middle, ending and sole character in a word respectively. Accordingly, we have the following tag sequences S, BE, BB2E,
BB2B3E, BB2B3ME and BB2B3M� � �ME for characters in a word of length 1,2, . . . ,5 and 6 (or above) respectively. The six feature
templates are C�1, C0, C1, C�1C0, C0C1 and C�1C1, where the current, previous and next character are indexed by 0, �1 and 1
respectively. A template is a string pattern in relation to the current character for selecting a substring as a feature for CRFs
training. This combination of tags and templates is empirically selected through a series of experiments on Bakeoff data sets
[53].

5.2. Goodness scores as features

The basic idea of integrating a goodness measure for unsupervised segmentation into a supervised learner such as our
baseline system is to inform the learner of the goodness score assigned by the measure to a substring about how likely it
is to be a true word. A feasible way to do so is to discretize such goodness scores into integral feature values for integration
into the learner, aimed at heightening the learner’s ability to identify OOV words at the cost of sacrificing as few in-vocab-
ulary (IV) words as possible.

To make use of such information in an efficient way, it is necessary to filter out those redundant word candidates with
insufficient chance to be true words, by means of a proper word length constraint in addition to the default pruning by
means of a goodness score threshold. It is reported in [53] that less than 1% of words are longer than 6 characters in Chinese
texts, according to the statistics from the Bakeoff-3 data sets. Thus, for the sake of efficiency, we opt to consider only char-
acter n-grams under the constraint of this length11 for the purpose of feature generation. Note that the feature generation is to
derive CRFs features from relevant n-grams for a current character in question, not to identify true words among them. The true
://crfpp.sourceforge.net/.
act, allowing longer n-grams leads to little difference in performance, according to our experiments.

http://crfpp.sourceforge.net/
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words are to be identified via character tagging. Our attempt here is to derive more effective features from these n-grams to
enrich the baseline system in the hope of enhancing its tagging. An implicit assumption underlying the word length constraint
is that anything six characters away from the current character is assumed to have no role to play in determining its tag.

The CRFs are used as an ensemble model to integrate these features into those extracted from pre-segmented training
corpora by the six feature templates. Note that given a character within a particular context, there is a group of relevant fea-
tures and their values to interact with one another in determining the best choice for its tag. In our current work, a goodness
measure brings about two types of new features for a character. The first type is on the n-grams containing that character,
with a feature function defined as:
fnðsÞ ¼
1; if s 2 L;

0; otherwise;

�
ð9Þ
where L is the word candidate set given by the goodness measure under the length constraint. In the case of more than one
goodness measure is involved in generating the candidate set, the default reciprocal pruning is applied, that is, no candidate
with any goodness score 60 is allowed.

The other type is intended to further differentiate the role (or significance) of the above n-gram features in deciding a
character’s tag. A feature function for a feature template over an n-gram substring s with a goodness score g(s) is defined
as follows for this purpose,
fnðs; gðsÞÞ ¼
t; if t 6 gðwÞ < t þ 1;
0; otherwise;

�
ð10Þ
where t is an integer to represent a goodness score as a feature value in the baseline learner. Besides this simple way to dis-
cretize (or, equivalently, categorize) continuous goodness scores into integral feature values, there are other ways of doing it
for various purposes, e.g., transferring the scores into a fixed number of integers. Our experiments show that this simple ap-
proach serves our purpose very well for all goodness measures involved.

But, still, a technical detail needs to be clarified. For a current character involved in several word candidate n-grams
simultaneously, which is usually the case, only the one with the greatest goodness score is used to activate the above feature
functions for that character. This simple treatment makes the feature representation robust enough to cope with many infre-
quent n-grams. Moreover, the above feature values do not have to do with the word candidate pruning by goodness thresh-
old or length constraint. Simply applying the above feature functions to all substrings in an input corpus does not cause any
difference in the performance of the CRFs learning. The pruning only has a role to play in efficiency enhancement, which is
crucial to our current work, because the CRFs training takes an awfully long time. Also, note that the integer t in (10) is not a
value for any parameter in the system. Instead, it is a symbolic feature value in the supervised learning. In this sense, our
system is actually parameter-free on top of the baseline system.
5.3. Effectiveness of goodness measures

The system described in Section 5.1 is taken as the baseline to examine the effectiveness of the four goodness measures in
enhancing the CRFs learning through the above feature generation. The results of our evaluation using the Bakeoff-3 closed
test data sets are presented in Tables 12 and 13, specifying either feature generation by (9) or (10) is applied. All new features
are derived from the unannotated texts of both the training and test corpora for each track of closed test. The CRFs model is
then trained on the annotated training corpus and applied to segment the test corpus for performance evaluation.

Table 12 shows that every goodness measure brings in, consistently, a significant performance improvement over the
baseline and that exploiting goodness scores via (10) leads to further improvement over (9), although slighter than that
of (9) over the baseline. Note that an improvement by half a percentage point is remarkable at this performance level, for
it means an error reduction rate around 10%. The best error reduction rates so achieved range from 6.39% to 16.83% over
the baseline. Among the four goodness measures, AV and BE give the most competitive performance while DLG the least,
indicating that the best goodness measure for unsupervised segmentation is not necessarily the best choice to enhance
the supervised segmentation by CRFs learning of character tagging. It is also worth noting that AV and BE give highly similar
results in performance enhancement, revealing their intrinsic similarity.

To evaluate the performance of OOV detection, we resort to FOOV, a more comprehensive evaluation metric than ROOV.
Table 12 shows in its right column that all goodness measures help, at their best, the baseline to improve its FOOV on all test
corpora by an increment of 2.76–7.0% points, corresponding to a growth of 4.55–9.82% and an error reduction of 7.4–24.18%.
The least increment is on MSRA, on which the best ROOV goes down, exceptionally, by �0.3 percentage point, according to our
experimental records. Nevertheless, this little impairment of ROOV does not hinder its F-score from going up, indicating a
greater positive effect on improving the corresponding precision of OOV words in this case.

Table 13 presents the performance enhancement by the best combinations of the goodness measures, in comparison to
their best individual performance. Surprisingly, however, none of the combinations leads to a better F-score than the best of
AV and BE, giving a sharp contrast to the ensemble unsupervised segmentation that the goodness measures in combination
overwhelmingly surpass their best individual. This result suggests that although each goodness measure does provide the



Table 12
Performance enhancement by new features from different goodness measures: F-score and FOOV.

Goodness
Measure

F-score FOOV

AS CityU CTB MSRA AS CityU CTB MSRA

Baseline 0.9539 0.9691 0.9321 0.9609 0.6419 0.7379 0.7105 0.6065

AV(9) 0.9566 0.9721 0.9373 0.9630 0.6678 0.7691 0.7645 0.6273
AV(10) 0.9573 0.9740 0.9428 0.9634 0.6778 0.7896 0.7805 0.6341
BE(9) 0.9566 0.9721 0.9373 0.9630 0.6678 0.7691 0.7645 0.6273
BE(10) 0.9584 0.9743 0.9421 0.9633 0.6951 0.7922 0.7760 0.6313
FSR(9) 0.9565 0.9715 0.9367 0.9621 0.6620 0.7603 0.7548 0.6156
FSR(10) 0.9575 0.9735 0.9415 0.9630 0.6808 0.7840 0.7747 0.6238
DLG(9) 0.9554 0.9708 0.9395 0.9616 0.6567 0.7547 0.7580 0.6154
DLG(10) 0.9560 0.9718 0.9401 0.9617 0.6685 0.7820 0.7605 0.6233

Error Reduction (%) 9.76 16.83 15.76 6.39 14.86 20.72 24.18 7.40

Table 13
Performance enhancement by goodness measures using feature function (10).

Goodness
Measure

F-score FOOV

AV BE FSR DLG AS CityU CTB MSRA AS CityU CTB MSRA

Baseline 0.9539 0.9691 0.9321 0.9609 0.6419 0.7379 0.7105 0.6065

+ 0.9573 0.9740 0.9428 0.9634 0.6778 0.7896 0.7805 0.6341
+ 0.9584 0.9743 0.9421 0.9633 0.6951 0.7922 0.7760 0.6313

+ + 0.9570 0.9726 0.9421 0.9635 0.6702 0.7753 0.7701 0.6357
+ + 0.9574 0.9739 0.9425 0.9633 0.6797 0.7899 0.7742 0.6366
+ + 0.9569 0.9733 0.9425 0.9629 0.6727 0.7824 0.7776 0.6272

+ + 0.9575 0.9725 0.9423 0.9631 0.6787 0.7717 0.7703 0.6285
+ + 0.9570 0.9734 0.9428 0.9627 0.6764 0.7856 0.7787 0.6262

+ + 0.9573 0.9732 0.9416 0.9632 0.6817 0.7826 0.7679 0.6269
+ + + + 0.9575 0.9729 0.9413 0.9630 0.6801 0.7780 0.7685 0.6262

Table 14
Feature templates for various tag sets.

Tags Source Feature templates

2 Tsai et al. [43] C�2, C�1, C0, C1, C�3C�1, C�2C0, C�2C�1, C�1C0, C�1C1, C0C1

4 Xue [49] C�2, C�1, C0, C1, C2, C�2C�1, C�1C0, C�1C1, C0C1, C1C2

6 Zhao et al. [52] C�1, C0, C1, C�1C0, C0C1, C�1C1
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baseline with more information about word boundaries, such information provided by each of them does not necessarily
complement each other in a reciprocally beneficial way.

5.4. Computational cost

As reported above, two technical advancements are integrated into the CRFs learning of character tagging for further
improvement upon the state-of-the art of Chinese word segmentation. One is to use a larger tag set than before, of 6 tags
as in [52]. The other is to derive additional features from unlabeled texts, to complement those extracted from labeled train-
ing data. This subsection examines their cost-effectiveness in terms of the extra computational cost needed to accommodate
them in the CRFs model.

For this purpose, we compare the computational cost of using the 2-, 4- and 6-tag sets on the Bakeoff-3 data sets. The best
known n-gram feature templates for these tag sets are adopted from the previous works that have proved their effectiveness,
as illustrated in Table 14. The comparison in Table 15 in terms of training time, the number of features and memory cost
shows that the 6-tag set needs a much longer time but only a slightly larger memory space for training on the same data sets.

The number of additional features derived by the four goodness measures via feature functions (9) and (10) are presented
in Table 16, where the ‘‘baseline” is the numbers of features in the baseline system extracted from the training data by the six
n-gram feature templates for the 6-tag set. In contrast to these many of features, the additional features are so few in



Table 15
Comparison of computational cost.

Tags Template AS CityU CTB MSRA

Training time (minutes)
2 Tsai 112 52 16 35
4 Xue 206 79 28 73
6 Zhao 402 146 47 117

Numer of features (�106)
2 Tsai 13.2 7.3 3.1 5.5
4 Xue 16.1 9.0 3.9 6.8
6 Zhao 15.6 8.8 3.8 6.6

Memory cost (Giga bytes)
2 Tsai 5.4 2.4 0.9 1.8
4 Xue 6.6 2.8 1.1 2.2
6 Zhao 6.4 2.7 1.0 2.1

Table 16
Numbers of additional features.

Goodness Feature function (9) Feature function (10)

Measure AS CityU CTB MSRA AS CityU CTB MSRA

Baseline (M) 15.6 8.8 3.8 6.6 15.6 8.8 3.8 6.6

AV 120 120 120 120 672 666 540 660
Incr. (10�6) 8 14 32 18 43 76 142 100

BE 120 120 120 120 756 720 726 720
Incr. (10�6) 8 14 32 18 48 82 191 109

FSR 120 120 120 120 1014 936 846 936
Incr. (10�6) 8 14 32 18 65 107 222 142

DLG 114 114 114 114 1692 1482 1350 1476
Incr. (10�6) 7 13 30 17 108 169 355 223
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number, causing only an increment of no more than 0.17% and, accordingly, a negligible addition to the training time, e.g., an
addition of tens of seconds to hours on our machine,12 according to our observation. Such efficiency in computation is certainly
an advantage of the proposed method to integrate the unsupervised segmentation.

The high computational complexity of CRFs training is its notorious disadvantage for practical application, especially
when it is applied to Chinese word segmentation for which a huge-scaled feature set is inevitable. The success of the 6-
tag baseline system certainly owes much to tailoring, via fewer feature templates than others, the feature set into a size
accommodable by our machine. But more noticeable is that our key work to integrate unsupervised goodness measures into
this baseline leads to a significant rise of performance at a negligible increase of computational cost.

5.5. Comparison to the best

The improved performance by integrating unsupervised and supervised segmentation, as reported above, can be com-
pared to the best in the closed test of Bakeoff-3. The rule for the closed test is that no additional information about words
beyond the provided training corpus is allowed, in contrast to the open test that any kind of resources may be used. A sum-
mary of the best official performance scores in the closed test of Bakeoff-3 is presented in Table 17 for a comparison with
ours. All six participants with at least a third best performance score in any track of the closed test are included in this table
[2,43,45,51,52,60]. Our results are obtained by integrating BE features into the baseline system.

From Table 17, we can see that the state-of-the-art performance as in Bakeoff-3 goes far beyond that of our baseline as
given in Table 12, but with the aid of the new features generated by AV/BE, our system competes favorably against all best
ones in Bakeoff-3. The error reduction we have achieved over these best ranges from 1.08% to 14.37%, giving an average of
6.39%. Particularly worth noting is that this is a comparison disadvantageous to us, although we excel, in that all these best
scores were achieved with the aid of critical extra heuristics or resources only allowed in the open test. For example,
although officially prohibited, a manually prepared character type list was used as features in both [52,60], and an empirical
optimal value for a key parameter in the system of [45] was estimated in advance using an external segmented corpus. In
contrast, our system is free of any such extra resource.
12 Dell PowerEdge SC1435, of two dual-core AMD CPUs, 2.8 GHz, & 24 G memory.



Table 18
Statistical significance: comparison of the best closed test results of Bakeoff-3 and ours.

Corpus #Word Best R Cr P Cp F

AS 91 K Bakeoff-3 0.961 0.001280 0.955 0.001371 0.958
Ours 0.964 0.001235 0.953 0.001403 0.958

CityU 220 K Bakeoff-3 0.973 0.000691 0.972 0.000703 0.972
Ours 0.974 0.000679 0.974 0.000679 0.974

CTB 154 K Bakeoff-3 0.940 0.001207 0.926 0.001330 0.933
Ours 0.947 0.001142 0.937 0.001238 0.943

MSRA 100 K Bakeoff-3 0.964 0.001176 0.961 0.001222 0.963
Ours 0.960 0.001239 0.967 0.001130 0.963

Table 19
The best performance in Bakeoff-4 closed test.

Corpus CityU CKIP CTB NCC SXU

#Word Training 1093 722 642 913 528
Test 236 91 81 152 114

F-score Ours (Site: 2) 0.9510 0.9470 0.9589 0.9405 0.9623
Site: 26 0.9430 0.9429 0.9533 0.9386 0.9588
Site: 5 0.9471 0.9413 0.9447 0.9365 0.9555
Site: 31 – – 0.9517 0.9344 0.9543

Error reduction (%) 14.04 7.18 11.99 3.09 8.50

Table 17
Comparisons of the best F-scores in Bakeoff-3 and ours on the same data sets.

Participant (Site ID) AS CityU CTB MSRA

Zhu (1) 0.944 0.968 0.927 0.956
Carpenter (9) 0.943 0.961 0.907 0.957
Tsai (15) 0.957 0.972 – 0.955
Zhaoa (20) 0.958 0.971 0.933 –
Zhang (26) 0.949 0.965 0.926 0.957
Wang (32) 0.953 0.970 0.930 0.963

Best of Bakeoff-3 0.9576 0.972 0.9332 0.963
Ours 0.9584 0.9743 0.9428 0.9634

Error reduction (%) 1.89 8.21 14.37 1.08

a If not rounded up to Bakeoff-3 official format, the F-scores in this row are 0.957635, 0.971140
and 0.933155, respectively. The F-scores for the best of Bakeoff-3 are adjusted accordingly.
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To further check the significance of the difference of our performance from the others, we have performed a few statistical
significance tests by comparing our recalls, precisions and F-scores to the best ones in the same closed test. Following the
previous work in [37] to assume a binomial distribution for such scores, we compute the 95% confidence interval as
�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� pÞ=n

p
in light of the Central Limit Theorem for Bernoulli trials [12], where n is the number of trials (i.e., words

in our case). It is also assumed that the recall R may approximate the probability of a true word being identified correctly
and the precision P the probability that an identified word is really a word. Accordingly, two types of interval, CR and CP,
are computed by setting p to R and P respectively. One can verify whether two experimental results are significantly different
at the 95% confidence level by checking whether their confidence intervals overlap. The values of CR and CP for the best Bake-
off-3 results and ours are presented in Table 18, where the rows of Bakeoff-3 are quoted from [24].

A more convincing piece of evidence than the above to re-confirm the decent advantage of integrating unsupervised and
supervised segmentation comes from the best two systems in the closed test of Bakeoff-4, whose official performance scores
are presented in Table 19 in comparison to a few others in the third places. It is reported in [55] that the AV features derived
from the unannotated training and test corpora help a CRFs model, very much like the one for our baseline here, to rank first
throughout all closed test tracks. Interestingly, another CRFs model [46] utilizing a raw text feature similar to BE, referred to
as contextual entropy though, ranks second in all but one closed track, illustrating an overall performance significantly better
than the others in lower ranks. With the aid of the AV features, our model achieves an average error reduction by 8.96% over
the runner-up ones in terms of their F-scores.



Table 20
Comparison of performance on Bakeoff-2 data sets.

Corpus AS CityU MSRA PKU

Xiong et al. [48] – 0.956 0.972 0.952

Baseline 0.9534 0.9476 0.9735 0.9515
+AV 0.9570 0.9610 0.9758 0.9540

Error reduction (%) – 11.36 13.57 4.17
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Recently, a novel approach to CRFs training is proposed in [48] with minimum tag error as criterion, using three of the
four Bakeoff-2 data sets for evaluation. It is validated via a favorable performance comparison to our baseline on two of
the three data sets, termed as achieving a state-of-the-art performance. A comprehensive comparison of our performance
to theirs is presented in Table 20, showing again the effectiveness of the AV features as in achieving an error reduction nearly
10% on average.

With regard to the fact that Bakeoff-4 data sets are, in general, significantly smaller than those for Bakeoff-3, there is a
reasonable guess that the unsupervised segmentation may help the CRFs model to enhance its performance more signifi-
cantly on small data sets. This is particularly valuable, because it is so costly to prepare a large scale high-quality segmented
corpus for training. To test this guess, we have carried out a series of experiments with Bakeoff-3 corpora. For each data set,
the training corpus is exponentially reduced in size by random sampling while the evaluation is performed on the respective
original test corpus. The performance curves of the CRFs model trained with and without AV features along the size change of
the training corpus are presented in Fig. 3 for a comparison, showing that the AV features become more effective in enhanc-
ing the CRFs model’s performance as the training corpus becomes smaller. Remarkably, the AV features can lead to a perfor-
mance enhancement by 20–35% over the baseline as a training corpus is reduced to 1/104 of its original size.

5.6. Using open resources

So far only the plain texts of the training and test corpora in a given data set have been used for extracting unsupervised
goodness features to enhance supervised segmentation. Interestingly, however, it is reported that large scale external re-
sources such as segmented corpora can be used to facilitate supervised learning for various segmentation tasks for further
improvement over using only a given training corpus, e.g., as illustrated in [26,52]. With regard to the fact that a large scale
segmented corpus is developed at an expensive cost, it is particularly meaningful to ask whether our approach can benefit
from using external unlabeled texts that can be obtained at very little cost.

Also, note that extracting unsupervised features from unlabeled texts is to provide a set of word candidates to facilitate
CRFs training on a segmented corpus. We know that an external dictionary of known true words can provide more reliable
lexical information than this kind of word candidates. Can we merge these two kinds of lexical information, one extracted
from unlabeled texts and the other from an external dictionary, to achieve a better performance than using only one of
them?

To answer these questions, we have conducted a number of experiments on CTB and MSRA corpora of Bakeoff-3, using the
corpus of People’s Daily (1993–97), of about 100 M characters, as external unlabeled texts and a Chinese word list from Pei-
king University,13 of 108 K words of one to four characters long, as an external dictionary. Both the evaluation corpora and the
13 Available at: http://ccl.pku.edu.cn/doubtfire/Course/Chinese%20Information%20Processing/Source_Code/Chapter_8/Lexicon_full_2000.zip.

http://ccl.pku.edu.cn/doubtfire/Course/Chinese%20Information%20Processing/Source_Code/Chapter_8/Lexicon_full_2000.zip
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Table 21
Performance using external resources.

Corpus Metric Text Dict Text + Dict Best open

CTB F-score 0.9401 0.9412 0.9443 0.944
ROOV 0.7382 0.7412 0.7565 0.768
FOOV 0.7651 0.7680 0.7871 –

MSRA F-score 0.9674 0.9681 0.9716 0.979
ROOV 0.6905 0.6905 0.7140 0.839
FOOV 0.6737 0.6786 0.7141 –
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external resources are in GB code. The same feature representation as in [26] is adopted for the external dictionary. AV is used as
the criterion for extracting unsupervised features from the unlabeled texts. The experimental results are presented in Table 21
in comparison to the best performance in the same tracks of Bakeoff-3 open test, with ‘‘Text” to indicate using People’s Daily as
external texts and ‘‘Dict” using lexical features from the external dictionary.

These results show that the two kinds of lexical information do strengthen each other, achieving a better performance
than any of them alone. Furthermore, this performance is highly competitive against the best in the Bakeoff-3 open test,
which was obtained through exploiting large scale external segmented corpora, lexicons and named entity information
[17,25]. In contrast, we only use external unlabeled texts and an external word list. All these give evidence that our approach
is also effective in exploiting external resources, including unlabeled texts and known words.

5.7. How much unlabeled text for a significant enhancement?

Our approach involves a trade-off between the performance enhancement and the amount of unlabeled text in use to
achieve this enhancement. It is thus a critical issue to estimate the threshold amount that can ensure a significant enhance-
ment. For this purpose, we conduct a series of experiments with AV as the unsupervised criterion. Since it is preferable to
have a larger and more balanced corpus of unlabeled texts than the five-year corpus from People’s Daily with a strong sty-
listic bias, we opt for the Chinese Gigaword (CGW) Third Edition14 of one billion characters. We use a series of its sub-corpora
of various sizes in the experiments for the purpose of examining how the scale of unlabeled text affects the performance. We let
the size grow in two different ways, one exponential and the other linear, each covering a different range of size. All sub-corpora
are extracted from the beginning of the original CGW corpus.

Following the default settings as before, only n-gram substrings that appear more than once are considered word candi-
dates. Their numbers are depicted in Figs. 4 and 5 as logarithmic values along the growth of corpus size, with each curve for
n-grams of a different length. These figures show that the candidates extracted by AV follow a relatively stable growth rate
along the corpus size, except the unigram ones whose number only increases slightly even along the exponential growth of
corpus size. An explanation for this is that Chinese characters are practically a closed set, in the sense that the frequently
used ones are around 3000 and the double of this amount covers almost all Chinese texts. All others are practically inactive
in Chinese morphology. This explains why the unigrams extracted by AV hardly exceeds 3000 even if the sub-corpus in ques-
tion reaches one billion characters.

Then, the word segmentation is performed on the two GB code corpora of Bakeoff-3 as before, with the aid of the AV
features derived from the CGW sub-corpora of various size to enhance the CRFs model. The segmentation performance is
14 See http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC2007T38.

http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC2007T38
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presented in Fig. 6 to show the effect of the size of unlabeled texts, in both exponential and linear growth at different scale
levels. This empirical result suggests that a balanced corpus of unlabeled texts slightly more than 108 characters can effec-
tively help the CRFs model obtain the best performance on word segmentation. This size gives a nice trade-off between per-
formance enhancement and the volume of unlabeled texts for this particular task.
5.8. Semi-supervised learning

It is shown above that the unsupervised goodness measures, when applied on the same data set, including the raw texts
of both the training and test corpora, do help to improve the supervised learning from the segmented training corpus. Inter-
estingly, however, when unlabeled data is exploited this way to improve supervised learning, semi-supervised learning is
actually involved.

As a supervised learning model for sequence labeling, CRFs have been extended for semi-supervised learning. Semi-
supervised CRFs are proposed in [18] based on a minimum entropy regularizer, whose parameters are estimated to maxi-
mize the likelihood of labeled data and the negative conditional entropy of the unlabeled data. In [41], another semi-super-
vised learning approach is proposed based on a hybrid generative and discriminative model. By defining an objective
function for the hybrid model in log-linear form, the discriminative structured predictor (i.e., the CRFs) on labeled data
and the generative model on unlabeled data are integrated, in a way that the generative model utilizes the unlabeled data
to increase the sum of the discriminant functions during parameter estimation.

The underlying idea in our current work is close to that in [41]. However, since the CRFs learning for word segmentation is
a very heavy task in terms of the size of training data and the immense computation required, another round of parameter
estimation using additional lexical information such as new word candidates with their goodness scores derived through
unsupervised segmentation would inevitably worsen the situation. To get around this problem, we have adopted a direct
course to merge the lexical information into the discriminant model for training. This approach has been proven efficient
and effective by our experiments.



H. Zhao, C. Kit / Information Sciences 181 (2011) 163–183 181
6. Conclusion

After a quarter century of exploration, Chinese word segmentation has becomes a mature language processing technol-
ogy. The state-of-the art in this area has approached very closely to the ceiling point of performance, and we are not so sure
any more if its error rate is still significantly higher than that of a test corpus manually prepared by experts. Most IV words
can be identified correctly, for most ambiguities involving them can be properly resolved by statistical learning when large
scale pre-segmented corpora are available for training. In contrast, OOV words remain a more prominent issue, which has
become the major account for most segmentation errors. As the creation of new words for novel things in this rapidly chang-
ing world is unlikely to slow down in the information era, it is unrealistic to deny the strong call for a sound resolution for
this unavoidable problem in the computer processing of any language, in particular, a language like Chinese without explicit
word delimiters.

It is as a response to this call that we have explored the feasibility of integrating unsupervised segmentation into super-
vised segmentation for performance enhancement, in the hope of helping the CRFs learning of character tagging to recognize
more OOV words. It is the first attempt of this kind in the field. Interestingly, however, our experimental results show that
the global information derived from raw texts by a goodness measure of unsupervised segmentation helps the CRFs model to
improve its performance not only on OOV words but also on IV words, resulting in, desirably, a significant improvement on
its overall performance. This is evidenced by the further error reduction that we have achieved over the best existing
performance.

It is for the purpose of fitting the global information into the CRFs character tagging that we have empirically compared a
number of goodness measures for unsupervised segmentation, to examine their effectiveness in segmenting Chinese texts.
Their performance is achieved under certain constraints (e.g., word length 66) imposed by the existing settings of the best
CRFs model that we have had for character tagging. The comparison exhibits not only their strengths in recognizing words of
various lengths, achieving a performance far beyond the baseline, but also the possibility of improving their performance via
word candidate pruning15 and ensemble segmentation. Nevertheless, this is by no means to imply that our work under such
constraints has exhausted their potentials for unsupervised segmentation. Many other criteria for word discovery, e.g., mutual
information [38], should also be included in the comparison if we had come up with an effective way to fit them into the current
settings of our CRFs learning model.

We also note that our research provides only a simple and straightforward way, among so many possibilities, to integrate
unsupervised and supervised segmentation, by casting the goodness scores of word candidates into feature values for use in
the CRFs model. It is by no means the sole or the best one. There are other possibly more effective ways for future explora-
tion. The greatest contribution of our recent work is not to show the significantly and consistently better performance of our
model against others’, including the best ones in the Bakeoffs, as evidenced by the error reduction rates around 6.39–8.96%
over the best scores in Bakeoff-3 and -4. Rather, it is that we have empirically proved that the utility of unlabeled raw texts in
enhancing the best supervised learning model for segmentation conventionally trained only on large scale pre-segmented
corpora. The raw texts proved to be helpful include not only the test corpus and the unsegmented version of the training
corpus in the same evaluation data set but also other texts from open resources. It is not a surprise that unsupervised seg-
mentation, which infers words from raw texts from scratch with few lexical resources, can never compete with its super-
vised counterpart, but it is surely a great success that its strengths can be integrated into the latter for such a substantial
enhancement.

Even so, unsupervised segmentation never stops playing a critical role in word segmentation, no matter how advanced
the latter has been, because new word creation never ends and the existing lexical resources are hence never sufficient.
Therefore, OOV word detection remains the most prominent issue in the field for our future research. Also, learning from
our experience in integrating supervised and unsupervised segmentation, we have observed the necessity to integrate the
strengths of various word segmentation approaches, in particular, the conventional word-based statistical modeling and
the current trend of character-based CRFs learning. If these technologies could be put together to complement each other
effectively, we would certainly expect our future to bring up a more full-fledged and versatile segmentor with a stable
and satisfactory performance on various kinds of Chinese open texts.
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