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Abstract

This paper reports our empirical evaluation
and comparison of several popular good-
ness measures for unsupervised segmenta-
tion of Chinese texts using Bakeoff-3 data
sets with a unified framework. Assuming no
prior knowledge about Chinese, this frame-
work relies on a goodness measure to iden-
tify word candidates from unlabeled texts
and then applies a generalized decoding al-
gorithm to find the optimal segmentation
of a sentence into such candidates with the
greatest sum of goodness scores. Exper-
iments show that description length gain
outperforms other measures because of its
strength for identifying short words. Further
performance improvement is also reported,
achieved by proper candidate pruning and
by assemble segmentation to integrate the
strengths of individual measures.

1 Introduction

Unsupervised Chinese word segmentation was ex-
plored in a number of previous works for various
purposes and by various methods (Ge et al., 1999;
Fu and Wang, 1999; Peng and Schuurmans, 2001;
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SUN et al., 2004; Jin and Tanaka-Ishii, 2006). How-
ever, various heuristic rules are often involved in
most existing works, and there has not been a com-
prehensive comparison of their performance in a
unified way with available large-scale “gold stan-
dard” data sets, especially, multi-standard ones since
Bakeoff-1 1.

In this paper we will propose a unified frame-
work for unsupervised segmentation of Chinese text.
Four existing approaches to unsupervised segmenta-
tions or word extraction are considered as its special
cases, each with its own goodness measurement to
quantify word likelihood. The output by each ap-
proach will be evaluated using benchmark data sets
of Bakeoff-32 (Levow, 2006). Note that unsuper-
vised segmentation is different from, if not more
complex than, word extraction, in that the former
must carry out the segmentation task for a text, for
which a segmentation (decoding) algorithm is indis-
pensable, whereas the latter only acquires a word
candidate list as output (Chang and Su, 1997; Zhang
et al., 2000).

2 Generalized Framework

We propose a generalized framework to unify the
existing methods for unsupervised segmentation, as-
suming the availability of a list of word candidates
each associated with a goodness for how likely it is
to be a true word. Let W = {{wi, g(wi)}i=1,...,n} be
such a list, where wi is a word candidate and g(wi)

1First International Chinese Word Segmentation Bakeoff, at
http://www.sighan.org/bakeoff2003

2The Third International Chinese Language Processing
Bakeoff, at http://www.sighan.org/bakeoff2006.



its goodness function.
Two generalized decoding algorithms, (1) and (2),

are formulated for optimal segmentation of a given
plain text. The first one, decoding algorithm (1), is a
Viterbi-style one to search for the best segmentation
S∗ for a text T , as follows,

S∗ = argmax
w1···wi···wn = T

n∑

i=1

g(wi), (1)

with all {wi, g(wi)} ∈ W .
Another algorithm, decoding algorithm (2), is a

maximal-matching one with respect to a goodness
score. It works on T to output the best current word
w∗ repeatedly with T=t∗ for the next round as fol-
lows,

{w∗, t∗} = argmax
wt = T

g(w) (2)

with each {w, g(w)} ∈ W . This algorithm will back
off to forward maximal matching algorithm if the
goodness function is set to word length. Thus the
former may be regarded as a generalization of the
latter. Symmetrically, it has an inverse version that
works the other way around.

3 Goodness Measurement

An unsupervised segmentation strategy has to rest
on some predefined criterion, e.g., mutual informa-
tion (MI), in order to recognize a substring in the text
as a word. Sproat and Shih (1990) is an early inves-
tigation in this direction. In this study, we examine
four types of goodness measurement for a candidate
substring3. In principle, the higher goodness score
for a candidate, the more possible it is to be a true
word.

Frequency of Substring with Reduction A lin-
ear algorithm was proposed in (Lü et al., 2004) to
produce a list of such reduced substrings for a given
corpus. The basic idea is that if two partially over-
lapped n-grams have the same frequency in the input
corpus, then the shorter one is discarded as a redun-
dant word candidate. We take the logarithm of FSR

3Although there have been many existing works in this di-
rection (Lua and Gan, 1994; Chien, 1997; Sun et al., 1998;
Zhang et al., 2000; SUN et al., 2004), we have to skip the de-
tails of comparing MI due to the length limitation of this paper.
However, our experiments with MI provide no evidence against
the conclusions in this paper.

as the goodness for a word candidate, i.e.,

gFSR(w) = log(p̂(w)) (3)

where p̂(w) is w’s frequency in the corpus. This
allows the arithmetic addition in (1). According to
Zipf’s Law (Zipf, 1949), it approximates the use of
the rank of w as its goodness, which would give it
some statistical significance. For the sake of effi-
ciency, only those substrings that occur more than
once are considered qualified word candidates.

Description Length Gain (DLG) The goodness
measure is proposed in (Kit and Wilks, 1999) for
compression-based unsupervised segmentation. The
DLG from extracting all occurrences of xixi+1...xj

(also denoted as xi..j) from a corpus X= x1x2...xn

as a word is defined as

DLG(xi..j) = L(X)− L(X[r → xi..j ]⊕ xi..j) (4)

where X[r → xi..j ] represents the resultant corpus
from replacing all instances of xi..j with a new sym-
bol r throughout X and⊕ denotes the concatenation
of two substrings. L(·) is the empirical description
length of a corpus in bits that can be estimated by the
Shannon-Fano code or Huffman code as below, fol-
lowing classic information theory (Shannon, 1948).

L(X) .= −|X|
∑

x∈V

p̂(x)log2p̂(x) (5)

where | · | denotes string length, V is the character
vocabulary of X and p̂(x) x’s frequency in X . For
a given word candidate w, we define gDLG(w) =
DLG(w). In principle, a substring with a negative
DLG do not bring any positive compression effect
by itself. Thus only substrings with a positive DLG
value are added into our word candidate list.

Accessor Variety (AV) Feng et al. (2004) propose
AV as a statistical criterion to measure how likely a
substring is a word. It is reported to handle low-
frequent words particularly well. The AV of a sub-
string xi..j is defined as

AV (xi..j) = min{Lav(xi..j), Rav(xi..j)} (6)

where the left and right accessor variety Lav(xi..j)
and Rav(xi..j) are, respectively, the number of dis-
tinct predecessor and successor characters. For a
similar reason as to FSR, the logarithm of AV is used



as goodness measure, and only substrings with AV
> 1 are considered word candidates. That is, we
have gAV (w) = logAV (w) for a word candidate w.

Boundary Entropy (Branching Entropy, BE) It
is proposed as a criterion for unsupervised segmen-
tation in some existing works (Tung and Lee, 1994;
Chang and Su, 1997; Huang and Powers, 2003; Jin
and Tanaka-Ishii, 2006). The local entropy for a
given xi..j , defined as

h(xi..j) = −
∑

x∈V

p(x|xi..j)log p(x|xi..j), (7)

indicates the average uncertainty after (or before)
xi..j in the text, where p(x|xi..j) is the co-occurrence
probability for x and xi..j . Two types of h(xi..j),
namely hL(xi..j) and hR(xi..j), can be defined for
the two directions to extend xi..j (Tung and Lee,
1994). Also, we can define hmin = min{hR, hL} in
a similar way as in (6). In this study, only substrings
with BE > 0 are considered word candidates. For a
candidate w, we have gBE (w) = hmin(w)4.

4 Evaluation

The evaluation is conducted with all four corpora
from Bakeoff-3 (Levow, 2006), as summarized in
Table 1 with corpus size in number of characters.
For unsupervised segmentation, the annotation in
the training corpora is not used. Instead, they
are used for our evaluation, for they are large and
thus provide more reliable statistics than small ones.
Segmentation performance is evaluated by word F-
measure F = 2RP/(R + P ). The recall R and
precision P are, respectively, the proportions of the
correctly segmented words to all words in the gold-
standard and a segmenter’s output5.

Note that a decoding algorithm always requires
the goodness score of a single-character candidate

4Both AV and BE share a similar idea from Harris (1970):
If the uncertainty of successive token increases, then it is likely
to be at a boundary. In this sense, one may consider them the
discrete and continuous formulation of the same idea.

5All evaluations will be represented in terms of word
F-measure if not otherwise specified. A standard scoring
tool with this metric can be found in SIGHAN website,
http://www.sighan.org/bakeoff2003/score. However, to com-
pare with related work, we will also adopt boundary F-measure
Fb = 2RbPb/(Rb + Pb), where the boundary recall Rb and
boundary precision Pb are, respectively, the proportions of the
correctly recognized boundaries to all boundaries in the gold-
standard and a segmenter’s output (Ando and Lee, 2000).

Table 1: Bakeoff-3 Corpora
Corpus AS CityU CTB MSRA

Training(M) 8.42 2.71 0.83 2.17
Test(K) 146 364 256 173

Table 2: Performance with decoding algorithm (1)
M. Good- Training corpus
L.a ness AS CityU CTB MSRA

FSR .400 .454 .462 .432

2
DLG/d .592 .610 .604 .603

AV .568 .595 .596 .577
BE .559 .587 .592 .572

FSR .193 .251 .268 .235

7
DLG/d .331 .397 .409 .379

AV .399 .423 .430 .407
BE .390 .419 .428 .403

aM.L.: Maximal length allowable for word candidates.

for computation. There are two ways to get this
score: (1) computed by the goodness measure,
which is applicable only if the measure allows; (2)
set to zero as default value, which is always appli-
cable even to single-character candidates not in the
word candidate list in use. For example, all single-
character candidates given up by DLG because of
their negative DLG scores will have a default value
during decoding. We will use a ‘/d’ to indicate ex-
periments using such a default value.

4.1 Comparison

We apply the decoding algorithm (1) to segment all
Bakeoff-3 corpora with the above goodness mea-
sures. Both word candidates and goodness values
are derived from the raw text of each training cor-
pus. The performance of these measures is presented
in Table 2. From the table we can see that DLG
and FSR have the strongest and the weakest perfor-
mance, respectively, whereas AV and BE are highly
comparable to each other.

Decoding algorithm (2) runs the forward and
backward segmentation with the respective AV
and BE criteria, i.e., LAV /hL for backward and
RAV /hR forward, and the output is the union of two
segmentations 6. A performance comparison of AV
and BE with both algorithms (1) and (2) is presented
in Table 3. We can see that the former has a rela-

6That is, all segmented points by either segmentation will be
accounted into the final segmentation.



Table 3: Performance comparison: AV vs. BE
M. Good- Training corpus
L. ness AS CityU CTB MSRA

AV(1) .568 .595 .596 .577
AV(2)/d .485 .489 .508 .471
AV(2) .445 .366 .367 .387

2 BE(1) .559 .587 .592 .572
BE(2)/d .485 .489 .508 .471
BE(2) .504 .428 .446 .446
AV(1) .399 .423 .430 .407
AV(2)/d .570 .581 .588 .572
AV(2) .445 .366 .368 .387

7 BE(1) .390 .419 .428 .403
BE(2)/d .597 .604 .605 .593
BE(2) .508 .431 .449 .446
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Figure 1: Performance vs. word length

tively better performance on shorter words and the
latter outperforms on longer ones.

How segmentation performance varies along with
word length is exemplified with DLG and BE as ex-
amples in Figure 1, with (1) and (2) indicating a re-
spective decoding algorithm in use. It shows that
DLG outperforms on two-character words and BE
on longer ones.

4.2 Word Candidate Pruning

Up to now, word candidates are determined by the
default goodness threshold 0. The number of them
for each of the four goodness measures is presented
in Table 4. We can see that FSR generates the largest
set of word candidates and DLG the smallest. More
interestingly or even surprising, AV and BE generate
exactly the same candidate list for all corpora.

In addition to word length, another crucial factor
to affect segmentation performance is the quality of
the word candidates as a whole. Since each candi-
date is associated with a goodness score to indicate
how good it is, a straightforward way to ensure, and
further enhance, the overall quality of a candidate
set is to prune off those with low goodness scores.

Table 4: Word candidate number by threshold 0
Good- Training Corpus
ness AS CityU CTB MSRA
FSR 2,009K 832K 294K 661K
DLG 543K 265K 96K 232K
AV 1,153K 443K 160K 337K
BE 1,153K 443K 160K 337K
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Figure 2: Performance by candidate pruning: DLG

To examine how segmentation performance changes
along with word candidate pruning and decide the
optimal pruning rate, we conduct a series of experi-
ments with each goodness measurements. Figures 2
and 3 present, as an illustration, the outcomes of two
series of our experiments with DLG by decoding al-
gorithm (1) and BE by decoding algorithm (1) and
(2) on CityU training corpus. We find that appro-
priate pruning does lead to significant performance
improvement and that both DLG and BE keep their
superior performance respectively on two-character
words and others. We also observe that each good-
ness measure has a stable and similar performance
in a range of pruning rates around the optimal one,
e.g., 79-62% around 70% in Figure 2.

The optimal pruning rates found through our ex-
periments for the four goodness measures are given
in Table 5, and their correspondent segmentation
performance in Table 6. These results show a re-
markable performance improvement beyond the de-
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Figure 3: Performance by candidate pruning: BE



Table 5: Optimal rates for candidate pruning (%)
Decoding Goodness measure
algorithm FSR DLG AV BE

(1) 1.8 70 12.5 20
(2) – – 8 12.5

Table 6: Performance via optimal candidate pruning
M. Good- Training corpus
L. ness AS CityU CTB MSRA

FSR(1) .501 .525 .513 .522
DLG(1)/d .710 .650 .664 .638

2
AV(1) .616 .625 .609 .618
BE(1) .613 .614 .605 .611
AV(2)/d .585 .602 .589 .599
BE(2)/d .591 .599 .596 .593
FSR(1) .444 .491 .486 .486
DLG(1)/d .420 .447 .460 .423

7
AV(1) .517 .568 .549 .544
BE(1) .501 .539 .510 .519
AV(2)/d .623 .624 .604 .615
BE(2)/d .630 .631 .620 .622

fault threshold setting. What remains unchanged is
the advantage of DLG for two-character words and
that of AV/BE for longer words. However, DLG
achieves the best overall performance among the
four, although it uses only single- and two-character
word candidates. The overwhelming number of two-
character words in Chinese allows it to triumph.

4.3 Ensemble Segmentation

Although proper pruning of word candidates brings
amazing performance improvement, it is unlikely
for one to determine an optimal pruning rate in prac-
tice for an unlabeled corpus. Here we put forth a
parameter-free method to tackle this problem with
the aids of all available goodness measures.

The first step of this method to do is to derive an
optimal set of word candidates from the input. We
have shown above that quality candidates play a crit-
ical role in achieving quality segmentation. Without
any better goodness criterion available, the best we
can opt for is the intersection of all word candidate
lists generated by available goodness measures with
the default threshold. A good reason for this is that
the agreement of them can give a more reliable de-
cision than any individual one of them. In fact, we
only need DLG and AV/BE to get this intersection,
because AV and BE give the same word candidates

Table 7: Performances of ensemble segmentation
M. Good- Training corpus
L. ness AS CityU CTB MSRA

FSR(1) .629 .635 .624 .623

2
DLG(1)/d .664 .653 .643 .650

AV(1) .641 .644 .631 .634
BE(1) .640 .643 .632 .634

7
AV(2)/d .595 .637 .624 .610
BE(2)/d .593 .635 .620 .609

DLG(1)/d+AV(2)/d .672 .684 .663 .665
DLG(1)/d+BE(2)/d .660 .681 .656 .653

and DLG generates only a subset of what FSR does.
The next step is to use this intersection set of

word candidates to perform optimal segmentation
with each goodness measures, to see if any fur-
ther improvement can be achieved. The best re-
sults are given in Table 7, showing that decoding al-
gorithm (1) achieves marvelous improvement using
short word candidates with all other goodness mea-
sures than DLG. Interestingly, DLG still remains at
the top by performance despite of some slip-back.

To explore further improvement, we also try
to combine the strengths of DLG and AV/BE re-
spectively for recognizing two- and multi-character
word. Our strategy to combine them together is to
enforce the multi-character words in AV/BE seg-
mentation upon the correspondent parts of DLG seg-
mentation. This ensemble method gives a better
overall performance than all others that we have
tried so far, as presented at the bottom of Table 7.

4.4 Yet Another Decoding Algorithm
Jin and Tanaka-Ishii (2006) give an unsupervised
segmentation criterion, henceforth referred to as de-
coding algorithm (3), to work with BE. It works as
follows: if g(xi..j+1) > g(xi..j) for any two over-
lapped substrings xi..j and xi..j+1, then a segment-
ing point should be located right after xi..j+1. This
algorithm has a forward and a backward version.
The union of the segmentation outputs by both ver-
sions is taken as the final output of the algorithm,
in exactly the same way as how decoding algorithm
(2) works7. This algorithm is evaluated in (Jin and
Tanaka-Ishii, 2006) using Peking University (PKU)

7Three segmentation criteria are given in (Jin and Tanaka-
Ishii, 2006), among which the entropy increase criterion,
namely, decoding algorithm (3), proves to be the best. Here we
would like to thank JIN Zhihui and Prof. Kumiko Tanaka-Ishii
for presenting the details of their algorithms.



Table 8: Performance comparison by word and
boundary F-measure on PKU corpus (M. L. = 6)

Good- Decoding algorithm
ness (1)/d (1) (2)/d (2) (3)/d (3)
AV .313 .325 .588 .373 .376 .453

F AV∗ .372 .372 .663 .663 .445 .445
BE .309 .319 .624 .501 .376 .624
BE∗ .370 .370 .676 .676 .447 .447
AV .695 .700 .830 .762 .762 .728

Fb AV∗ .728 .728 .865 .865 .783 .783
BE .696 .699 .849 .810 .762 .837a

BE∗ .728 .728 .872 .872 .784 .784
aWith the same hyperparameters, (Jin and Tanaka-Ishii, 2006)

report their best result of boundary precision 0.88 and boundary
recall 0.79, equal to boundary F-measure 0.833.

Corpus of 1.1M words8 as gold standard with a word
candidate list extracted from the 200M Contempo-
rary Chinese Corpus that mostly consists of several
years of Peoples’ Daily9. Here, we carry out evalu-
ation with similar data: we extract word candidates
from the unlabeled texts of People’s Daily (1993 -
1997), of 213M and about 100M characters, in terms
of the AV and BE criteria, yielding a list of 4.42 mil-
lion candidates up to 6-character long10 for each cri-
terion. Then, the evaluation of the three decoding
algorithms is performed on PKU corpus.

The evaluation results with both word and bound-
ary F-measure are presented for the same segmenta-
tion outputs in Table 8, with “*” to indicate candi-
date pruning by DLG > 0 as reported before. Note
that boundary F-measure gives much more higher
score than word F-measure for the same segmenta-
tion output. However, in either of metric, we can
find no evidence in favor of decoding algorithm (3).
Undesirably, this algorithm does not guarantee a sta-
ble performance improvement with the BE measure
through candidate pruning.

4.5 Comparison against Supervised
Segmentation

Huang and Zhao (2007) provide empirical evidence
to estimate the degree to which the four segmenta-
tion standards involved in the Bakeoff-3 differ from
each other. As quoted in Table 9, a consistency rate

8http://icl.pku.edu.cn/icl groups/corpus/dwldform1.asp
9http://ccl.pku.edu.cn:8080/ccl corpus/jsearch/index.jsp

10This is to keep consistence with (Jin and Tanaka-Ishii,
2006), where 6 is set as the maximum n-gram length.

Table 9: Consistency rate among Bakeoff-3 segmen-
tation standards (Huang and Zhao, 2007)

Test Training corpus
corpus AS CityU CTB MSRA

AS 1.000 0.926 0.959 0.858
CityU 0.932 1.000 0.935 0.849
CTB 0.942 0.910 1.000 0.877

MSRA 0.857 0.848 0.887 1.000

beyond 84.8% is found among the four standards.
If we do not over-expect unsupervised segmentation
to achieve beyond what these standards agree with
each other, it is reasonable to take this figure as the
topline for evaluation. On the other hand, Zhao et al.
(2006) show that the words of 1 to 2 characters long
account for 95% of all words in Chinese texts, and
single-character words alone for about 50%. Thus,
we can take the result of the brute-force guess of ev-
ery single character as a word as a baseline.

To compare to supervised segmentation, which
usually involves training using an annotated train-
ing corpus and, then, evaluation using test corpus,
we carry out unsupervised segmentation in a com-
parable manner. For each data track, we first ex-
tract word candidates from both the training and test
corpora, all unannotated, and then evaluate the un-
supervised segmentation with reference to the gold-
standard segmentation of the test corpus. The re-
sults are presented in Table 10, together with best
and worst official results of the Bakeoff closed test.
This comparison shows that unsupervised segmen-
tation cannot compete against supervised segmenta-
tion in terms of performance. However, the experi-
ments generate positive results that the best combi-
nation of the four goodness measures can achieve an
F-measure in the range of 0.65-0.7 on all test corpora
in use without using any prior knowledge, but ex-
tracting word candidates from the unlabeled training
and test corpora in terms of their goodness scores.

5 Discussion: How Things Happen

Note that DLG criterion is to perform segmentation
with the intension to maximize the compression ef-
fect, which is a global effect through the text. Thus
it works well incorporated with a probability maxi-
mization framework, where high frequent but inde-
pendent substrings are effectively extracted and re-



Table 10: Comparison of performances against su-
pervised segmentation

Type
Test corpus

AS CityU CTB MSRA
Baseline .389 .345 .337 .353

DLG(1)/d .597 .616 .601 .602
DLG∗(1)/d .655 .659 .632 .655

2 AV(1) .577 .603 .597 .583
AV∗(1) .630 .650 .618 .638
BE(1) .570 .598 .594 .580
BE∗(1) .629 .649 .618 .638
AV(2)/d .512 .551 .543 .526
AV∗(2)/d .591 .644 .618 .604

7 BE(2)/d .518 .554 .546 .533
BE∗(2)/d .587 .641 .614 .605

DLG∗(1)/d +AV∗(2)/d .663 .692 .658 .667
DLG∗(1)/d +BE∗(2)/d .650 .689 .650 .656

Worst closed .710 .589 0.818 .819
Best closed .958 .972 0.933 .963

combined. We know that most unsupervised seg-
mentation criteria will bring up long word bias prob-
lem, so does DLG measure. This explains why it
gives the worse results as long candidates are added.

As for AV and BE measures, both of them give the
metric of the uncertainty before or after the current
substring. This means that they are more concerned
with local uncertainty information near the current
substring, instead of global information among the
whole text as DLG. Thus local greedy search in
maximal matching style is more suitable for these
two measures than Viterbi search.

Our empirical results about word candidate list
with default threshold 0, where the same list is from
AV and BE, give another proof that both AV and BE
reflect the same uncertainty. The only difference is
behind the fact that the former and the latter is in the
discrete and continuous formulation, respectively.

6 Conclusion and Future Work

This paper reported our empirical comparison of a
number of goodness measures for unsupervised seg-
mentation of Chinese texts with the aid two gener-
alized decoding algorithms. We learn no previous
work by others for a similar attempt. The compari-
son is carried out with Bakeoff-3 data sets, showing
that all goodness measures exhibit their strengths for
recognizing words of different lengths and achieve a
performance far beyond the baseline. Among them,
DLG with decoding algorithm (1) can achieve the

best segmentation performance for single- and two-
character words identification and the best overall
performance as well. Our experiments also show
that the quality of word candidates plays a criti-
cal role in ensuring segmentation performance 11.
Proper pruning of candidates with low goodness
scores to enhance this quality enhances the seg-
mentation performance significantly. Also, the suc-
cess of unsupervised segmentation depends strongly
on an appropriate decoding algorithm. Generally,
Viterbi-style decoding produces better results than
best-first maximal-matching. But the latter is not shy
from exhibiting its particular strength for identifying
multi-character words.

Finally, the ensemble segmentation we put forth
to combine the strengths of different goodness mea-
sures proves to be a remarkable success. It achieves
an impressive performance improvement on top of
individual goodness measures.

As for future work, it would be natural for re-
searchers to enhance supervised learning for Chi-
nese word segmentation with goodness measures in-
troduced here. There does be two successful exam-
ples in our existing work (Zhao and Kit, 2007). This
is still an ongoing work.
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