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Abstract

This paper describes our system about mul-
tilingual semantic dependency parsing (SR-
Lonly) for our participation in the shared task
of CoNLL-2009. We illustrate that semantic
dependency parsing can be transformed into
a word-pair classification problem and im-
plemented as a single-stage machine learning
system. For each input corpus, a large scale
feature engineering is conducted to select the
best fit feature template set incorporated with a
proper argument pruning strategy. The system
achieved the top average score in the closed
challenge: 80.47% semantic labeled F1 for the
average score.

1 Introduction

The syntactic and semantic dependency parsing in
multiple languages introduced by the shared task
of CoNLL-2009 is an extension of the CoNLL-
2008 shared task (Hajič et al., 2009). Seven lan-
guages, English plus Catalan, Chinese, Czech, Ger-
man, Japanese and Spanish, are involved (Taulé et
al., 2008; Palmer and Xue, 2009; Hajič et al., 2006;
Surdeanu et al., 2008; Burchardt et al., 2006; Kawa-
hara et al., 2002). This paper presents our research
for participation in the semantic-only (SRLonly)
challenge of the CoNLL-2009 shared task, with a
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of China.

highlight on our strategy to select features from a
large candidate set for maximum entropy learning.

2 System Survey

We opt for the maximum entropy model with Gaus-
sian prior as our learning model for all classification
subtasks in the shared task. Our implementation of
the model adopts L-BFGS algorithm for parameter
optimization as usual. No additional feature selec-
tion techniques are applied.

Our system is basically improved from its early
version for CoNLL-2008 (Zhao and Kit, 2008). By
introducing a virtual root for every predicates, The
job to determine both argument labels and predicate
senses is formulated as a word-pair classification
task in four languages, namely, Catalan, Spanish,
Czech and Japanese. In other three languages, Chi-
nese, English and German, a predicate sense clas-
sifier is individually trained before argument label
classification. Note that traditionally (or you may
say that most semantic parsing systems did so) ar-
gument identification and classification are handled
in a two-stage pipeline, while ours always tackles
them in one step, in addition, predicate sense classi-
fication are also included in this unique learning/test
step for four of all languages.

3 Pruning Argument Candidates

We keep using a word-pair classification procedure
to formulate semantic dependency parsing. Specif-
ically, we specify the first word in a word pair as a
predicate candidate (i.e., a semantic head, and noted
as p in our feature representation) and the next as an
argument candidate (i.e., a semantic dependent, and



noted as a). We do not differentiate between verbal
and non-verbal predicates and our system handles
them in the exactly same way.

When no constraint available, however, all word
pairs in the an input sequence must be considered,
leading to very poor efficiency in computation for
no gain in effectiveness. Thus, the training sample
needs to be pruned properly. As predicates overtly
known in the share task, we only consider how to
effectively prune argument candidates.

We adopt five types of argument pruning strate-
gies for seven languages. All of them assume that a
syntactic dependency parsing tree is available.

As for Chinese and English, we continue to use
a dependency version of the pruning algorithm of
(Xue and Palmer, 2004) as described in (Zhao and
Kit, 2008). The pruning algorithm is readdressed as
the following.

Initialization: Set the given predicate candidate
as the current node;

(1) The current node and all of its syntactic chil-
dren are selected as argument candidates.

(2) Reset the current node to its syntactic head and
repeat step (1) until the root is reached.

Note that the given predicate candidate itself is
excluded from the argument candidate list for Chi-
nese, that is slightly different from English.

The above pruning algorithm has been shown ef-
fective. However, it is still inefficient for a single-
stage argument identification/classification classifi-
cation task. Thus we introduce an assistant argument
label ‘ NoMoreArgument’ to alleviate this difficulty.
If an argument candidate in the above algorithm is
labeled as such a label, then the pruning algorithm
will end immediately. In training, this assistant label
means no more samples will be generated for the
current predicate, while in test, the decoder will not
search more argument candidates any more. This
adaptive technique more effectively prunes the ar-
gument candidates. In fact, our experiments show
1/3 training memory and time may be saved from it.

As for Catalan and Spanish, only syntactic chil-
dren of the predicate are considered as the argument
candidates.

As for Czech, only syntactic children, grandchil-
dren, great-grandchildren, parent and siblings of the
predicate are taken as the argument candidates.

As for German, only syntactic children, grand-
children, parent, siblings, siblings of parent and sib-
lings of grandparent of the predicate are taken as the
argument candidates.

The case is somewhat sophisticated for Japanese.
As we cannot identify a group of simple predicate-
argument relations from the syntactic tree. Thus
we consider top frequent 28 syntactic relations be-
tween the predicate and the argument. The parser
will search all words before and after the predicate,
and only those words that hold one of the 28 syn-
tactic relations to the predicate are considered as
the argument candidate. Similar to the pruning al-
gorithm for Chinese/English/German, we also in-
troduce two assistant labels ‘ leftNoMoreArgument’
and ‘ rightNoMoreArgument’ to adaptively prune
words too far away from the predicate.

4 Feature Templates

As we don’t think that we can benefit from know-
ing seven languages, an automatic feature template
selection is conducted for each language.

About 1000 feature templates (hereafter this tem-
plate set is referred to FT ) are initially considered.
These feature templates are from various combina-
tions or integrations of the following basic elements.

Word Property. This type of elements include
word form, lemma, part-of-speech tag (PoS), FEAT
(additional morphological features), syntactic de-
pendency label (dprel), semantic dependency label
(semdprel) and characters (char) in the word form
(only suitable for Chinese and Japanese)1.

Syntactic Connection. This includes syntactic
head (h), left(right) farthest(nearest) child (lm, ln,
rm, and rn), and high(low) support verb or noun.
We explain the last item, support verb(noun). From
the predicate or the argument to the syntactic root
along the syntactic tree, the first verb(noun) that is
met is called as the low support verb(noun), and the
nearest one to the root is called as the high support
verb(noun).

Semantic Connection. This includes semantic
1All lemmas, PoS, and FEAT for either training or test are

from automatically pre-analyzed columns of every input files.



FEATn 1 2 3 4 5 6 7 8 9 10 11
Catalan/Spanish postype gen num person mood tense punct

Czech SubPOS Gen Num Cas Neg Gra Voi Var Sem Per Ten

Table 1: Notations of FEATs

head (semhead), left(right) farthest(nearest) seman-
tic child (semlm, semln, semrm, semrn). We say
a predicate is its argument’s semantic head, and the
latter is the former’s child. Features related to this
type may track the current semantic parsing status.

Path. There are two basic types of path between
the predicate and the argument candidates. One is
the linear path (linePath) in the sequence, the other
is the path in the syntactic parsing tree (dpPath). For
the latter, we further divide it into four sub-types
by considering the syntactic root, dpPath is the full
path in the syntactic tree. Leading two paths to the
root from the predicate and the argument, respec-
tively, the common part of these two paths will be
dpPathShare. Assume that dpPathShare starts from
a node r′, then dpPathPred is from the predicate to
r′, and dpPathArgu is from the argument to r′.

Family. Two types of children sets for the predi-
cate or argument candidate are considered, the first
includes all syntactic children (children), the second
also includes all but excludes the left most and the
right most children (noFarChildren).

Concatenation of Elements. For all collected el-
ements according to linePath, children and so on, we
use three strategies to concatenate all those strings
to produce the feature value. The first is seq, which
concatenates all collected strings without doing any-
thing. The second is bag, which removes all dupli-
cated strings and sort the rest. The third is noDup,
which removes all duplicated neighbored strings.

In the following, we show some feature template
examples derived from the above mentioned items.

a.lm.lemma The lemma of the left most child of
the argument candidate.

p.h.dprel The dependant label of the syntactic
head of the predicate candidate.

a.pos+p.pos The concatenation of PoS of the ar-
gument and the predicate candidates.

p−1.pos+p.pos PoS of the previous word of the
predicate and PoS of the predicate itself.

a:p|dpPath.lemma.bag Collect all lemmas along
the syntactic tree path from the argument to the pred-

icate, then removed all duplicated ones and sort the
rest, finally concatenate all as a feature string.

a:p.highSupportNoun|linePath.dprel.seq Collect
all dependant labels along the line path from the ar-
gument to the high support noun of the predicate,
then concatenate all as a feature string.

(a:p|dpPath.dprel.seq)+p.FEAT1 Collect all de-
pendant labels along the line path from the argument
to the predicate and concatenate them plus the first
FEAT of the predicate.

An important feature for the task is dpTreeRela-
tion, which returns the relationship of a and p in a
syntactic parse tree and cannot be derived from com-
bining the above basic elements. The possible values
for this feature include parent, sibling etc.

5 Automatically Discovered Feature
Template Sets

For each language, starting from a basic feature tem-
plate set (a small subset of FT ) according to our
previous result in English dependency parsing, each
feature template outside the basic set is added and
each feature template inside the basic set is removed
one by one to check the effectiveness of each fea-
ture template following the performance change in
the development set. This procedure will be contin-
uously repeated until no feature template is added or
removed or the performance is not improved.

There are some obvious heuristic rules that help
us avoid trivial feature template checking, for ex-
ample, FEAT features are only suitable for Cata-
lan, Czech and Spanish. Though FEAT features are
also available for Japanese, we don’t adopt them for
this language due to the hight training cost. To sim-
plify feature representation, we use FEAT1, FEAT2,
and so on to represent different FEAT for every lan-
guages. A lookup list can be found in Table 1. Ac-
cording to the list, FEAT4 represents person for
Catalan or Spanish, but Cas for Czech.

As we don’t manually interfere the selection pro-
cedure for feature templates, ten quite different fea-



Ca Ch Cz En Gr Jp Sp
Ca 53
Ch 5 75
Cz 11 10 76
En 11 11 12 73
Gr 7 7 7 14 45
Jp 6 22 13 15 10 96
Sp 22 9 18 15 9 12 66

Table 2: Feature template set: argument classifier

Ch En Gr
Ch 46
En 5 9
Gr 17 2 40

Table 3: Feature template set: sense classifier

ture template sets are obtained at last. Statistical in-
formation of seven sets for argument classifiers is in
Table 2, and those for sense classifiers are in Table 3.
Numbers in the diagonals of these two tables mean
the numbers of feature templates, and others mean
how many feature templates are identical for every
language pairs. The most matched feature template
sets are for Catalan/Spanish and Chinese/Japanese.
As for the former, it is not so surprised because these
two corpora are from the same provider.

Besides the above statistics, these seven feature
template sets actually share little in common. For
example, the intersection set from six languages, as
Chinese is excluded, only includes one feature tem-
plate, p.lemma (the lemma of the predicate candi-
date). If all seven sets are involved, then such an in-
tersection set will be empty. Does this mean human
languages share little in semantic representation? :)

It is unlikely to completely demonstrate full fea-
ture template sets for all languages in this short re-
port, we thus only demonstrate two sets, one for En-
glish sense classification in Table 4 and the other for
Catalan argument classification in Table 52.

6 Word Sense Determination

The shared task of CoNLL-2009 still asks for the
predicate sense. In our work for CoNLL-2008 (Zhao
and Kit, 2008), this was done by searching for a right

2Full feature lists and their explanation for all languages will
be available at the website, http://bcmi.sjtu.edu.cn/˜zhaohai.

p.lm.pos
p.rm.pos
p.lemma
p.lemma + p.lemma1

p.lemma + p.children.dprel.noDup
p.lemma + p.currentSense
p.form
p.form−1 + p.form
p.form + p.form1

Table 4: Feature set for English sense classification

example in the given dictionary. Unfortunately, we
late found this caused a poor performance in sense
determination. This time, an individual classifier is
used to determine the sense for Chinese, English or
German, and this is done by the argument classifier
by introducing a virtual root for every predicates for
the rest four languages3. Features used for sense
determination are also selected following the same
procedure in Section 5. The difference is only pred-
icate related features are used for selection.

7 Decoding

The decoding for four languages, Catalan, Czech,
Japanese and Spanish is trivial, each word pairs will
be checked one by one. The first word of the pair
is the virtual root or the predicate, the second is the
predicate or every argument candidates. Argument
candidates are checked in the order of different syn-
tactic relations to their predicate, which are enumer-
ated by the pruning algorithms in Section 3, or from
left to right for the same syntactic relation. After
the sense of the predicate is determined, the label of
each argument candidate will be directly classified,
or, it is proved non-argument.

As for the rest languages, Chinese, English or
German, after the sense classifier outputs its result,
an optimal argument structure for each predicate is
determined by the following maximal probability.

Sp = argmax
∏

i

P (ai|ai−1, ai−2, ...), (1)

where Sp is the argument structure, P (ai|ai−1...)
is the conditional probability to determine the la-
bel of the i-th argument candidate label. Note that

3For Japanese, no senses for predicates are defined. Thus it
is actually a trivial classification task in this case.



p.currentSense + p.lemma
p.currentSense + p.pos
p.currentSense + a.pos
p−1.FEAT1
p.FEAT2
p1.FEAT3
p.semrm.semdprel
p.lm.dprel
p.form + p.children.dprel.bag
p.lemman (n = −1, 0)
p.lemma + p.lemma1

p.pos−1 + p.pos
p.pos1
p.pos + p.children.dprel.bag
a.FEAT1 + a.FEAT3 + a.FEAT4
+ a.FEAT5 + a.FEAT6
a−1.FEAT2 + a.FEAT2
a.FEAT3 + a1.FEAT3
a.FEAT3 + a.h.FEAT3
a.children.FEAT1.noDup
a.children.FEAT3.bag
a.h.lemma
a.lm.dprel + a.form
a.lm.form
a.lm−1.lemma
a.lmn.pos (n=0,1)
a.noFarChildren.pos.bag + a.rm.form
a.pphead.lemma
a.rm.dprel + a.form
a.rm−1.form
a.rm.lemma
a.rn.dprel + a.form
a.lowSupportVerb.lemma
a−1.form
a.form + a1.form
a.form + a.children.pos
a.lemma + a.h.form
a.lemma + a.pphead.form
a1.lemma
a1.pos + a.pos.seq
a.pos + a.children.dprel.bag
a.lemma + p.lemma
(a:p|dpPath.dprel) + p.FEAT1
a:p|linePath.distance
a:p|linePath.FEAT1.bag
a:p|linePath.form.seq
a:p|linePath.lemma.seq
a:p|linePath.dprel.seq
a:p|dpPath.lemma.seq
a:p|dpPath.lemma.bag
a:p|dpPathArgu.lemma.seq
a:p|dpPathArgu.lemma.bag

Table 5: Feature set for Catalan argument classification

P (ai|ai−1, ...) in equation (1) may be simplified as
P (ai) if the input feature template set does not con-
cerned with the previous argument label output. A
beam search algorithm is used to find the parsing de-
cision sequence.

8 Evaluation Results

Our evaluation is carried out on two computational
servers, (1) LEGA, a 64-bit ubuntu Linux installed
server with double dual-core AMD Opteron proces-
sors of 2.8GHz and 24GB memory. This server was
also used for our previous participation in CoNLL-
2008 shared task. (2) MEGA, a 64-bit ubuntu Linux
installed server with six quad-core Intel Xeon pro-
cessors of 2.33GHz and 128GB memory.

Altogether nearly 60,000 machine learning rou-
tines were run to select the best fit feature template
sets for all seven languages within two months. Both
LEGA and MEGA were used for this task. How-
ever, training and test for the final submission of
Chinese, Czech and English run in MEGA, and the
rest in LEGA. As we used multiple thread training
and multiple routines run at the same time, the exact
time cost for either training or test is hard to esti-
mate. Here we just report the actual time and mem-
ory cost in Table 7 for reference.

The official evaluation results of our system are in
Table 6. Numbers in bold in the table stand for the
best performances for the specific languages. The
results in development sets are also given. The first
row of the table reports the results using golden in-
put features.

Two facts as the following suggest that our system
does output robust and stable results. The first is that
two results for development and test sets in the same
language are quite close. The second is about out-of-
domain (OOD) task. Though for each OOD task, we
just used the same model trained from the respective
language and did nothing to strengthen it, this does
not hinder our system to obtain top results in Czech
and English OOD tasks.

In addition, the feature template sets from auto-
matical selection procedure in this task were used
for the joint task of this shared task, and also output
top results according to the average score of seman-
tic labeled F1 (Zhao et al., 2009).



average Catalan Chinese Czech English German Japanese Spanish
Development with Gold 81.24 81.52 78.32 86.96 84.19 77.75 78.67 81.32

Development 80.46 80.66 77.90 85.35 84.01 76.55 78.41 80.39
Test (official scores) 80.47 80.32 77.72 85.19 85.44 75.99 78.15 80.46

Out-of-domain 74.34 85.44 73.31 64.26

Table 6: Semantic labeled F1

Catalan Chinese Czech English German Japanese Spanish
Sense Training memory (MB) 418.0 136.0 63.0

Training time (Min.) 11.0 2.5 1.7
Test time (Min.) 0.7 0.2 0.03

Argument Training memory (GB) 0.4 3.7 3.2 3.8 0.2 1.4 0.4
Training time (Hours) 3.0 13.8 24.9 12.4 0.2 6.1 4.4

Test time (Min.) 3.0 144.0 27.1 88.0 1.0 4.2 7.0

Table 7: Computational cost

9 Conclusion

As presented in the above sections, we have tackled
semantic parsing for the CoNLL-2009 shared task
as a word-pair classification problem. Incorporated
with a proper argument candidate pruning strategy
and a large scale feature engineering for each lan-
guage, our system produced top results.
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Nianwen Xue, and Yi Zhang. 2009. The CoNLL-
2009 shared task: Syntactic and semantic depen-
dencies in multiple languages. In Proceedings of
the 13th Conference on Computational Natural Lan-
guage Learning (CoNLL-2009), June 4-5, Boulder,
Colorado, USA.

Daisuke Kawahara, Sadao Kurohashi, and Kôiti Hasida.
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