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Abstract. Conditional random fields (CRFs) have been quite successful
in various machine learning tasks. However, as larger and larger data be-
come acceptable for the current computational machines, trained CRFs
Models for a real application quickly inflate. Recently, researchers often
have to use models with tens of millions features. This paper consid-
ers pruning an existing CRFs model for storage reduction and decoding
speedup. We propose a simple but efficient rank metric for feature group
rather than features that previous work usually focus on. A series of ex-
periments in two typical labeling tasks, word segmentation and named
entity recognition for Chinese, are carried out to check the effectiveness
of the proposed method. The results are quite positive and show that
CRFs models are highly redundant, even using carefully selected label
set and feature templates.
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1 Introduction

CRFs are a structure learning tool first introduced in [1]. CRFs often outper-
form maximum entropy Markov model (MEMM) [2], another popular structure
learning method. The main reason is that, among directed graphical models,
CRFs do not suffer from the label bias problem as much as MEMM and other
conditional Markov models do [1]. So far, CRFs have been successful in a good
number of applications, especially in natural language processing [3].

As any other general-purpose machine learning tool, feature engineering is
also a central part in CRFs learning. Typically, selecting good and sufficient fea-
tures from auto constructed candidate set is an open problem since [1]. However,
most existing work is only concerned with feature refinement in training stage
for training speedup or performance enhancement (forward feature selection) [4–
7], and few existing work considers model pruning for the decoding requirement
(backward feature elimination) [8]. We will consider the latter in this paper. Be-
cause of rapid progress of modern computer manufacture technology, larger and
larger data are fed into machine learning to build larger and larger models. For
example, tens of millions features will be encountered in recent research move,



but it is not always convenient to carry a model with so many features. In this
study, we will consider to prune an existing CRFs model for storage reduction
and decoding speedup. Our purpose is to reduce the given CRFs model as much
as possible without or with least performance loss. Namely, we try to indicate
those most necessary part in the model.

The most difference between our idea and previous work, either forward or
backward feature pruning, is that structural factor is involved in our consider-
ation. Thus a simple criterion is proposed to rank feature groups rather than
features that previous work usually focused on.

The remainder of the paper is organized as follows. Section 2 proposes a
criterion to ranking all groups of features in a given CRFs model. Section 3
presents our experimental results. Related work is discussed in Section 4. Section
5 concludes the paper and discusses future work.

2 The Proposed Method

2.1 CRFs

Given an input (observation) x ∈ X and parameter vector λ = λ1, ..., λM , CRFs
define the conditional probability p(y|x) of a particular output y ∈ Y as being
proportional to a product of potential functions on the cliques (namely, x) of a
graph, which represents the interdependency of y and x.

p(y|x;λ) = Zλ(x)−1
∏

c∈C(y,x)

Φc(y,x;λ) (1)

where Φc(y,x;λ) is a non-negative real value potential function on a clique
c ∈ C(y,x). Zλ(x) =

∑
ŷ∈Y

∏
c∈C(y,x) Φc(ŷ,x;λ) is a normalization factor over

all output values, Y .
A log-linear combination of weighted features,

Φc(y,x;λ) = exp(λfc(y,x)), (2)

is often used as individual potential functions, where fc represents a feature
vector obtained from the corresponding clique c. It has been proved that the
form in equation (2) is a sufficient and necessary condition to guarantee the
probability distribution over the graph Markovian. That is,

∏
c∈C(y,x) Φc(y, x) =

exp(λF (y, x)), where F (y,x) =
∑

c fc(y,x) is the CRF’s global feature vector
for x and y.

The most probable output ŷ is given by ŷ = arg maxy∈Y p(y|x;λ). However
Zλ(x) never affects the decision of ŷ since Zλ(x) does not depend on y. Thus,
we can obtain the following discriminant function for CRFs:

ŷ = arg maxy∈Y λF (y,x) (3)



2.2 Pruning via Ranking Feature Groups

In equations (1) and (2), Φc(y,x;λ) is often rewritten as two parts,

Φc(y,x;λ) = Φc1(y,x;λ)Φc2(y,x;λ), (4)

where

Φc1(y,x;λ) = exp(
∑

k

λ′kf ′k(y, x)), (5)

Φc2(y,x;λ) = exp(
∑

k

λkfk(y, x)).

In above equations, fk(y, x)) is a state feature function that uses only the label
at a particular position, and f ′k(y, x)) is a transition feature function that de-
pends on the current and the previous labels. Consider that state and transition
features play quite different roles in decoding, the pruning will be respectively
performed on them. In practice, state features often covers the most part of all
ones in a given model. Thus, the pruning mostly aims at state features.

Prevailingly, a feature function, either state- or transition-, can be written as
binary form,

fH(y′) =
{

1, if H holds and y = y′

0, otherwise, (6)

where H is a predefined condition (rule) around the current clique. Incorporated
with their corresponding weight (score) λ, all features f consist of the model after
training is completed.

Two natural ways are considered for the model pruning. One is based on the
condition H that determines the feature. Feature count cut-off according to its
occurrence in the training data is such a method.The other is based on feature
weight statistics. In theory, λ value may range from negative infinite to positive
infinite. The larger this value is, the more significant the respective feature is.
It seems that we can rank all features simply according to λ value. However,
decoding structural object is more sophisticated than multi-class classification
procedure over a single clique because structure characteristics are additionally
involved for the former. For example, Markovian characteristics should be often
considered in structure learning, which cannot be effectively handled by most
multi-classification algorithms. Without considering structural loss, direct filter-
ing those low scored features in CRFs learning and decoding will inevitably lead
to a dramatic decrease of performance in most cases.

Having sequence labeling task as an example, we may regard the decoding
over the given structure defined by CRFs approximately as two-stage procedure.
The first stage is to compute all boundary probabilities for each clique, namely,
the probability distribution to output all possible labels over a clique. The second
stage will find a series of labels with the maximal joint probability through
searching a path over the matrix constructed by these boundary probabilities.

We will focus on the first stage since its output consists of the basis of the
search in the second stage. As we cannot determine the exact label for a clique



before the decoding is completed, we have to consider a groups of activated
features fH(y), for all y ∈ Y . Hereafter, we also call these features, {fH(y),
∀y ∈ Y } w.r.t some H, a feature group1. Here feature group pruning rather than
feature pruning means that all features activated according to the predefined
condition H over x will be discarded in decoding. When two groups of features,
fH1 and fH2, are activated for a clique c, our question will be, which one will be
more informative? The answer is the one which can help us more confidently to
predict a label to c. So, the group of features with more unbalanced weight scores
can be more informative for the further prediction during search optimization.
We take the variance of these scores as ranking metric of every groups of features,

v(λH) = N−1
∑

y

(λH(y)− avg(λH))2, (7)

where λH(y) is the corresponding weight for feature fH(y), and avg(λH) =
N−1

∑
y λH(y) and N is the number of fH(y) in the given feature group, it

should not be larger than the number of label set, |Y |, because not all fH(y, x),
∀y ∈ Y must occur in the training data. We hereafter will keep those groups
of features with the highest scores (variance values) according to the pruning
criterion formula (7) in the reduced model.

3 Experiments

3.1 Settings

A series of experiments are performed to check the effectiveness of the proposed
pruning method through learning and decoding in order-1 linear-chain CRFs.
Gaussian prior is adopted in all CRFs training to avoid overfitting 2. Two typical
sequence labeling tasks in Chinese, word segmentation (WS) and named entity
recognition (NER), are evaluated. Two data sets of word segmentation, AS and
MSRA, are from shared task Bakeoff-2 3, and two data sets of named entity
recognition, CityU and MSRA, are from Bakeoff-3 4, as summarized in Table 1
1 We take an example to explain what a feature group is. Assume that the label set

is {A0, A1 , A2}. H = {previous word = ‘fire′}, a feature group about H contains
three features, fH(A0), fH(A1), and fH(A2), if all of them occur in the training
corpus. Note that in some literatures a feature group defined here is also identified
as a single feature [4]. Since CRFs model will assign three different weight scores for
fH(A0), fH(A1), and fH(A2), respectively, we regard them three different features,
and call the set, {fH(A0), fH(A1), fH(A2)}, a feature group.

2 We choose the best Gaussian prior according to a series of cross-validation experi-
ments in the original model, and the corresponding values will be kept unchanged
as pruning. Though some existing studies show that L1 regularization is effective in
producing a more sparse model than L2 regularization, our empirical study shows
that L1 regularization cannot provide satisfied performance for these two labeling
tasks as L2 regularization does.

3 http://www.sighan.org/bakeoff2005
4 http://www.sighan.org/bakeoff2006



with corpus size in number of characters (tokens). The performance of both WS
and NER is measured in terms of the F-measure F = 2RP/(R + P ), where R
and P are the recall and precision of segmentation or NER.

Table 1. Corpora Statistics

Corpus WS NER
AS MSRA CityU MSRA

Training(M) 8.39 4.05 2.71 2.17
Test(K) 198 184 364 173

Existing work shows that both WS and NER for Chinese can be effectively
formulated as character tagging task [9–12]. According to these results, especially
from the latter, we use a set of carefully selected label set and corresponding fea-
ture sets to train model for these two tasks, respectively. We will show that the
model pruning is still effective even in these models that can bring up state-of-
the-art performance. 6-tag set that represents character position in a word is
kept using for word segmentation task as in [11, 12]. We have show that 6-tag
set can bring state-of-the-art performance since our previous work in [10, 11].
Its six tags are B, B2, B3, M , E and S. For NER, we need to tell apart three
types of NEs, namely, person, location and organization names. Correspondingly,
the six tags are also adapted for characters in these NEs but distinguished by
the prefixes Per-, Loc- and Org-. Plus an additional tag “O” for none NE char-
acters, altogether we have 19 tags for NER. The following example illustrates
how characters in words of various lengths are tagged in a sequence for word
segmentation learning.

他 / 来自 / 阿根廷 / 首都 / 布宜诺斯艾利斯 /。
he / is from / Argentine / capital / Buenos Aires /.
S B E B B2 E B E BB2B3MM M E S

And this is an example for NE tagging.

[ 马 拉 多 纳 ]/Per / 来 / 自 /[ 阿 根 廷 ]/Loc /。
Maradona / is from / Argentine /.
Per-B Per-B2 Per-B3 Per-E O O Loc-B Loc-B2 Loc-E O

Six n-grams, C−1, C0, C1, C−1C0, C0C1, and C−1C1, are selected as features
for both tasks. As for NER, five unsupervised segmentation features generated
by accessor variety criterion with respect to n-grams of different lengths are also
introduced as in [12].

A performance comparison of our trained model (without any pruning) and
other best existing results is given in Table 2. This comparison shows that we
will start the model pruning experiments based on a system with state-of-the-art
performance.



Table 2. Performance comparison and number of feature groups

Participant WS NER
AS MSRA CityU MSRA

Bakeoff Best .952 .964 .8903 .8651
Zhang et al. [13] .951 .971

Ours .953 .973 .8918 .8630

#Feature group 2.60M 1.55M 1.46M 1.10M

3.2 Pruning Results

The numbers of feature groups in four models are given at the bottom of Table
2. Note that all these models contain millions of feature groups.

According to the ranking metric in (7), we remove the model step by step
and observe how the performance changes. Our experimental results show that
any performance loss is not encountered until pruning rate is larger than 65%
for two WS tasks and 90% for two NER tasks. These results are shown in Figure
1(a). This indicates that these models are highly redundant.

In Figure 1(b), we keep few feature groups with top scores and observe how
the performance varies. Still, we find few features help a great deal in perfor-
mance. 1/50 features can give above 97% performance in all tasks. The value
97% and F-score rate in Figure 1(b) are computed in this way: divide F-score
with 1/50 or some other amount of features by F-score with full features.

As a comparison, we compare the proposed method with feature count cut-
off5. We prune the model according to the proposed ranking metric with the same
rate as cut-off thresholds are set to 2, 3, 4, and 5, respectively. The pruning rates
of each cut-off thresholds are given in Table 3. The performance comparison
between our method and cut-off method are illustrated in Figures 2. We find
that the simple cut-off according to the occurrence times of features may cause
serious performance loss, while our pruning method only cause little for the same
pruning rate.

The experimental results have shown that the proposed method is effective
and CRFs models that we adopt at least are highly redundant. We don’t give
the results about decoding speedup after model pruning, because decoding speed
is highly sensitive detailed decoding algorithm. However, feature reduction in
a model surely helps speedup decoding since the search space for decoding is
narrowed.

5 Here, the term, ‘feature count’, aims at feature group. Thus it actually means the
sum of feature count within a feature group. For example, as for a feature group,
fH ={fH(A0), fH(A1), fH(A2)}, if three features, fH(A0), fH(A1), and fH(A2),
occur 8, 6, and 5 times, respectively, then feature count for fH should be 19. If cut-off
threshold is set to 20, then this feature group will be discarded.
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Fig. 1. Performance with different model pruning rates (F-score rate in (b) is obtained
through divided by the F-score without any model pruning.)

4 Related Work and Discussions

Basically, the proposed method is different from those mentioned in [8]. In our
scheme, not a single feature but a feature group is picked up for pruning. As to
our best knowledge, little existing work is concerned with CRFs model pruning,



Table 3. The rates and number of Pruned feature groups for each cut-off thresholds

WS NER
Cut-off AS MSRA CityU MSRA

Rate(%) #group(M) Rate #group Rate #group Rate #group

≥ 1 00.0 0.00 00.0 0.00 00.0 0.00 00.0 0.00
≥ 2 47.5 1.24 49.2 0.76 52.8 0.77 52.8 0.58
≥ 3 63.3 1.65 65.0 1.01 68.9 1.01 68.6 0.75
≥ 4 71.3 1.85 72.9 1.13 76.8 1.12 76.3 0.84
≥ 5 76.3 1.98 77.8 1.21 81.5 1.19 81.0 0.89

either, though some work has carefully discussed so-called feature selection issue
[4, 14].

Both model pruning and feature selection need a ranking metric to evaluate
which feature is better among all candidates, so both of them share the similar
idea in this sense. The differences, according to our understanding, are what rank
metric is chosen and which kind of knowledge, posterior- or prior-, is adopted.
In [4], the gain score of a new feature fH with associated weight λH is given by:

Gλ(fH) = maxλH
Lλ+fHλH

− Lλ − (λ2
H/2σ2), (8)

where Lλ is the conditional log-likelihood for training, and σ2 is a Gaussian
prior. In order to make the gain computations tractable, the likelihood is ap-
proximated by a pseudo likelihood. In feature selection, those feature candidates
with highest gain are added into the optimal subset. Recently, boosting tech-
niques are paid more and more attention and applied to CRFs training speedup
[6, 7]. [6] proposes a method that simultaneously performs feature selection and
parameter estimation for CRFs. In their formulation, to choose a good feature,
a weighted least-square-error (WLSE) problem should be solved,

fm(x) = argminf

N∑

i=1

wiE(f(xi)− zi)2, (9)

where wi and zi are two parameters that can be computed as in LogitBoost
algorithm. Our ranking metric is some similar to [6] in formulation though quite
different from the latter. In addition, the feature candidate of the latter is im-
plicitly derived rather than explicitly ranking all possible features according to
a metric score.

CRFs learning is not often an easy computational job in many cases as we
need to train larger and larger labeled data. Feature selection, namely, to find an
optimal feature subset for CRFs is even harder task than CRFs training itself.
For example, in [4], sophisticated techniques are used to make feature selection
tractable in computation. Thus, we can regard pruning an existing model with
millions of features more practical than feature selection task defined by [1] in
current computational machine settings. Especially, we start our work based on
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Fig. 2. Comparison of our pruning method and count cut-off method, (a) WS (b) NER

models obtained through training with carefully selected label set and feature
template set by human observation, which is surely a tractable computational
task.

Our results shows that a few features contribute a great deal to the perfor-
mance and existing CRFs models that we have examined in this work at least
contain quite an amount of redundancy even they can achieve state-of-the-art
performance.



5 Conclusions and Future Work

We propose a posterior pruning method for CRFs model. CRFs Models for a real
application may dramatically inflate as training data is enlarged. This study tries
to alleviate this difficulty. Our idea is to remove those insignificant feature groups
according to a proposed ranking metric. We carry out a series of experiments in
two sequence labeling tasks, namely, sequence segmentation and named entity
recognition, to verify the effectiveness of the proposed method. The results are
quite positive. Our results show that CRFs models that are examined in this
work are highly redundant, even using carefully selected label set and feature
templates.

Compared to the existing, the proposed pruning method is efficient because
only a local metric of each feature group needs to be computed before a sorting
operation is performed. For higher performance and a more compact system, it
is natural to consider combining our technique with existing ones, which mostly
are forward feature selection methods and whose metrics are derived according
to the observations in information theory6. Since this work requires a great deal
of computational resources, we have to leave this as one of our future work.
However, we may still expect the effectiveness of the proposed metric in these
possible ensemble schemes, as it is motivated from a local structural factor of
CRFs learning rather than global statistical information as most others.

Though we check the effectiveness of the proposed rank metric only for CRFs,
its principle may be extended to other similar learning schemes such as MEMM.
In fact, our early results have shown that it is also effective for these kinds of
learning schemes.

Another issue about future work is that there are many other learning tech-
niques that naturally produce sparse solutions such as some lazy-update algo-
rithms. Typically, the structured averaged perceptron of [15] generally yields
models with very few active features (usually between 1% and 10% active ac-
cording to their report), since the parameters are updated only in the case that
a training error occurs. Thus, one could simply train the perceptron and discard
all features with zero weight, obtaining a model with identical behavior and far
fewer features. However, this is beyond what we intend to study about CRFs
model pruning in this work, and further comparison and technique ensemble will
be also left as future work.
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