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Abstract
To disclose overlapped multiple relations from a sentence
still keeps challenging. Most current works in terms of neu-
ral models inconveniently assuming that each sentence is ex-
plicitly mapped to a relation label, cannot handle multiple re-
lations properly as the overlapped features of the relations
are either ignored or very difficult to identify. To tackle with
the new issue, we propose a novel approach for multi-labeled
relation extraction with capsule network which acts consid-
erably better than current convolutional or recurrent net in
identifying the highly overlapped relations within an individ-
ual sentence. To better cluster the features and precisely ex-
tract the relations, we further devise attention-based routing
algorithm and sliding-margin loss function, and embed them
into our capsule network. The experimental results show that
the proposed approach can indeed extract the highly over-
lapped features and achieve significant performance improve-
ment for relation extraction comparing to the state-of-the-art
works.

Introduction
Relation extraction plays a crucial role in many natural lan-
guage processing (NLP) tasks. It aims to identify relation
facts for pairs of entities in a sentence to construct triples like
[Arthur Lee, place born, Memphis]. Relation extraction has
received renewed interest in the neural network era, when
neural models are effective to extract semantic meanings of
relations. Compared with traditional approaches which fo-
cus on manually designed features, neural methods such as
Convolutional Neural Network (CNN) (Liu et al. 2013; Zeng
et al. 2014) and Recurrent Neural Network (RNN) (Zhang
and Wang 2015; Zhou et al. 2016) have achieved significant
improvement in relation classification. However, previous
neural models are unlikely to scale in the scenario where a
sentence has multiple relation labels and face the challenges
in extracting highly overlapped and discrete relation features
due to the following two drawbacks.

First, one entity pair can express multiple relations in a
sentence, which will confuse relation extractor seriously. For
example, as in Figure 1, the entity pair [Arthur Lee, Mem-
phis] keeps three possible relations which are place birth,
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place death and place lived. The sentence S1 and S2 can
both express two relations, and the sentence S3 represents
another two relations. These sentences contain multiple
kinds of relation features which are difficult to be identi-
fied clearly. The existing neural models tendentiously merge
low-level semantic meanings to one high-level relation rep-
resentation vector with methods such as max-pooling (Zeng
et al. 2014; Zhang, Zhao, and Qin 2016) and word-level at-
tention (Zhou et al. 2016). However, one high-level relation
vector is still insufficient to express multiple relations pre-
cisely.

Second, current methods are neglecting of the discretiza-
tion of relation features. For instance, as shown in Figure 1,
all the sentences express their relations with a few signifi-
cant words (labeled italic in the figure) distributed discretely
in the sentences. However, common neural methods handle
sentences with fixed structures, which are difficult to gather
relation features of different positions. For example, being
spatially sensitive, CNNs adopt convolutional feature detec-
tors to extract local patterns from a sliding window of vec-
tor sequences and use the max-pooling to select the promi-
nent ones. Besides, the feature distribution of “no relation
(NA, others)” in a dataset is different from that of definite
relations. A sentence can be classified to “no relation” only
when it does not contain any features of other relations.

In this paper, to extract overlapped and discrete relation
features, we propose a novel approach for multi-labeled rela-
tion extraction with an attentive capsule network. As shown
in Figure 1, the relation extractor of the proposed method
is constructed with three major layers that are feature ex-
tracting, feature clustering and relation predicting. The first
one extracts low-level semantic meanings. The second layer
clusters low-level features to high-level relation representa-
tions, and the final one predicts relation types for each rela-
tion representation. The low-level features are extracted with
traditional neural models such as Bidirectional Long Short-
Term Memory (Bi-LSTM) and CNN. For the feature clus-
tering layer, we utilize an attentive capsule network inspired
by Sabour, Frosst, and Hinton (2017). Capsule (vector) is a
small group of neurons used to express features. Its overall
length indicates the significance of features, and the direc-
tion of a capsule suggests the specific property of the fea-
ture. The low-level semantic meanings from the first layer
are embedded to amounts of low-level capsules, which will
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Figure 1: Problems, challenges and our solution for multi-labeled relation extraction. Words in brackets are entities and the
italic red parts are key words that contain relation features. (The relation label in the right table is in abbreviation.)

be routed and clustered together to represent high-level rela-
tion features. For better relation extraction, we further devise
an attention-based routing algorithm to precisely find low-
level capsules that contain related relation features. Besides,
we propose a sliding-margin loss function to address the
problem of “no relation” in multiple labels scenario. A sen-
tence is classified as “no relation” only when the probabil-
ities for all the other specific classes are below a boundary.
The boundary is dynamically adjusted in the training pro-
cess. Experimental results on two widely used benchmarks
show that the proposed method can significantly enhance the
performance of relation extraction. The contributions of this
paper can be summarized as follows,

• We first apply capsule network to multi-labeled relation
extraction by clustering relation features.

• We propose an attention-based routing algorithm to pre-
cisely extract relation features and a sliding-margin loss
function to well learn multiple relations.

• Our experiments on two benchmarks show our method
gives new state-of-the-art performance.

Related work
Relation Extraction. Relation extraction is a critical task
for the NLP in which supervised methods with human-
designed features have been well studied (Mooney and
Bunescu 2006; Mintz et al. 2009; Riedel, Yao, and Mc-
Callum 2010; Surdeanu et al. 2012). Recent years, neu-
ral models are widely used to remove the inconvenience
of hand-crafted feature design. Both CNN and RNN have
been well applied to relation extraction (Socher et al. 2012;
Liu et al. 2013; Kim 2014; Zeng et al. 2014; Santos, Xi-
ang, and Zhou 2015; Zhang and Wang 2015). From the
CNN or RNN backbone, relation extraction can be fur-
ther improved by integrating attention mechanism (Wang
et al. 2016; Lin et al. 2016; Zhou et al. 2016; Zhu et al.
2017), parser tree (Xu et al. 2015; Miwa and Bansal 2016;

Xu et al. 2016), multi-task learning (Liu, Qiu, and Huang
2016) or ensemble models (Nguyen and Grishman 2015;
Yang, Wang, and Li 2018). However, all the previous neural
models simply represent relation features with one vector,
resulting in unacceptable precisions for multi-labeled rela-
tion extraction.
Capsule Network. Capsule network was proposed to
improve the representational limitations of CNN and
RNN (Hinton, Krizhevsky, and Wang 2011). Capsules with
transformation matrices allow networks to learn part-whole
relationships automatically. Consequently, a dynamic rout-
ing algorithm (Sabour, Frosst, and Hinton 2017) was pro-
posed to replace the max-pooling in CNN, which achieved
impressive performance recognizing highly overlapping dig-
its. Then, Xi, Bing, and Jin (2017) further tested out the ap-
plication of capsule networks on the CIFAR data with higher
dimensionality. Hinton, Sabour, and Frosst (2018) proposed
a new routing method between capsule layers based on the
EM algorithm. Recently, capsule network was applied to
NLP tasks such as text classification (Zhao et al. 2018) and
disease classification (Wang et al. 2018).

Different from the previous methods for multi-labeled re-
lation extraction, we first introduce the capsule network to
the task, especially, with two highlighted improvements, at-
tentive routing algorithm and sliding-margin loss.

Method
This section describes our approach for multi-labeled rela-
tion extraction with an attentive capsule network. As shown
in Figure 2, our relation extractor comprises of three primary
layers,

• Feature Extraction Layer. Given a sentence b∗ and two
target entities, a Bi-LSTM network is used to extract low-
level features of the sentence.

• Feature Clustering Layer. Given vectors of low-level
features, we cluster the related features into a high-level
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Figure 2: The architecture of our proposed relation extractor, illustrating the procedure for handling one sentence and predicting
possible relations between [Abraham Lincoln] and [Unite States]. h is a set of hidden states of Bi-LSTM, u is a low-level
capsule set and r represents high-level capsules. y indicates relation labels, and yna expresses “no-relation”. The solid lines are
determinate associations, and the dotted lines are possible ones.

relation representation for each relation with an attentive
capsule network.

• Relation Predicting Layer. After computing the high-
level representations of a sentence, we apply a sliding-
margin loss function to predict possible relations includ-
ing the label “no relation”.

Feature Extracting Layer
This layer encodes word tokens and extracts low-level se-
mantic information.

Input Representation The input representations of our
model include word embeddings and position embeddings.
Word Embeddings are distributed representations of words
that map each word to a p dimensional real-valued vector
word. The vectors are pre-trained in the skip−gram setting
of word2vec (Mikolov et al. 2013).
Position Embeddings are defined as the combination of the
relative distances from the current word to the entities. For
instance, in sentence Arthur Lee was born in Memphis., the
relative distances from the word born to [Arthur Lee] and
[Memphis] are respectively 2 and -2. We also encode dis-
tances to vectors position ∈ Rq , where q is the dimension
of position embeddings. In our work, the position embed-
dings are initialized randomly.

The word embeddings and position embeddings are con-
catenated together as network input vector. We denote all
the words in a sentence as an initial vector sequence b∗ =
{x1, · · · , xi, · · · , xn}, where xi ∈ Rp+q and n is the word
number.

Bidirectional LSTM Recurrent Neural Network (RNN) is
powerful to model sequential data and has achieved great
success in the relation classification (Zhang and Wang 2015;

Zhou et al. 2016). RNN for our task is implemented as
LSTM with four components (Graves 2013), one input gate
it with corresponding weight matrix Wi, Ui, Vi, one for-
get gate ft with corresponding weight matrix Wf , Uf , Vf ,
one output gate ot with corresponding weight matrix
Wo, Uo, Vo and one cell ct with corresponding weight ma-
trix Wc, Uc, Vc. All of those components are set to generate
the current hidden state ht with the input token xt and the
previous hidden state ht−1. The whole procedure is demon-
strated with the following equations,

it = σ(Wi[xt] + Uiht−1 + Vict−1 + bi)

ft = σ(Wf [xt] + Ufht−1 + Vfct−1 + bf )

ct = ittanh(Wc[xt] + Ucht−1 + Vcct−1 + bc) + ftct−1

ot = σ(Wo[xt] + Uoht−1 + Voct + bo)

ht = ottanh(ct),

where σ is the sigmoid function and all of the components
have the same sizes as the hidden vector h.

For many sequence modeling tasks, it is beneficial to have
access to the future context as well as the past. Bidirectional-
LSTM network extends the standard LSTM network by in-
troducing a second layer, in which the hidden states flow in
an opposite temporal order. The model is, therefore, able to
exploit features both from the past and the future. Conse-
quently, we use Bi-LSTM including both forward subnet-
work and backward subnetwork to capture global sequence
information. The final state of ht is shown by the equation
ht = [

−→
ht⊕
←−
ht ], where

−→
ht is the forward state,

←−
ht is the back-

ward state and⊕ is the element-wise sum. The dimension of
the hidden state is determined by a hyper-parameter sh.



Feature Clustering Layer
This layer clusters features with the help of an attention-
based routing algorithm.

Feature Clustering with Capsule Network Capsule net-
work has been proved effective in digital recognition, espe-
cially for the highly overlapping digits (Sabour, Frosst, and
Hinton 2017). In our work, a capsule is a group of neurons
whose activity vector represents the instantiation parameters
of a specific type of relation features. The length of the activ-
ity vector represents the probability that the relation features
exist, and the orientation of the vector expresses the spe-
cific property of one kind of features. Active capsules make
predictions, via transformation matrices, for the instantiation
parameters of higher-level capsules. While, high-level cap-
sules are clustered from low-level capsules, which contain
local and trivial features. When multiple predictions agree,
a higher level capsule becomes active.

For the task of relation extraction, we scatter all the low-
level semantic information extracted by the Bi-LSTM into
amounts of low-level capsules represented by u ∈ Rdu . The
representation of each word token will be expressed by k
low-level capsules. Each low-level capsule is applied with a
nonlinear squash function g through the entire vector,

ht = [u
′

t1; · · · ;u
′

tk]

utk = g(u
′

tk) =
||u′tk||

2

1 + ||u′tk||
2

u
′

tk

||u′tk||
,

where [x; y] denotes the vertical concatenation of x and y.
Amounts of low-level capsules can be clustered together to
represent high-level relation features. Therefore, high-level
capsules r ∈ Rdr are computed with the following equa-
tions,

rj = g(
∑
i

wijWjui),

where wij are coupling coefficients that are determined by
an iterative dynamic routing process and Wj ∈ Rdr×du are
weight matrices for each high-level capsule.

Attention-based Routing Algorithm With the capsule
network, we can obtain high-level capsules which represent
relation features. However, the traditional dynamic routing
algorithm in (Sabour, Frosst, and Hinton 2017) does not fo-
cus on the entity tokens, which have been proved important
for relation extraction (Wang et al. 2016; Liu et al. 2018).
Therefore, we propose an attention-based routing algorithm
which focuses on the entity tokens when routing for related
low-level capsules as in Algorithm 1. The coupling coeffi-
cients w between i-th capsule and all the capsules in the r
sum to 1 and are determined by a “softmax” function whose
initial logits are bij , the log prior probabilities that capsule ui
should be coupled to capsule rj . Besides, we propose atten-
tion weights α for all the low-level capsules to maximize the
weights of capsules from significant word tokens and min-
imize that of irrelevant capsules. The weight of the capsule
ui is computed by the entity features he and hidden state hit
from which the ui comes. The w and α are computed by

wij =
exp(bij)∑
j∗ exp(bij∗)

αi = σ(hTe h
i
t),

where he is the sum of hidden states of the two entities and
T means the transpose operation. The sigmoid function nor-
malizes the attention weights and maximizes the differences
between significant capsules and irrelevant ones. Finally, the
high-level capsules r are computed with the Algorithm 1.

Algorithm 1 Attention-based Routing Algorithm
Require: low-level capsules u, iterative number z, entity

features he and hidden states ht
Ensure: high-level capsules r

1: for all capsules ui and capsules rj do
2: initialize the logits of coupling coefficients
3: bij = 0
4: end for
5: for z iterations do
6: wi = softmax(bi), ∀ui ∈ u
7: αi = σ(hTe h

i
t), ∀ui ∈ u

8: rj = g(
∑

i wijαiWjui), ∀rj ∈ r
9: bij = bij +Wjuirj , ∀ui ∈ u and ∀rj ∈ r

10: end for

Relation Predicting Layer
In the capsule network, the length of the activity high-level
capsules can represent the probability of relations. Sabour,
Frosst, and Hinton (2017) applied a fixed margin loss for the
classification of digit images. However, they can only set the
margin empirically. Therefore, we propose a sliding-margin
loss for the task of relation extraction, which learns the base-
line of the margin automatically. Besides, to deal with the
“no relation” (presented as NA in the figure 2) properly,
the probabilities of all the existing relations for sentences
labeled as NA should be under the lower bound of the mar-
gin. The loss function for the j-th relation follows the below
equation,

Lj = Yjmax(0, (B + γ)− ||rj ||)2+
λ(1− Yj)max(0, ||rj || − (B − γ))2,

where Yj = 1 if the sentence represents relation rj , and
Yj = 0 if not. γ is a hyper-parameter defining the width of
the margin, and B is a learnable variable indicating the NA
threshold of the margin, which is initialized by 0.5. λ is the
down-weighting of the loss for absent relations, which is the
same as that in (Sabour, Frosst, and Hinton 2017). The total
loss of a sentence is the sum of losses from all the relations.
In the testing process, relation labels will be assigned to a
sentence when its probabilities of these relations are larger
than the threshold B. Otherwise, it will be predicted as NA.

Experiments
We conduct experiments to answer the following three ques-
tions. 1) Does our method outperform previous works in re-
lation extraction? 2) Is attentive capsule network useful to



distinguish highly overlapping relations? 3) Are the two pro-
posed improvements both effective for relation extraction?

Dataset, Evaluation Metric and Baselines
Dataset. We conduct experiments on two widely used
benchmarks for relation extraction, NYT-10 (Riedel,
Yao, and McCallum 2010) and SemEval-2010 Task 8
dataset (Hendrickx et al. 2009). The NYT-10 dataset is gen-
erated by aligning Freebase relations with the New York
Times (NYT) corpus, in which sentences from the years
2005-2006 are for training while those from 2017 for testing.
The dataset consists of amounts of multi-labeled sentences.
The SemEval-2010 Task 8 dataset is a small dataset which
has been well-labeled for relation extraction. The details of
both datasets are shown in Table 1.

Datasets Train Sen. Test Sen. Multi-labeled Sen. Classes

NYT-10 566,190 170,866 45,693 53
Sem. 8,000 2,717 0 19

Table 1: Detail information for datasets. Sen. is the number
of sentences. Sem. represents SemEval-2010 Task 8.

Evaluation Metric. We evaluate our method with a classi-
cal held-out evaluation for NYT-10 and macro-averaged F1
for SemEval-2010 Task 8. The held-out evaluation evalu-
ates our models by comparing the relation facts discovered
from the test articles with those in Freebase, which pro-
vides an approximation of the precision without the time-
consuming human evaluation. Besides, we report both the
aggregate Precision-Recall (PR) curves and macro-averaged
F1 as quantitative indicators.
Baselines. We select following feature clustering methods
as baselines.

Max-pooling+CNN clusters the relations extracted by
CNN with max-pooling (Zeng et al. 2014).

Max-pooling+RNN clusters the relations extracted by
RNN with max-pooling (Zhang and Wang 2015).

Avg+RNN aggregates the relation features with linear av-
erage of all the hidden states of word tokens.

Att+RNN applies a word-level attention to aggregate re-
lation features instead of linear average (Zhou et al. 2016).

Att-CapNet (CNN-based) integrates our attentive cap-
sule network with a CNN relation extractor.

Att-CapNet (RNN-based) is our method.

Experimental Settings
In our experiments, word embeddings are pre-trained with
the word2vec tool. For NYT-10, we pre-train the word em-
beddings on NYT-10 in the skip − gram setting. In or-
der to compare with the previous works on SemEval-2010
Task 8, we use the same word vectors proposed by (Turian,
Ratinov, and Bengio 2010) (50-dimensional) to initialize
the embedding layer. Additionally, we also use the 100-
dimensional word vectors pre-trained inGlove setting (Pen-
nington, Socher, and Manning 2014). Besides, we concate-
nate the words of an entity when it has multiple words. Po-
sition embeddings are initialized randomly and updated in

training. We use Adam optimizer (Kingma and Ba 2015)
to minimize the objective function. L2 regularization and
dropout (Srivastava et al. 2014) are adopted to avoid overfit-
ting. To train our model efficiently, we iterate by randomly
selecting a batch from the training set until convergence. We
use a grid search to determine the optional parameters. Ta-
ble 2 lists our hyper-parameter setting1.

Parameters NYT-10 Sem.

batch size 50 50
word dimension p 50 50

position dimension q 5 5
hidden state dimension sh 256 256

capsule dimensions [du, dr] [16,16] [16,16]
iterations z 3 3

sliding-margin γ 0.4 0.4
down-weighting λ 1.0 0.5

learning rate 0.001 0.001
dropout probability 0.0 0.7

L2 regularization strength 0.0001 0.0

Table 2: Parameter settings

Overall Performance
We compare our method with the previous baselines on
the two datasets respectively. For the dataset NYT-10, the
performance of all the methods is compared in Figure 3.
The figure draws the PR curves of all the baselines. Appar-
ently, we can see, 1) our Att-CapNet (RNN-based) model
achieves the best PR curve, which outperforms the other
baselines at nearly all range of the recall. 2) our Att-CapNet
(CNN-based) model is slightly better than the method Max-
pooling+CNN (Zeng et al. 2014). 3) RNN models tenden-
tiously outperform CNN ones for their strong ability of ex-
tracting low-level relation features from the sequence. 4) our
attentive capsule network is effective for relation extraction
integrated with either CNN or RNN.

Figure 3: The PR curves of all the baselines on NYT-10

1The parameters of the baselines are following their papers.



A detailed comparison of baselines with precision, recall,
F1 and PR curve areas is shown in Table 3, which indicates,
1) our Att-CapNet (RNN-based) obtains better results on all
the indicators than the baselines and increases F1 scores by
at least 3.2% over the other baselines. 2) Att-CapNet (CNN-
based) is slightly better than Max-pooling+CNN (Zeng et
al. 2014). 3) the previous feature extractors such as RNN
and CNN are all improved by integrating with our attentive
capsule network.

Methods Precision(%) Recall(%) F1(%) PR
Zeng et al. (2014) 28.5 56.3 37.8 0.35

Zhang and Wang (2015) 28.9 57.0 38.4 0.34
Zhou et al. (2016) 26.9 54.9 36.1 0.34

Avg+RNN 25.7 55.1 35.1 0.33

Att-CapNet (CNN-based) 29.9 55.0 38.8 0.36
Att-CapNet (RNN-based) 30.8 63.7 41.6 0.42

Table 3: Performance of all the baselines on NYT-10. PR
represents precision-recall curve area.

We further conduct paired t-test (10-fold, F1 score) to
evaluate the statistical significance of our results in terms of
p-value and confidence intervals. Table 4 shows that all the
p-values are less than 5.0e-02 and the increases in F1 score
are at least 2.2%. Therefore, all our performance improve-
ments are statistically significant.

Baselines p-value CI (Confident level 95%)

Zeng et al. (2014) 1.0e-02 [0.023, 0.051]
Zhang and Wang (2015) 1.2e-02 [0.022, 0.041]

Zhou et al. (2016) 2.4e-05 [0.052, 0.077]
Avg+RNN 1.1e-04 [0.044, 0.064]

Table 4: The statistical significance in the difference be-
tween Att-CapNet (RNN-based) and the baselines. CI rep-
resents confidence intervals.

From the results in Table 5 on SemEval-2010 dataset2,
we can have the following observations, 1) our Att-CapNet
(RNN-based) outperforms all the other feature clustering
methods. 2) Att-CapNet (CNN-based) is better than the tra-
ditional CNN model with max-pooling. 3) RNN models are
better than CNN ones under the same settings. 4) our atten-
tive capsule network is more useful than the other feature
clustering methods such as max-pooling or word-level at-
tention.

Effect of Our Method on Multi-labeled Sentences
To evaluate the effect of our method on the multi-labeled
sentences, we randomly select 500 sentences, which have
more than one labels, from NYT-10 for testing. The pre-
vious methods cannot predict multiple relations, and all of
them can only obtain a low recall rate of about 0.40. There-
fore, we define a threshold confident score for all the pre-
vious methods to make them predict multiple relations. We

2We compare our method with previous works which do not de-
pend on the parser information and external data such as WordNet.

Methods Features F1(%)
Zeng et al. (2014) WE (dim=50) 69.7

Zeng et al. (2014)‡ WE (dim=50)+PE 79.8
Zhang and Wang (2015) WE (dim=50) 80.0
Zhang and Wang (2015) WE (dim=300) 82.5

Zhang and Wang (2015)‡ WE (dim=50)+PE 81.0
Zhou et al. (2016) WE (dim=50) 82.5
Zhou et al. (2016) WE (dim=100) 84.0

Zhou et al. (2016)‡ WE (dim=50)+PE 81.7
Avg+RNN‡ WE (dim=50)+PE 78.4

Att-CapNet (CNN-based) WE (dim=50)+PE 80.4
Att-CapNet (RNN-based) WE (dim=50)+PE 84.5

Table 5: Performance of all the baselines on SemEval-2010
Task 8. WE, PE respectively stand for word embedding and
position embedding. Methods with ‡ are our implementa-
tions. The other results are reported in their papers.

tune the threshold to ensure that all the previous methods
can achieve maximum F1 scores3. As shown in Table 6, our
Att-CapNet (RNN-based) achieves the best precision, recall
and F1. Our methods can recall more relation labels in the
scenario where a sentence contains different relations.

Methods Precision(%) Recall(%) F1(%)
Max-pooling+CNN 88.4 91.9 90.1
Max-pooling+RNN 89.3 91.8 90.5

Att+RNN 88.8 90.6 89.7
Avg+RNN 86.9 90.5 88.6

Att-CapNet (CNN-based) 87.3 93.0 90.1
Att-CapNet (RNN-based) 89.9 93.7 91.8

Table 6: Performance of all the baselines on selected 500
multi-labeled sentences from NYT-10.

Effect of Various Modules
In this subsection, we evaluate various modules of our
method including attention-based routing algorithm and
sliding-margin loss function. Our main method outperforms
the other variants, although the variants may still prove
useful when applied to other tasks. We apply our model
Att-CapNet (RNN-based) and its two sub-models, which
are without the attention-based routing algorithm (dynamic
routing) and sliding-margin loss (fixed-margin loss), to the
two datasets respectively. The results shown in Table 8 and
Figure 4 indicate, 1) our main model and the two variants are
better than the best baseline feature clustering method under
the same settings. 2) our attention-based routing algorithm
and sliding-margin loss are both useful for capsule network,
which significantly enhance the performance of relation ex-
traction.

3We compute F1 scores for a series of confidence scores and
select the maximum ones for the previous methods. The interval of
confidence scores is 0.1.



Sentences Labels
RNN

Max-pooling Avg. Att. Att-CapNet

S1: Twenty years ago, another [Augusta] native, [Larry Mize], shocked Greg
Norman in a playoff by holing a 140-foot chip for birdie on the 11th hole to
win the masters in a playoff.

PB 0 0 0 1

PL 0 1 1 1

S2: Brothers or cousins except for its drummer, Oscar Lara, the band originally
comes from [Sinaloa], [Mexico], but has lived in San Jose, California, for
nearly 40 years.

LC 1 0 0 1

CA 0 1 1 1

S3: The white house in April sharply criticized the speaker of the house, Nancy
Pelosi, for visiting [Syria]’s capital, [Damascus], and meeting with president
Bashar Al-Assad, even going so far as calling the trip “bad behavior”, in the
words of vice president Dick Cheney.

LC 0 0 0 1

CA 0 0 1 1

CC 1 1 0 1

Table 7: A case study of selective multi-labeled sentences for the four feature clustering methods based on RNN. The entities are
labeled in the bold brackets. “PB”, “PL”, “LC”, “CA” and “CC” are relation labels in the dataset, which are “person/place birth”,
“person/place lived”,“location/contain”, “country/administrative divisions” and “country/capital” respectively.

Methods Features F1(%)
Zhou et al. (2016) WE (dim=50)+PE 81.7
Att-CapNet (RNN-based) WE (dim=50)+PE 84.5
-w/o attention-based routing WE (dim=50)+PE 83.6
-w/o sliding-margin loss WE (dim=50)+PE 82.3

Table 8: Performance of Att-CapNet (RNN-based) with var-
ious modules on SemEval-2010 Task 8.

Case Study
We present practical cases in NYT-10 test set to show the
effectiveness of our feature clustering method (Att-CapNet)
compared to max-pooling, linear average (Avg.) and word-
level attention (Att.) with the same feature extracting net-
work (RNN). Table 7 shows three multi-labeled sentences
for relation extraction by all the four methods from which
we can conclude that, 1) Att-CapNet method has recognized
all the labeled relations. 2) the other three methods can only
give one confident prediction. 3) a few methods even cannot
recognize any relations such as max-pooling for the sentence
S1. 4) our feature clustering method is more capable to rec-
ognize highly overlapping relations.

Conclusions and Future Work
In this paper, we propose a novel capsule-based approach for
multi-labeled relation extraction to handle the highly over-
lapping relations and improve the capability of clustering
relation features. To our best knowledge, this is the first at-
tempt that applies capsule network to solve the challenging
task. The proposed model consists of a concise pipeline.
First, we extract low-level semantic information with Bi-
LSTM. Then, the low-level features are clustered to be high-
level relation representations with attentive capsule network.
Finally, sliding-margin loss is proposed to train the model
reasonably with all the relations including the “no relation”.
Our experiments show that the proposed approach achieves
significant improvement for multi-labeled relation extrac-
tion over previous state-of-the-art baselines.

Figure 4: The PR curves of the Att-CapNet (RNN-based)
with various modules on NYT-10

In future, our solutions of features clustering can be gen-
eralized to other tasks that deal with overlapping and dis-
crete features. For instance, a possible attempt might be to
perform reading comprehension.
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