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Abstract

By exploiting unlabeled data for further performance im-
provement for Chinese word segmentation, this work makes
the first attempt at exploring adding unsupervised segmenta-
tion information into neural supervised segmenter. We sur-
vey various effective strategies, including extending the char-
acter embedding, augmenting the word score and applying
multi-task learning, for leveraging unsupervised information
derived from abundant unlabeled data. Experiments on stan-
dard data sets show that the explored strategies indeed im-
prove the recall rate of out-of-vocabulary words and thus
boost the segmentation accuracy. Moreover, the model en-
hanced by the proposed methods outperforms state-of-the-
art models in closed test and shows promising improvement
trend when adopting three different strategies with the help of
a large unlabeled data set. Our thorough empirical study even-
tually verifies the proposed approach outperforms the widely-
used pre-training approach in terms of effectively making use
of freely abundant unlabeled data.

Introduction
Chinese word segmentation (CWS) is a fundamental task
for Chinese language processing because there is no explicit
word boundary marker in written Chinese while other high-
level tasks rely heavily on words. In the last decades, most of
the work addressing the task uses supervised models, which
learn segmentation model based on some training data that
have been segmented manually.

Conventionally, CWS is usually treated as a sequence la-
beling problem where a wide range of statistical methods
are applied (Xue and others 2003; Low, Ng, and Guo 2005;
Peng, Feng, and McCallum 2004; Zhao, Huang, and Li
2006; Zhao et al. 2006), including Conditional Random
Fields (CRFs).

Along with deep neural models widely-used for natural
language processing (NLP) tasks, previous explorers work-
ing on CWS used the traditional sequence labeling frame-
work, but instead of extracting discrete features, they used
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various neural networks (e.g., long short-term memory net-
work, LSTM (Hochreiter and Schmidhuber 1997)) for auto-
matic feature learning and discrimination (Zheng, Chen, and
Xu 2013; Pei, Ge, and Chang 2014; Chen et al. 2015; Xu
and Sun 2016; Chen et al. 2017; Zhang, Liu, and Fu 2018;
Ma, Ganchev, and Weiss 2018; Zhao et al. 2018). Transition
based (Zhang, Zhang, and Fu 2016) and semi-CRF structure
based (Liu et al. 2016) neural models have also be explored.
Both of them can use complete word features. (Cai and Zhao
2016) proposed a direct structured learning method model-
ing the segmentation-determined compositionality of sen-
tences. It is the state-of-the-art CWS model (closed test)1

and we follow this work as a baseline.
So far, supervised methods have achieved satisfactory per-

formance. Yet this ability relies on large labeled corpus.
Theoretically, there are always new words which can not
be covered by even very huge corpora. Generally, the op-
timal parameters of neural models are to be obtained via
training on labeled data. Therefore, these methods have
strong power of disambiguation via likelihood estimation
but little capacity to deal with unknown words, i.e., out-
of-vocabulary (OOV). In addition, supervised methods only
make use of local information about individual characters
and/or n-grams(words) within a sentence, resorting to little
global information derived from a large scope over the entire
corpus.

In contrast, unsupervised segmentation methods do not
require any labeled data for training. These approaches in-
tend to derive segmentation model directly from unlabeled
text. There are two typical manners. One is estimating the
likelihood of a character sequence to be a word, and the
other is estimating the probability of a segmentation given
the certain sentence from the view of language model. Be-
yond the scope of training data, unsupervised methods can
detect OOVs continuously along with the expansion of data.
This may be an important auxiliary to supervised methods.
Hence, we explore the role of unsupervised segmentation in
term of helping neural CWS.

The CWS benchmark evaluation, SIGHAN-Bakeoff
shared task (Emerson 2005), distinguished the official CWS
evaluation into two types, closed test and open test. The for-
mer only allows standard training set for segmenter learning,

1bcmi.sjtu.edu.cn/service/cws_rankings/



Unsupervised CWS Pretraining

non-NN Zhao & Kit (2008) -Zhao & Kit (2011)

NN this work Yang (2017)
Zhou (2017)

Table 1: Research role position of our work. NN denotes
neural network based model.

while the latter has no such a restriction and any external lin-
guistic resources in addition to the training set can be used
as well. In general, the closed test setting is suitable for eval-
uating the strength of the model its own, and the open test
setting focuses on exploring better ways of exploiting ex-
tra resources. Following the strict definition of SIGHAN-
Bakeoff, using unlabeled data should belong to the open
test type. However, we argue that even within the type, us-
ing unlabeled resource such as abundant plain text and la-
beled (annotated) resources such as segmentation corpus or
carefully selected lexicon should be also distinguished, as
labeled and unlabeled data may have quite different avail-
ability and they come at different expenses. Using unlabeled
data surely shows more flexibility and more adaptation when
considering that unlabeled data may be freely obtained with-
out any limitation. For neural CWS models, exploiting unla-
beled data can be naturally implemented through pretrained
character or word embedding (Yang, Zhang, and Dong 2017;
Zhou et al. 2017). However, the pretrained embedding may
still has its limitation, and many more other ways of ex-
ploiting unlabeled data are worth exploring. This work thor-
oughly studies ways of utilizing unsupervised segmentation
over the unlabeled data to improve neural CWS models.

To our best knowledge, there has not yet been any com-
prehensive evaluation on strengthening neural segmentation
models with unlabeled data by means of unsupervised seg-
mentation methods. This study proposes to incorporate un-
supervised segmentation information into neural models at
different levels, whose research role position is illustrated
in Table 1. Our experimental results show that unsuper-
vised segmentation indeed boosts the recall rate of out-of-
vocabulary by up to 4.7%. The overall segmentation perfor-
mance gains an improvement of 0.6% in F1-score. We also
show that the performance improves along with the growth
of unlabeled data size.

The rest of this paper is organized as follows: Firstly, we
briefly review some related works; Secondly, we introduce
the framework of injecting unsupervised segmentation into
neural word segmentation models; Thirdly, we evaluate the
proposed methods on both closed and open setting; Finally,
we draw some conclusions.

Related Work
Our proposed model involves both unsupervised segmenta-
tion models and neural segmentation models. This section
gives a brief introduction to these models.

Recently, neural models sprang up and have been widely
studied in CWS task. Many of them take CWS problem as

a tagging task, which scores tags on individual characters.
Several neural architectures (Zheng, Chen, and Xu 2013;
Pei, Ge, and Chang 2014; Chen et al. 2015; Ma and Hin-
richs 2015; Xu and Sun 2016) have been explored. (Zheng,
Chen, and Xu 2013) firstly adopted Convolution Neural Net-
work based model to CWS problem and obtained compara-
ble performance against basic CRF models. (Pei, Ge, and
Chang 2014) proposed the Max-Margin Tensor Neural Net-
work and introduced the tag embedding as input to capture
the combinations of context and tag history. (Chen et al.
2015) utilized LSTM to keep the longer history information
in memory cell and avoid the limitation of window-based
approaches.

Besides, some alternatives to sequence labeling model ex-
ist. Beyond character information, they leverage word level
information by means of transition-based model (Zhang,
Zhang, and Fu 2016) and semi-CRF based model (Liu et
al. 2016). (Cai and Zhao 2016; Cai et al. 2017) proposed to
score candidate segmented outputs directly by modeling the
segmentation process.

Unsupervised word segmentation methods learn segmen-
tation models from unsegmented text data. Heretofore, these
methods in literature can be roughly classified into two cate-
gories, goodness measure based methods and statistical lan-
guage model based methods (Chen, Chang, and Pei 2014).
The former assigns each character n-gram a score, namely,
goodness measure, which indicates the likelihood to be a
word. Goodness measures including description length gain
(DLG) (Kit and Wilks 1999) accessor variety (AV) (Feng
et al. 2004), boundary entropy (BE) (Jin and Tanaka-Ishii
2006) are popular in previous works. Then, decoding ap-
proaches like Viterbi algorithm are applied to find the best
segmentation by maximizing the sum of word scores. The
latter (language model based method) scores one segmenta-
tion from the view of language model. Given a sequence of
characters, these methods obtain the best segmentation de-
cision by choosing the candidate of highest posterior proba-
bility which is based on statistic language models, typically,
Hierarchical Dirichlet Process (HDP) (Goldwater, Griffiths,
and Johnson 2009) and Nested Pit-Yor Language Model
(NPYLM) (Mochihashi, Yamada, and Ueda 2009).

To improve conventional CWS model with unsupervised
segmentation, (Zhao and Kit 2011) carefully designed some
features to inject goodness scores into CRF model. (Sun and
Xu 2011) went a step further, other than using statistic, they
also introduced natural boundary information like punctu-
ation. (Fujii, Domoto, and Mochihashi 2017) proposed a
semi-supervised model which combines NPYLM and CRF.
Nevertheless, how to utilize unsupervised approaches to en-
hancing neural word segmentation has not been studied yet,
as far as we know.

Pretraining methods are related works from the view of
accessing external resources in an open test setting. It is an
effective way to inherit information from extra data. (Yang,
Zhang, and Dong 2017) utilized various kinds of data in-
cluding unlabeled data, auto-segmented data and POS data.
(Zhou et al. 2017) proposed a novel word context charac-
ter embedding to benefit from automatically labeled data.
However, our method only uses unlabeled data, which can



be obtained more easily than resources like POS data. Be-
sides, extra labeled data is not necessarily needed to train
the segmenter for generating auto-segmented data. In other
words, our method is also suitable for closed test setting.

Methodology
This work proposes a framework to inject unsupervised seg-
mentation information into neural models for CWS. The
framework consists of two parts, unsupervised segmenta-
tion results (intermediate or final) as auxiliary information
and neural segmentation model as a backbone model. Be-
fore presenting the methods, we introduce the unsupervised
segmentation methods we used and the basic neural word
segmentation model first.

Unsupervised Word Segmentation
We make use of both kinds of unsupervised methods men-
tioned in related work, namely, goodness measure based
methods and statistical language model based methods.

Goodness measure based methods assign each character
n-gram a goodness measure indicating the likelihood to be
a word. A viterbi algorithm is applied to find the best seg-
mentation by maximizing the sum of goodness measure.
The proposed method only includes the goodness measure
rather than the final segmentation (See the next two sec-
tions). Among the three goodness measure, we choose ac-
cessor variety (AV) since previous work concluded its ef-
fectiveness in improving word segmentation. This approach
also gained the best results on our development set. Acces-
sor variety counts the distinct neighbours of a character se-
quence. Intuitively, characters in a word co-occur frequently
but their neighbours vary. A character sequence with larger
AV is more likely to be a word. Similar to (Zhao and Kit
2011), we apply log() to smooth the difference in AV and
do discretization to act as normalization.

discrete AV (s) = blog(AV (s))c

Goodness measure is independent to specific context,
so it can hardly deal with ambiguity which is easier for
language model based models as they consider the whole
sentence. In this work, we make use of the Nested Pit-
Yor Language Model (NPYLM) (Mochihashi, Yamada, and
Ueda 2009), which is a hierarchical Bayesian language
model trained with Markov Chain Monte Carlo and decodes
with sentence-wise Gibbs sampling. The word “hierarchi-
cal” means that the model consists of two language models:
One is a character-level model for estimating the probabil-
ity that a character sequence becomes a word; The other is
a word-level language model for estimating the probability
that a word appears after a sequence of words. It showed the
state-of-the-art performance of single model unsupervised
segmentation.

Neural Word Segmentation
As for Neural Word Segmentation model, we take (Cai et
al. 2017) as a baseline model, since it so far gives the best
closed test results on the standard benchmark dataset. This
adopted model takes the segmentation process as two stages

of encoder from character, word to sentence. Figure 1 illus-
trates the model (except for the gray parts.).

Word Encoder For a possible segmentation
w1, w2, . . . , wm given an input character sequence
c1, c2, . . . , cn, where wi = cib , . . . , cie (ib and ie index
the starting point and end point of word wi respectively),
the word encoder first coverts the word sequence into a
sequence of character-aware embedding, and then uses a
neural network wi = f(cib , · · · , cie) 2 to compute the
vector representation of corresponding words. Based on the
vector, word score is calculated to model the likelihood that
wi is a soundness word. The calculation is formed as (1),
where u is a trainable parameter.

sw(wi) = wi · u (1)

Sentence Scorer To score a candidate segmentation at
sentential level, the model uses linking score to model the
fluency of word sequence. The generated word vector se-
quence is then fed into a recurrent neural network (RNN) as
in its order. At each time step i, a prediction pi for next word
is produced base on the current hidden state of the RNN hi.
Linking score is the dot product between the word represen-
tation and corresponding prediction. The score of a sentence
is the sum of all word scores and linking scores. Formally,
the score function s(·) is defined as the following:

hi = LSTM(hi−1,wi) (2)
pi = tanh(W hhi + bh) (3)

sli = pi−1
Twi (4)

s(w1, · · · ,wm) =
∑m

i=1(s
l
i + sw(wi)) (5)

The decoding algorithm 2 is implemented as beam search-
ing for the highest-scored segmentation as output.

Utilizing Unsupervised Segmentation in Supervised
Segmentation
We investigate three strategies to make the baseline model
benefit from unsupervised segmentation results. First, en-
code an unsupervised segmentation result by label embed-
ding to extend the character embedding. Second, enhance
the word score with the goodness measure. Third, expand
the training data with unsupervised segmented data and train
the model in the manner of multi-task learning.

Add Label Embedding As mentioned in Section Word
Encoder, characters of input sentence are usually repre-
sented as distributional embedding and thus can be fed into
neural models. Given no extra input is available, the char-
acter embedding is the major information which the model
depends on to make segmentation decision. Hence, it is con-
siderable to enrich the character embedding to make it carry
more prior knowledge into the model.

2We refer the interesting readers to see more details in (Cai et
al. 2017). w denotes word/word embedding indiscriminately. So is
the symbol c.



Figure 1: The baseline model augmented with the proposed methods, where ci,j denotes character embedding and wi denotes
word vector. sw and sl denote word score and linking score respectively. The gray parts are the unsupervised information. Dash
lines mean shared parts in multi-task learning.

Our framework extends the character embedding with
label embedding to blend in unsupervised information, as
demonstrated using gray lattices in Figure 1. Input sentences
are segmented in advance by an unsupervised segmentation
model which is learned from the same dataset but with seg-
mentation boundaries removed. Then, the segmented results
are interpreted into label sequences. Each character in the
input sentence corresponds to one of the labels in {B, I,
E, S}, where B, I, E indicate the beginning, the middle,
and the end of a word respectively, and S indicates a single
character word. We introduce another embedding layer for
these labels. Therefore, the model takes the concatenation
of character embedding and label embedding as input. The
new word encoder is formalized as:

wi = f(cib ⊕ lib , · · · , cie ⊕ lie)

where symbol⊕ denotes vector concatenation and l denotes
embedding of labels. Intuitively, the embedding of labels
serves as the prior knowledge of word boundaries for the
neural model.

Augment Word Score The baseline model introduces the
word score (white circles in Figure 1) to estimate the like-
lihood that a sequence of characters is a soundness word.
Similarly, the aforementioned goodness measure (gray cir-
cles in Figure 1) plays the same role to evaluate a word from
a corpus-level point of view. It makes sense to enhance the
word score by goodness measure in order to consider both
local and global information. Instead of linear combination
with fixed weight, we use the following formulas to merge
these two values, where,w is the word vector; α is a weight
value calculated as the dot product ofw and a trainable vec-
tor v. Such an adaptive weight α enlarges the model capac-
ity and avoids under-fitting.

sw
′
(w) = sw(w) + α · goodness(w)

α = v ·w

Apply Multi-task Learning For an overall-level knowl-
edge distillation from unsupervised segmentation, we also
use a multi-task learning strategy (Luong et al. 2015), i.e.,
to train our neural model by both human-annotated gold
data and the natural segmented results by the unsupervised
approach. The two tasks are learned simultaneously with
shared bottom layers, where the knowledge transfer occurs.
Specifically, as illustrated in Figure 1 by dash lines, the word
encoder and the LSTM for scoring words are shared across
tasks, while others are trained to fit on different datasets.
Formally, formula (2), (5) are not changed, while formula
(1), (3), (4) are modified to:

sw(wi) = wi · um

pmi = tanh(Wm
(h)hi + b

m
h )

sl,mi = pmi−1
Twi,m ∈ {0, 1}

where variables marked with m are isolated between two
tasks and m indicates the task id. 3 Algorithm 1 gives the
detailed learning process.

Strategy Collaboration Aiming at taking advantage of
different unsupervised methods and explored strategies, we
use them in combination. Each unsupervised method has
its own strength. Goodness measure is strong at generating
high quality candidate word list, but is subject to ambigu-
ity, which is a main factor for errors occurring in segmen-
tation (Huang and Zhao 2007). In contrast, language model
based approaches can generate more accurate segmentation
although the maximum word length is limited. Therefore,
we make use of the language model NPYLM for adding la-
bel embeddings and for multi-task learning, and goodness
measure for augmenting word score. Moreover, we com-
bine label embedding and word score (or multi-task learn-
ing and word score) to make use of different unsupervised
approaches.

3We also tried Generative Adversarial Network, but the experi-
ments did not show positive results.



Algorithm 1 multi-task learning with unlabeled data
Input: labeled data (xi, yi), i ∈ (1,m), marked as task 1

unlabeled data (xi) i ∈ (m+ 1, n), marked as task 2
Output: word encoder f

word score parameter u1, u2
LSTM parameters φ
linking score parameters W 1

h , b1h, W 2
h , b2h

for e from 0 to epochs do
for i in batch(e) do

if task(x[i]) is 1 then
y

′

i = Decode(x[i],f , u1, W 1
h , b1h, φ)

loss += Compute loss(yi, y
′

i)
else
ẏi = Unsupervised segment(x[i])
y

′

i = Decode(x[i], f , u2, W 2
h , b2h, φ)

loss += Compute loss(ẏi, y
′

i)
end if

end for
Update parameters(loss)

end for
return f , u1, u2, W 1

h , b1h, W 2
h , b2h, φ

LE WS MT
GM NPY GM NPY GM NPY√ √

√ √
√ √
√ √ √

Table 2: Combination of strategies (each line denotes one
combination). label embedding (LE), augmenting word
score (WS), multi-task learning (MT), goodness measure
(GM), and using data segmented by NPYLM (NPY).

Every explored strategy has weaknesses. Label embed-
ding and goodness measure only consider the unsupervised
information at certain layer, thus the information has less
effect on the entire model. Although multi-task learning
makes use of unsupervised results in many components of
the model by shared parameters, it cannot obtain the case
specific unsupervised segmentation information at the de-
coding process. Thus, multi-task learning is performed with
label embedding and/or goodness measure as extra input.
The detailed combination settings are listed in Table 2.

Experiments
Dataset and Setting
We evaluate the effectiveness of our methods by F1-score
on the widely used benchmark datasets, i.e., PKU, MSR,
AS and CITYU, from the 2nd international CWS Bakeoff
(Bakeoff-2005) (Emerson 2005). The former two are writ-
ten in simplified Chinese while the latter two in traditional
Chinese. The statistics of the data are listed in Table 3.

The baseline model implementation is cloned from

MSR PKU AS CITYU
Train #s 78k 17k 638k 48k

#w 2,122k 1,010k 4,904k 1,310k
Dev #s 8.7k 1.9k 71k 5.3k

#w 246k 100k 545k 146k
Test #s 4.0k 1.9k 14k 1.4k

#w 106k 104k 123k 41k

Table 3: Statistics of the dataset, number of sentences (#s)
and words (#w).

Parameter name value
Character embedding size 100

Word embedding size 50
Hidden unit number 50
Margin loss discount 0.2

Maximum word length 6
Decoding beam size 1

Table 4: Hyper-parameters of the baseline model.

Github for the baseline segmenter 4. Table 4 shows the
hyper-parameters of the model. We used an open-source ver-
sion of NPYLM based segmenter5 as the unsupervised seg-
menter, which generates segmented texts for the label em-
bedding and multi-task learning approaches.

Parameter Selection
Apart from the hyper-parameters of the baseline model,
there are two other parameters that are of study interest,
i.e., the type of goodness measure and the maximum length
of the word in unsupervised segmentation results. We com-
pared some settings in this section. For efficiency, we set
the maximum word length allowed in the decoding process
of baseline model to be 4 and only conduct experiments on
MSR and PKU. As words longer than four characters are
rare in the corpus, limiting the length of words has little im-
pact on our conclusion.

Comparing different word length Unsupervised seg-
mentation methods like NPYLM usually have a limit for
maximum word length to restrict the decoding searching
space of segmentation results for computational efficiency.
Table 5 demonstrates the effect of this limitation on the pro-
posed strategies respectively. The maximum word length we
tried is 4 characters since the baseline model restricts the
word length to be less than 4. We train the NPYLM model
on the combination of the training set and the test set without
segmentation labels.

As shown in Table 5, limiting the number of characters in
a word to be no more than 2 achieves the best result (the re-
maining experiments adopt this setting). By comparing these
segmentation results, we find that longer limit of word length
leads to many phrases in results. These phrases often consist

4https://github.com/jcyk/greedyCWS
5https://github.com/musyoku/python-npylm



Integration LE MT
Len. MSR PKU MSR PKU

2 97.1 95.5 97.1 95.5
3 97.1 95.5 96.9 95.5
4 97.0 95.4 96.9 95.3

Table 5: Comparing the effect of maximum word length

MSR PKU
Type orig. disc. orig. disc.
AV 97.0 97.0 95.2 95.5
BE 96.9 97.0 95.0 95.3

DLG 97.0 97.0 95.0 95.3

Table 6: Comparing the effect of different goodness mea-
sures, original (orig.) and discretized (disc.).

of three or more characters and can be further segmented
to fine-grained words according to the annotation schema of
MSR/PKU. Thus, allowing longer words has negative effect
on the final neural model.

Comparing goodness measure We tested three popular
goodness measures, i.e., description length gain (DLG), ac-
cessor variety (AV) and boundary entropy (BE). We experi-
mented with both the original and the discretized goodness
measure value approaches. As shown in Table 6, discretiza-
tion has a positive effect, since applying log() smooths the
difference in values and discretization acts as a normaliza-
tion. Moreover, AV value is the most suitable method for
augmenting the baseline model. As shown on the table, the
performance on MSR is more stable. The main reason is that
goodness measure requires sufficient appearance of words
to obtain significant statistics. The MSR data has a special
annotation schema which includes too many long-tailed un-
common words (Zhao et al. 2010). Hence, given abundant
unlabeled data, the performance on MSR will be improved.
This is verified by the experiments in the following section.

Main Results
Comparing to baseline The proposed methods are com-
pared to the baseline in Table 7 by closed setting. In these ex-
periments, goodness (AV) and NPYLM models are obtained
based on the combination of training and test data without
segmentation labels. According to Table 5, we use the opti-
mal maximum word length of NPYLM, i.e., 2 characters.

It can be seen from Table 7 that the proposed methods can
make use of the unsupervised segmentation to improve the
performance of the state-of-the-art baseline modelof closed
testing. According to the standard significant test criterion
for CWS (Emerson 2005), the improvements are signifi-
cant (at 95% confidence level). The performance gain may
be attributed to the OOV problem alleviated by effectively
capturing global information of unsupervised segmentation
methods. In fact, we found that using strategy collaboration
can provide a 4.7% boost of OOV recall rate on MSR.

As described in Section Strategy Collaboration, employ-
ing individual strategy in isolation has some drawbacks. We
proposed to combine them. Comparing the last four rows
and the first row (baseline) in Table 7, we can see that
method combination indeed improves the performance in
both F1-score and OOV recall rate. The collaboration strat-
egy makes the neural segmentation model learn from un-
supervised segmentation results during training (via MT)
as well as decoding (via LE & WS). The former helps to
memorize some OOV words recognized by the unsuper-
vised methods. The latter emphasizes words learned in unsu-
pervised segmentation results to enable the model to make
effective decisions, even the word does not appear in pre-
segmented training corpus.

Figure 2: Performance of different sizes of unlabeled corpus.
PT denotes pretraining.

Performance as the size of data grows In order to find
out the potentiality of utilizing unlimited unlabeled data,
we evaluate the baseline model enhanced with our proposed
method (WS + LE + MT) with different sizes of external
data. This evaluation is an open test setting. The Gigaword
corpus (Graff and Chen 2005), an unlabeled dataset, is used
as the unlabeled dataset. We did not use the entire Gigaword,
nearly 352 millions of characters, because the training pro-
cess of NPYLM on such a large dataset is too time consum-
ing whereas we only aim to show the trend of performance
change as the size of data increases.

Figure 2 demonstrates the relation between F1-score and
scale of the data being used. The performance of our pro-
posed model improves steadily as the size of the data grows.
This is intuitive as more unlabeled data results in better un-
supervised model which is a fundamental building block of
our model. We argue that, in open test, it makes more sense
to evaluate the performance of the model by the trend of
growth other than the absolute gain, as open test setting
allow unlimited extra linguistic resources for exploration.
Considering that the unlabeled texts come with low cost, our
proposed strategies are of great practical value.



Model MSR PKU AS CITYU
F Roov F Roov F Roov F Roov

baseline 97.2 53.7 95.4 58.5 95.4 63.1 95.6 74.2
+word score (WS) 97.3 55.8 95.4 60.2 95.4 62.6 95.7 76.8
+label emb. (LE) 97.3 56.4 95.6* 60.4 95.5 65.0 95.8* 74.6
+multi-task (MT) 97.3 56.1 95.5 61.0 95.4 66.0 95.6 76.1
WS+MT 97.2 56.7 95.6* 62.0 95.4 63.3 95.9* 76.4
WS+LE 97.3 55.0 95.6* 60.9 95.5 63.7 95.9* 75.0
LE+MT 97.4* 58.4 95.7* 62.7 95.4 63.4 95.8* 76.0
WS + LE + MT 97.4* 58.4 95.6* 60.7 95.6* 65.6 95.9* 76.5

Table 7: Performance of different approaches of using unsupervised segmentation (%). The asterisks indicate that the improve-
ments are significant (at 95% confidence level), following the standard significant test criterion for CWS (Emerson 2005).

The performance increase of MSR is relatively modest.
The reason is two fold: First, the MSR data has a special an-
notation schema which includes many long words. We no-
ticed that the error of the baseline model is mainly caused
by missing these long words as the model restricts the word
length; Second, the NPYLM approach mainly predicts short
words while excluding most long words.

Comparing to pretraining Pretraining (Yang, Zhang, and
Dong 2017; Zhou et al. 2017) is a commonly employed strat-
egy for neural segmentation model. In these methods, char-
acter embedding of the input layer is initialized by vectors
trained previously on large external corpora. We also apply
pretraning technique to the baseline model as the size of the
data grows. The character embedding is pretrained on the
Gigaword corpus by (Zhou et al. 2017), which learns char-
acter embedding on a word-based context. This model yields
higher relative performance gain and is model-independent
compared to other pretraining approaches.

As shown in Figure 2, the F1-score of the model with pre-
training does not constantly increase after reaching to certain
level of performance as more and more data are added. Fig-
ure 2 also confirms that our proposed method outperforms
the pretraining method when the size of unlabeled data
scales up. Unsupervised segmentation methods are more ef-
fective in capturing word boundary explicitly, which in turn
can be coupled with advanced techniques learnt on labeled
data. Thus, our approach are more effective at utilizing large
amount of unlabeled data than pretraining based approaches.
We also combine the pretraining method with our approach
to see if further improvement can be achieved. However, the
gain is marginal as Table 8.

Comparing to tri-training Aiming at leveraging unla-
beled data to improve the performance of supervised model
with limited amount of training data, a traditional semi-
supervised algorithm, tri-training, relies on three basic mod-
els to predict the initial label and takes consistent cases as
extra training data (Zhou and Li 2005). To compare with tri-
training, we utilized two other statistical model based seg-
menters, ZPar (Zhang and Clark 2007) and THULAC (Sun
et al. 2016), together with the baseline model, to perform the
tri-training approach. ZPar and THULAC are first trained

Model MSR PKU
baseline 97.2 95.4

+tri-training 97.2 95.5
+pretraining (PT)6 97.4 95.8

+ours best 97.5 96.0
+ours best + PT 97.5 96.1

Table 8: Compare with approaches using unlabeled data. As
the extra data is simplified Chinese, we only do experiments
on MSR and PKU.

from the same Bakeoff data as the baseline model. Then,
they are applied to segment the Gigaword text. Sentences
segmented consistently are used as supplementary training
data of the baseline model. To reduce the training time, we
keep the scale of the extra training data the same as Bakeoff
training set by randomly sampling in each iteration. The re-
sults in Table 8 indicate that the tri-training method does not
improve the baseline.

Conclusion
This paper makes the first attempt to explore incorporating
the results of unsupervised segmentation with neural word
segmentation models. We extend the character embedding
with the embedding of segmentation labels from unsuper-
vised model, augment the word score with goodness mea-
sure and use multi-task learning to learn from unsupervised
segmentation. Our empirical evaluation and comparisons on
benchmark datasets show that our proposed methods boost
the OOV recall rate significantly and outperform the base-
line both in closed and open tests. In addition, we have
shown that the performance is continuously improving while
the size of unlabeled data increases. Furthermore, our meth-
ods have clear advantage over the pretraining method.
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