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Abstract
Most existing bilingual embedding methods for
Statistical Machine Translation (SMT) suffer from
two obvious drawbacks. First, they only focus
on simple context such as word count and co-
occurrence in document or sliding window to build
word embedding, ignoring latent useful informa-
tion from selected context. Second, word sense
but not word form is supposed to be the minimal
semantic unit while most existing works are still
for word representation. This paper presents Bilin-
gual Graph-based Semantic Model (BGSM) to al-
leviate such shortcomings. By means of maxi-
mum complete sub-graph (clique) for context se-
lection, BGSM is capable of effectively modeling
word sense representation instead of the word form
itself. The proposed model is applied to phrase
pair translation probability estimation and genera-
tion for SMT. The results show that BGSM can en-
hance SMT both in performance (up to +1.3 BLEU)
and efficiency in comparison against existing meth-
ods.

1 Introduction
Continuous representations of words onto multi-dimensional
vectors enhance traditional natural language processing
[Zhao et al., 2009; 2010; Zhao and Kit, 2011; Zhao et al.,
2013; Zhang and Zhao, 2013], especially Statistical Machine
Translation (SMT), by measuring similarities of words us-
ing distances of corresponding vectors [Bengio et al., 2003;
Mikolov et al., 2013b; Wang et al., 2016a]. Most of early
works are derived from cognitive processing such as Word-
Net [Miller et al., 1990], in which the lexicon is organized
conceptually as a set of terms associated with a partition into
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synsets1, though words organized in this way are not conve-
niently represented as vectors.

Word embedding for vector representation is usually built
in two-steps. The first is to determine the detailed context
related to a given word. The second is to summary the rela-
tionship between word and its context into lower dimensions.

For context determination: 1) The first category is to ex-
tract the word or word relations from the entire text, which
is usually regarded as document level processing, such as
bag-of-word, LSA, and LDA. 2) The second category is to
use sliding window, such as n-grams, skip-grams and other
local co-occurrence relation [Mikolov et al., 2013a; Zou et
al., 2013; Levy and Goldberg, 2014; Pennington et al., 2014;
Vulić and Moens, 2015]. 3) The third category, which has
been seldom considered, uses much more sophisticated graph
style context. Ploux and Ji [2003] describe a graph based se-
mantic matching model using bilingual lexicons and mono-
lingual synonyms2. They later represent words using individ-
ual monolingual co-occurrences [Ji and Ploux, 2003]. Saluja
et al. [2014] propose a graph method to generate translation
candidates using monolingual co-occurrences.

For relationship summarising, neural networks are very
popular for bilingual word embeddings and SMT [Mikolov et
al., 2013a; Wang et al., 2013; Zou et al., 2013; Zhang et al.,
2014; Gao et al., 2014; Wang et al., 2014; Lauly et al., 2014;
Wang et al., 2015a; 2015b; 2016b]. There are also some
works which use matrix factorization [Ploux and Ji, 2003;
Pennington et al., 2014; Shi et al., 2015] and canonical corre-
lation analysis [Faruqui and Dyer, 2014; Lu et al., 2015] for
word embedding.

Sense gives more exact meaning formulization than the
word form itself. However, most of existing methods em-
bed words as vectors, instead of sense information. Moti-
vated by these inconveniences, we propose Bilingual Con-
texonym Cliques (BCCs), which are extracted from bilin-
gual Point-wise Mutual Information (PMI) based word co-
occurrence graph. BCC plays a role of minimal unit for bilin-
gual sense representation. Correspondence Analysis (CA) is
then used for summarizing BCC-word matrix into lower di-
mension vectors for word representation. This work extends
previous monolingual method [Ploux and Ji, 2003], which

1synset is a small group of synonyms labeled as a concept.
2http://dico.isc.cnrs.fr



needs bilingual lexicons or synonyms for bilingual mapping
and has been never used for SMT.

The remaining of this paper is organized as follows: the
proposed Bilingual Graph-based Semantic Model (BGSM)
is introduced in Section 2, and then it is applied to phrase
translation probability estimation in Section 3 and phrase pair
generation in Section 4 to enhance SMT. The experiments and
analysis are given in Section 5. Section 6 summarizes this
work.

2 Bilingual Graph-based Semantic Model
2.1 Graph Constructing
Formally, words are considered as nodes (vertices) and co-
occurrence relationships of words are considered as edges of
graph. An edge-weighted graph derived from a bilingual cor-
pus is formalized as, G = {W,E}, where W is node set and
E is edge set which is weighted by co-occurrence relationship
introduced as follows.

For a given bilingual parallel corpus, each source sen-
tence SF = (wf1 , wf2 , ..., wfk) and its correspond-
ing target sentence SE = (we1 , we2 , ..., wel) are com-
bined together to construct a Bilingual Sentence (BS) =
(wf1 , wf2 , ..., wfk , we1 , we2 , ..., wel). For words (either
source or target word) wi and wj , if they are in the same BS,
they are called co-occurrences for each other and marked as
ni and nj in the graph G. As node ni in graph is always re-
ferred to word wi, we will not distinguish them through-
out this paper. The Edge Weight (EW ) connecting nodes ni

and nj is defined by a PMI score,

EW =
Co(ni, nj)

fr(ni)× fr(nj)
, (1)

where Co(ni, nj) is the co-occurrence counting of ni and nj

and fr(n) stands for how many times n occurs in corpus.
For nearly all languages, stop words such as of, a, the in

English or de, une, la in French have a wide distribution, and
this results in that most nodes in the graph are unnecessarily
connected with these stop word nodes. A filter with an EW
threshold γ is thus set to prune these poorly connected edges.
γ will be tuned using development data, to let the resulted
graph keep the more useful edges based on the empirical re-
sult of each individual task.

2.2 Context-Dependent Clique Extraction
A clique defined in graph theory means a maximum, com-
plete sub-graph [Luce and Perry, 1949]. For a subset of nodes
with edges in the whole graph, if every two nodes in the sub-
set are connected to each other, this subset of nodes form a
clique. Suppose that both N1 and N2 are subsets of N in G.
If N1 ⊂ N2, then N1 cannot be a clique (maximality).

Graph problems, such as finding all cliques from a graph,
are mostly associated with high computational complexity
(Clique Problem). The Clique Problem related to our model
has been shown NP-complete [Karp, 1972], and it is time con-
suming or even impossible to find the cliques from the whole
graph built from a very large corpus (such as millions of sen-
tences) without any pruning. In addition, not all of the nodes
are useful for word representations, because some nodes do

not have any connection with input contextual words (spar-
sity). These nodes actually have not a direct impact over
clique extraction. For a word n and its contextual words
{n1, n2, ..., ni, ...nt} as input3, only the co-occurrence nodes
nij of each ni (including n itself) are indeed useful and then
actually extracted. The set of nodes {nij} with their weighted
edges form an extracted graph Gextracted for further cliques
extraction. So the number of nodes in the extracted graph
Gextracted, |Nextracted|, is given by,

|Nextracted| =

∣∣∣∣∣∣
∪
∀i,j

{nij}

∣∣∣∣∣∣ .
In practice, the |Nextracted| is much smaller than |V | (vo-

cabulary size of bilingual corpus). For a typical corpus
(IWSLT in Section 5.1), |Nextracted| is around 371.2 on aver-
age and |V | is 162.3K. Thus the clique extraction in practice
is quite efficient as it works over a quite small sized graph.

Clique extraction may follow a standard routine in [Luce
and Perry, 1949]. As the clique in this paper is to represent
a fine grained bilingual sense of a word, it is called Bilingual
Contexonym Clique (BCC). Similar but more fine grained
than synset (a small group of synonyms labeled as concept)
defined in WordNet [Miller et al., 1990], the BCC now is the
minimal unit for bilingual meaning representation.

Taking the word work e and readers e as an example (with-
out context), two groups of BCCs (in alphabetical order) are
given in Table 1. It shows that different word senses can be
distinguished by BCCs. The BCCs containing employees e,
travail f (work) and unemployed e may indicate the meaning
of job, while the BCCs containing readers e may indicate the
meaning of literature.

Words BCCs
{employees e, travail f (work), unem-
ployed e, work e }

work e
{heures f (hours), travaillent f (to work,
third-person plural form), travailler f
(work), week e, work e }
{readers e, work e }...
{informations f (information), jour-
naux f (newspapers), online e, readers e}

readers e
{journaux f (newspapers), lire f (read),
newspaper e, presse f (press), readers e,
reading e}
{readers e, work e}...

Table 1: BCC examples. Suffixes ‘ e’ and ‘ f ’ are used to
indicate English or French, respectively. The English words
in parentheses are corresponding translations.

Note that edges pruning is static, and nodes selection
is dynamic depending on input word sequence. The pro-
posed node selection and clique extraction follow [Ploux
and Ji, 2003], except that we use bilingual co-occurrence

3For SMT task, the words in aligned phrases are used as context,
please refer to Section 3 for details.



graph rather than monolingual synonym or hypo(hypero)nym
graphs. BCCs can be regarded as loose synsets, as only
strongly related words can be nodes in a clique that pos-
sess full connections, and different senses will naturally result
in roughly different cliques from our empirical observations,
though noise or improper connections also exist at the same
time. To obtain concise semantic vector representations, a
dimension reduction will be performed.

2.3 Semantic Spatial Representation
Correspondence Analysis (CA) [Benzcri, 1973] assesses the
extent of matching between two variables. It determines the
first n factors of a system of orthogonal axes that capture the
greatest amount of variance in the matrix. The first axis (or
factor) captures the largest variations, the second axis cap-
tures the second largest, and so on.

To project words onto lower dimensional semantic space,
CA is conducted over the clique-word matrix constructed
from the relation between BCCs and words. An initial cor-
respondence matrix M = {mij} is built, where mij = 1 if
the BCC in row i contains the word in column j, and 0 if not.
Normalized correspondence matrix P = {pij} is directly de-
rived from M , where pij = mij/NM , and NM is grand total
of all the elements in M . Let the row and column marginal to-
tals of P be r and c which are the vectors of row and column
masses, respectively, and Dr and Dc be the diagonal matrices
of row and column masses. Coordinates of the row and col-
umn profiles with respect to principal axes are computed by
using the Singular Value Decomposition (SVD) as follows.

Principal coordinates of rows F and columns G:

F = Dr
− 1

2UΣ, G = Dc
− 1

2V Σ,

where U , V and Σ (diagonal matrix of singular values in de-
scending order) are from the matrix of standardized residuals
S and the SVD,

S = UΣV ∗ = Dr
− 1

2 (P − rc∗)Dc
− 1

2 ,

where ∗ denotes conjugate transpose and U∗U = V ∗V = I .
By above processes, CA projects BCCs (F) and words

(G) onto semantic geometric coordinates as vectors. Inertia
χ2/NM is to measure semantic variations of principal axes
for F and G:

χ2/NM =
∑
i

∑
j

(pij − ricj)
2

ricj
.

Following standard setting of CA [Benzcri, 1973], top
principal dimensions (axes) of vectors are chosen for word
and clique representation. Bilingual Graph-based Semantic
Model (BGSM) is consequently constructed from these prin-
cipal dimensions. In short, a word with its context are used
as input of BGSM, and vectors of the word4 and its bilingual
co-occurrences are output.

To visualize the results, top two dimensions are chosen and
illustrated into spatial map. We illustrate the spatial relation-
ship between BCCs and words in the same map, instead of the

4In fact both BCCs and words can be represented as vectors.

Figure 1: Spatial map of work e (without context) as input
(The green lines indicate the borderline of clusters).

lire_f

Figure 2: Spatial map of work e with context readers e as
input.



spatial map of words only. BCCs are represented by points
and words by regions. Label of word is approximately (to
avoid overlapping) placed at the barycentre of region (gray
line) delineated by a set of BCCs that contain the word. BCCs
are clustered [Ward Jr, 1963] into three groups (green line).
We only present several typical words, and the words too far
from most of other words are discarded.

Figures 1 and 2 illustrate the spatial representation of all
the co-occurrence words when work e is input without con-
text and with readers e as context using BGSM, respectively.
The following observations can be obtained from them:

1) Several good translation pairs are shown, such as
(work e, travailler f ), (readers e, lecteurs f ), (reading e,
lire f ) and (book e, livre f ).

2) For work e as input, the word work e itself is placed at
the center and the other words are mainly clustered into three
semantic groups: employment (the right), evaluation of job
(the upper left), and literary works5 (the bottom). However,
we cannot determine which sense of work e belongs to.

3) For work e+readers e as input, we can identify that the
sense of work e by the words close to both of work e and
readers e, such as book e, print e and paper f.

3 Phrase Translation Probability Estimation
BGSM represents words as vectors dynamically on various
geometric coordinates according to contextual words. For
each word in a source phrase of SMT, its contextual words are
fixed, so all the translation candidate target words can be rep-
resented as vectors in the same geometric coordinates. This
makes it possible to apply BGSM into phrase-based SMT for
selecting translated phrase candidates.

3.1 Bilingual Phrase Semantic Representation
The phrase table of phrase-based SMT model can be simply
formalized as6,

(PF , PE , scores, word-alignment), (2)
where PF (wf1 , wf2 , ..., wfk) and PE(we1 , we2 , ..., wel) are
source and its aligned target phrases, respectively, and scores
indicate various feature scores including direct translation
probability, lexical weighting and phrase penalty. The phrase
length is limited to 7, which is the default setting for phrase-
based SMT.

BGSM represents words in phrase table as six-dimension
vectors. It should be noted that the clique extraction depends
on contextual words, and CA then projects clique-word ma-
trix onto corresponding semantic geometric coordinates ac-
cordingly. So the same contextual words should be used for
all the words in PF and all its aligned PE , in order to repre-
sent them on the same geometric coordinates. For each word
wfi or wej (where 1 ≤ i ≤ k, 1 ≤ j ≤ l), in phrase pair
(PF , PE), we consider two strategies for selecting the con-
text words:

Strategy-A: only the source words in PF are used as the
contextual words, {wf1 , wf2 , ..., wfk}.

5Part of borderline of this cluster is overlapped by some words.
6The alignment is from standard IBM alignment model [Berger

et al., 1994].

Strategy-B: both the source words in PF and target words
in all the aligned PE are used as its contextual words,
{wf1 , wf2 , ..., wfk , we1 , we2 , ..., wel}.

Word wfi (or wei) is represented as vector Vwfi (or Vwej )
(The co-occurrence word wco can also be represented as vec-
tor Vwco ). Note that all the source and target words for the
same source phrase PF are represented as vectors in the same
geometric coordinates. Some words may not belong to any
BCC (partially because the graph is pruned). These unknown
words would be represented as a default vector.

3.2 Semantic Similarity Measurement
Because the numbers of word alignments in phrase pairs are
different, Normalized Euclidean Distance (NED) is adopted
to measure the distance between source and target phrases
incorporated with IBM word-alignment model:

NED(PF , PE) =

√∑
align(i,j) ED2(Vwfi , Vwej )∑

i,j align(wfi , wej )
, (3)

where ED(Vwfi , Vwej ) stands for Euclidean Distance be-
tween word vectors Vwfi and Vwej , align(i, j) is from the
word-alignment model in Eq. (2), and

∑
i,j align(wfi , wej )

is total number of alignments between wfi and wej .
As there are usually multiple PE that are aligned to PF ,

NPE
is noted as the number of PE . To let the similarity score

Sim(PE |PF ) be a probability distribution, Sim(PE |PF ) =1
if NPE = 1; otherwise, Sim(PEi |PF ) is given by,

Sim(PEi |PF ) =

∑
PEj

NED2(PF , PEj )−NED2(PF , PEi)

(NPE − 1)×
∑

PEj
NED2(PF , PEj )

.

(4)
Using the same pipeline, Sim(PF |PE) can also be calcu-
lated. Both Sim(PE |PF ) and Sim(PF |PE) can be added
as features for SMT decoding.

4 Bilingual Phrase Generation (BPG)
A few phrases are outside corpus but share the similar mean-
ing as those inside the corpus. Take the source French phrase
la bonne réponse as example, the corresponding aligned tar-
get English phrase is the right answer is in the corpus and
phrase table. The other phrases, such as the correct answer
or the right response, may not be in the corpus or phrase table,
however, they are also good candidates for translation.

Since the BGSM can be used to represent words as vectors
and measure their similarities by computing vector distance,
it is possible to generate new (maybe better) phrases with sim-
ilar meaning as the original one for phrase table.

4.1 Phrase Pair Generation
As mentioned in Section 3, for each word w (source or tar-
get), both of the source words in PF and target words are
used as its contextual words (Strategy-B). Word w and its co-
occurrence words {wco} are represented as vectors.

For an aligned word pair (wfi , wej ), we find a new transla-
tion replacement w′

ej in {wco} to help generate new phrases.



For either source phrase PF or target phrase PE , each word
inside will be tentatively replaced by the nearest word in its
corresponding co-occurrence according to word vector dis-
tance (here, Euclidean distance is actually adopted.). How-
ever, only one word replacement with the minimal distance
for either phrase will be chosen and implemented to generate
two new phrases P ′

E and P ′
F , respectively7.

Sim(P ′
E |PF ) and Sim(P ′

F |PE) can be calculated using
Eqs. (3) and (4). They are also being the phrase transition
probabilities for the generated (PF , P ′

E) and (P ′
F , PE), re-

spectively, as no such probabilities exist in the original phrase
table. The updated lexical weighting lex(P ′

E |PF ) and inverse
lexical weighting lex(P ′

F |PE) are computed by IBM model
[Berger et al., 1994].

The generated phrases are filled-up [Bisazza et al., 2011]
into original phrase table. That is, a penalty score is added
as feature: for original phrase pairs, the penalty is set as one;
for the generated ones the penalty is set as natural logarithm
base e (= 2.71828...). All scores weights in phrase table will
be further tuned using MERT [Och, 2003].

4.2 Prase-table Size Tuning
Using the phrase generation approach, a lot of new phrase
pairs can be generated. We need to select the most reason-
able ones inside them. The Distance Ratio (DR) of normal-
ized distance in Eq. (4) between the generated phrase pair
(PF , P

′
E) and the original phrase pair (PF , PE),

DR(P ′
E , PE) =

NED(PF , P
′
E)

NED(PF , PE)
, (5)

is used to measure the usefulness of generated phrase pairs.
A threshold ε is set up to keep the most useful generated

phrase pair only. Namely, for a source phrase PF , only the
P ′
E whose DR(P ′

E , PE) smaller than ε are selected as the
generated phrase pair (PF , P

′
E). Using the same pipeline, the

size of generated source candidate phrases is also tuned. For
SMT task, the threshold is tuned according to SMT perfor-
mance on development data.

5 Experiments
5.1 Setting up
To evaluate BGSM in various language and domain SMT sys-
tems, Corpora of IWSLT-2014 French to English (EN) [Cet-
tolo et al., 2012], NTCIR-9 Chinese to English [Goto et al.,
2011] and NISTOpenMT088 are chosen.

7Two or more words can be replaced, but it may lead to serious
sense bias, and the experiments also show that replacing more than
two words does not perform well.

8Zou et al. [2013] only released their word vectors rather than
their code (http://ai.stanford.edu/˜wzou/mt/), so we
have to conduct experiments on NIST08 Chinese-English translation
task as they did for comparison. The training data consists of part
of NIST OpenMT06, United Nations Parallel Text (1993-2007) and
corpora of [Galley et al., 2008] that were used by [Zou et al., 2013].
NIST Eval 2006 is used as development data and NIST Eval 2008
as test data.

Corpus IWSLT NCTIR NIST
training 186.8K 1.0M 2.4M
dev 0.9K 2.0K 1.6K
test 1.6K 2.0K 1.3K

Table 2: Sentence Statistics on Parallel Corpora.

5.2 Baseline Systems
The same basic settings for the IWSLT-2014, NTCIR-9 and
NIST08 translation baseline systems are complied. The stan-
dard Moses phrase-based SMT system is applied [Koehn et
al., 2007] together with GIZA++ [Och and Ney, 2004] for
alignment, SRILM [Stolcke, 2002] for language modeling
and MERT for tuning (we run MERT three times and record
the average BLEU score on test data). The paired bootstrap
re-sampling test9 is performed. Significant tests are done for
each round of test. Marks at the right of BLEU scores indicate
whether our proposed methods are significantly better/worse
than the corresponding baseline (‘++/−−’: significantly bet-
ter/worse at significance level α = 0.01; ‘+/−’: α = 0.05).
All the experiments in this paper are conducted on the same
machine with 2.70GHz CPU.

As the proposed BGSM is a bilingual word embedding
method and applied to SMT as new features, we only com-
pare with most related bilingual word embedding or genera-
tion methods for SMT. For phrase pair translation probability
estimation task, two typical neural network based bilingual
embedding methods, Continuous Space Translation Model
(CSTM10) [Schwenk, 2012] and [Zou et al., 2013], are se-
lect as baselines. The embedding of each method is added as
features to the phrase-based SMT baseline, with all the other
setting the same. For bilingual phrase generation methods,
CSTM is used as the same way as [Schwenk, 2012]. We also
compare with [Saluja et al., 2014], which uses graph method
for translation candidate generation11.

5.3 Results and Analysis
Only the best performed results (for both the baselines and
proposed methods) on development data are chosen to be
evaluated on test data and shown. The parameters for BGSM
are set as follows: 1) Vector dimensions are 6; 2) Threshold
γ for edge weight pruning in Eq. (1) is 3× 10−4; 3) Distance
ratio for phrase table tuning in Eq. (5) is 1.31.

Phrase Pair Translation Probability Estimation Results
Table 3 indicates that BGSM can improve SMT performance
up to +0.85 BLEU, and outperforms CSTM or Zou’s meth-
ods up to +0.67 BLEU. Besides, the Strategy-B performs bet-

9The implementation of our system follows http://www.
ark.cs.cmu.edu/MT

10The recommended settings of CSTM [Schwenk, 2012] are fol-
lowed. That is, phrase length limit is set as 7, shared 320-dimension
projection layer for each word (that is 2240 for 7 words), 768-
dimension projection layer, 512-dimension hidden layer. The di-
mensions of input/output layers are the same as the size of vocabu-
laries of source/target words.

11The implementation and settings in [Saluja et al., 2014] are fol-
lowed except morphological generation.



ter than Strategy-A, which attributes to more contextual (both
target and source) information used for the former while only
source for the latter.

IWSLT NTCIR NIST
Baseline 31.80 32.19 30.12
+Zou N / A N / A 30.36
+CSTM 32.19 32.37 30.25
+BGSM-A 32.32+ 32.56 30.38
+BGSM-B 32.61++ 33.04++ 30.44+

Table 3: Phrase Pair Translation Probability Estimation Re-
sults (BLEU).

Bilingual Phrase Pair Generation Results
‘Baseline + BPG’ indicates adding the generated phrase pairs
to the original phrase table. ‘BPG + BGSM’ indicates adding
the generated phrase pairs, as well as replacing the translation
probabilities in original phrase table with the Sim(PE |PF )
and Sim(PF |PE) calculated by BGSM (Section 4.1).

Corpora Methods Phrase Table Size BLEU
Baseline 9.8M 31.80
+CSTM 23.1M 32.19

IWSLT +Saluja 31.5M 32.35
+BPG 25.6M 32.37
+BPG+BGSM 25.6M 33.13++
Baseline 71.8M 32.19
+CSTM 297.8M 32.42

NTCIR +Saluja 341.3M 32.68
+BPG 312.6M 32.54+
+BPG+BGSM 312.6M 33.47++

Table 4: Bilingual Phrase Generation (BPG) Results. Phrase
Table Size indicates number of phrase pairs in phrase table.

The results in Table 4 indicate that the proposed BPG and
BGSM methods can work well together and enhance SMT
performance significantly up to +1.33 BLEU. They also out-
perform state-of-the-art method up to +0.79 BLEU.

Efficiency Comparison
We compare the efficiencies for model training and comput-
ing the probability scores of phrases pairs using CSTM and
BGSM. Two thousand phrase pairs are randomly selected
from the whole IWSLT-2014 FR-EN corpus. The CPU time
of training models (the whole corpus) and calculating their
probability scores (2,000 sentences) is shown in Table 5.

Methods Training Time Calculating Time
CSTM 59.5 Hours 17.1 Minutes
BGSM-A 1.1 Hours 8.9 Minutes
BGSM-B 1.1 Hours 15.6 Minutes

Table 5: CPU Time on IWSLT-2014.

The results in Table 5 demonstrate that BGSM is much
more efficient than CSTM, especially for training, the former
can be more than 50 times as fast as the later.

6 Conclusion
Existing word embedding methods usually only consider sim-
ple context such as document or sliding window for word re-
lationship graph building and later word representation. In-
stead, this paper focuses on sense representation in terms
of bilingual background. Using a graph constructed from
a bilingual corpus, Bilingual Contexonym Clique (BCC) is
proposed for better sense characterization. A BCC-word ma-
trix is then built from dynamic sense-sensitive context in
the graph and correspondence analysis is to summarize the
matrix into lower dimensions as Bilingual Graph Semantic
Model (BGSM).

BGSM word embedding is applied to phrase pair transla-
tion probability estimation and generation. The experimental
results show that the proposed model can enhance phrase-
based SMT decoding and achieve a significant improvement
with high computational efficiency. It also outperforms the
existing related word embedding methods for SMT.
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