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Abstract

Semantic parsing, i.e., the automatic derivation of meaning representation such as an
instantiated predicate-argument structure for a sentence, plays a critical role in deep pro-
cessing of natural language. Unlike all other top systems of semantic dependency parsing
that have to rely on a pipeline framework to chain up a series of submodels each special-
ized for a specific subtask, the one presented in this article integrates everything into one
model, in hopes of achieving desirable integrity and practicality for real applications while
maintaining a competitive performance. This integrative approach tackles semantic pars-
ing as a word pair classification problem using a maximum entropy classifier. We leverage
adaptive pruning of argument candidates and large-scale feature selection engineering to
allow the largest feature space ever in use so far in this field, it achieves a state-of-the-art
performance on the evaluation data set for CoNLL-2008 shared task, on top of all but one
top pipeline system, confirming its feasibility and effectiveness.

1. Introduction

The purpose of semantic parsing is to derive the meaning representation for a sentence,
usually taking a syntactic parse as input. A popular formalism to represent this kind of
meaning is predicate-argument structure and, accordingly, the parsing is to instantiate the
predicate and argument(s) in such a structure properly with actual words or phrases from
a given sentence. In the context of dependency parsing, it becomes semantic dependency
parsing, which takes a syntactic dependency tree as input and outputs a filled predicate-
argument structure for a predicate, with each argument word properly labeled with its
semantic role in relation to the predicate.

Semantic role labeling (SRL) is one of the core tasks in semantic dependency parsing,
be it dependency or constituent based. Conventionally, it is tackled mainly through two
subtasks, namely, argument identification and classification. Conceptually, the former de-
termines whether a word is a true argument of a predicate, and the latter what semantic
role it plays in relation to the predicate (or which argument it instantiates in a predicate-
argument structure). When no predicate is given, two other indispensable subtasks are
predicate identification and disambiguation, one to identify which word is a predicate in
a sentence and the other to determine the predicate-argument structure for an identified
predicate in a particular context.
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A pipeline framework was adopted in almost all previous researches to handle these sub-
tasks one after another. The main reason for dividing the whole task of semantic dependency
parsing into multiple stages in this way is twofold: maintaining computational efficiency and
adopting different favorable features for each subtask. In general, a joint learning system
of multiple components is slower than a pipeline system, especially in training. It is also
reported by Xue and Palmer (2004) that different features do favor different subtasks of
SRL, especially argument identification and classification. The results from the CoNLL
shared tasks in 2005 and 2008 (Carreras & Màrquez, 2005; Koomen, Punyakanok, Roth, &
Yih, 2005; Surdeanu, Johansson, Meyers, Màrquez, & Nivre, 2008; Johansson & Nugues,
2008) seem to suggest that the pipeline strategy has been the benchmark of technology for
the state-of-the-art performance on this specific NLP task.

When most SRL systems are pipeline, an integrated SRL system holds its unique merit-
s, e.g., integrity of implementation, practicality for real applications, a single-stage feature
selection benefiting the whole system, an all-in-one model outputting all expected seman-
tic role information, and so on. In particular, it takes into account the interactive effect
of features favoring different subtasks and hence holds a more comprehensive view of all
features working together as a whole. This article is intended to present our recent re-
search to explore the feasibility of constructing an effective integrated system for semantic
dependency parsing that melds all subtasks together into one, including predicate identifica-
tion/disambiguation and argument identification/classification, for both verbal and nominal
predicates, and uses the same feature set for all these subtasks. The core of our research is
to verify, through practical implementation and then empirical evaluation, the methodolog-
ical soundness and effectiveness of this approach. Its success, however, has to be rooted in
a solid technical foundation, i.e., a large-scale engineering procedure for efficient mining of
effective feature templates from a huge set of feature candidates, a feature space far richer
than others ever used before. It is this piece of engineering that brings the potentials of
this integrative approach into full play. Another focus of this article is hence to illustrate
its technical essentials.

Nevertheless, it is worth pointing out that the term integrative, when used in opposite to
pipeline, can be misleading to mean that all subtasks are carried out jointly in a single run.
Instead, it is used to highlight the integrity of our model and its implementation that uses
a single representation and feature set to accommodate all these subtasks. Although this
approach has its unique advantages in simplifying system engineering and feature selection,
the model we have implemented and will present below is not a joint one to accomplish
the whole semantic parsing through synchronous determination of both predicates and
arguments. These two types of indispensable objects in a semantic parse tree are recognized
in succession through decoding using the same trained model.

The rest of the article is organized as follows. Section 2 gives a brief overview of related
work, providing the background of our research. Section 4 presents our approach of adaptive
pruning of argument candidates to generate head-dependent word pairs for both training
and decoding, which underlies the whole process of semantic parsing. The other two key
procedures to optimize the parsing, namely, feature selection and decoding, are presented
in Section 5 and 6, respectively. The details of evaluation, including evaluation data, ex-
perimental results and a comprehensive comparative analysis of the results, are presented
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in Section 7. Finally, Section 8 concludes our research, highlighting its contributions and
the practicality and competitiveness of this approach.

2. Related Work

Note that SRL has almost become a surrogate for semantic dependency parsing in the liter-
ature of recent years. Most recent research efforts in this field, including the CoNLL shared
tasks in 2004 and 2005, have been focused on verbal predicates, thanks to the availability of
PropBank (Palmer, Gildea, & Kingsbury, 2005). As a complement to PropBank, NomBank
(Meyers, Reeves, Macleod, Szekely, Zielinska, Young, & Grishman, 2004) annotates nomi-
nal predicates and their correspondent semantic roles using a similar semantic framework.
Although offering more challenges, SRL for nominal predicates has drawn relatively little
attention (Jiang & Ng, 2006). The issue of merging various treebanks, including PropBank,
NomBank and others, was once discussed in the work of Pustejovsky, Meyers, Palmer,
and Poesio (2005). The idea of merging these two treebanks was put into practice for the
CoNLL-2008 shared task (Surdeanu et al., 2008). The best system in CoNLL-2008 used two
different subsystems to cope with verbal and nominal predicates, respectively (Johansson &
Nugues, 2008). Unfortunately, however, there has been no other integrative approach than
ours to illustrate a performance so close to that of this system.

In fact, there have been few research efforts in this direction, except a recent one on
joint identification of predicates, arguments and senses by Meza-Ruiz and Riedel (2009).
They formulate the problem into a Markov Logic Network, with weights learnt via 1-best
MIRA (Crammer & Singer, 2003) Online Learning method, and use Cutting Plane Inference
(Riedel, 2008) with Integer Linear Programming (ILP) as the base solver for efficient joint
inference of the best choice of predicates, frame types, arguments and role labels with
maximal a posteriori probability. Using CoNLL-2008 data, their system achieves its best
semantic F1 80.16% on the WSJ test set. This is 0.75 percentage point lower than ours, to
be reported below, on the whole WSJ+Brown test set. Note that when trained on CoNLL-
2008 training corpus, a subset of WSJ corpus, an SRL system has a performance at least 10
percentage points higher on the WSJ than on the Brown test set (Surdeanu et al., 2008).

Both CoNLL-2008 and -2009 shared tasks1 are devoted to the joint learning of syntactic
and semantic dependencies, aimed at testing whether SRL can be well performed using
only dependency syntax input. The research reported in this article focuses on semantic
dependency parsing. To conduct a valid and reliable evaluation, we will use the data set and
evaluation settings of CoNLL-2008 and compare our integrated system, which is the best
SRL system in CoNLL-2009 (Zhao, Chen, Kit, & Zhou, 2009), against the top systems in
CoNLL shared tasks (Surdeanu et al., 2008; Hajič, Ciaramita, Johansson, Kawahara, Mart́ı,
Màrquez, Meyers, Nivre, Padó, Štěpánek, Straňák, Surdeanu, Xue, & Zhang, 2009).2 Note
that these systems achieved higher performance scores in CoNLL-2008 than in CoNLL-2009.

An integrative approach to dependency semantic parsing has its own pros and cons. To
deal with its main drawbacks, two key techniques need to be applied for the purpose of

1. Henceforth referred to as CoNLL-2008 and -2009, respectively.
2. CoNLL-2008 is an English-only task, while CoNLL-2009 is a multilingual one. Although both use the

same English corpus, except some more-sophisticated structures for the former (Surdeanu et al., 2008),
their main difference is that semantic predicate identification is not required for the latter.
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efficiency enhancement. One is to bring in auxiliary argument labels that enable further
improvement of argument candidate pruning. This significantly facilitates the development
of a fast and lightweight SRL system. The other is to apply a greedy feature selection
algorithm to perform the task of feature selection from a given set of feature templates.
This helps find as many features as possible that are of benefit to the overall process of the
parsing. Many individual optimal feature template sets are reported in the literature to
have achieved an excellent performance on specific subtasks of SRL. This is the first time
that an integrated SRL system is reported to produce a result so close to the state of the
art of SRL achieved by those pipelines with individual sub-systems each highly specialized
for a specific subtask or a specific type of predicate.

3. System Architecture

Dependencies between words in a sentence, be they syntactic or semantic, can be formulated
as individual edges in an abstract graph structure. In practice, a dependency edge has to be
built, and its type (usually referred to as its label) to be identified, through proper learning
and then decoding. Most conventional syntactic parsing makes use of a property of projec-
tiveness stipulated by the well-formedness of a syntactic tree. In contrast, in dependency
parsing, new dependencies have to be built with regard to existing ones. However, this is
not the case for semantic parsing, for most semantic parsing results are not projective trees.
Instead, they are actually directed acyclic graphs, because the same word can serve as an
argument for multiple predicates. Inevitably, a learning model for semantic parsing has to
take all word pairs into account when exploring possible dependent relationships.

SRL as a specific task of semantic dependency parsing can be formulated as a word pair
classification problem and tackled with various machine learning models, e.g., the Maximum
Entropy (ME) model as used by Zhao and Kit (2008). The ME model is also used in this
work but only for probability estimation to support the global decoding given below in
Section 6, which extends our model beyond a sequential model. Without any constraint,
a classifier for this task has to deal with all word pairs in an input sequence and is thus
inevitably prone to poor computational efficiency and also unsatisfactory performance. A
straightforward strategy to alleviate these problems is to perform proper pruning on both
the training sample and test data.

A word pair consists of a word as semantic head and another as semantic dependent,
which are conventionally denoted as p (for predicate) and a (for argument), respectively. We
will follow this convention in the feature representation below. Since our approach unifies
the two tasks of SRL, namely, predicate identification/disambiguation and argument iden-
tification/classification, into one classification framework, there is no need to differentiate
between verbal and non-verbal heads, because they are all handled in the same way. This
is one of the unique characteristics of our integrated system.

The overall architecture of our system is depicted in Figure 1. An input sentence from
a data set in use, be it a training, a development or a test set, is parsed into a word pair
sequence by a word pair generator using a pruning algorithm, e.g., the adaptive pruning
described below, to eliminate useless pairs. Word pairs so generated from each sentence of
the training set are used to train a word pair classifier, which then supports the decoding
formulated in Section 6 to search for an optimal set of word pairs from a test sentence to
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Figure 1: Illustration of system architecture and work flow of training and testing

form a semantic parse tree. The decoding first recognizes all predicates in a sentence and
then determines the arguments for each predicate by a beam search for their argument role
labels. The features used in the classifier are selected from a predefined feature space by a
greedy selection procedure using the training and the development set for repeated training
and testing to refine a candidate feature set until no more performance gain is achievable
(see Section 5). Then the classifier obtained this way with the selected features is tested on
the test set.

4. Adaptive Argument Pruning

Word pairs are derived from a sentence for the classifier in the following ways. (1) For
predicate identification/disambiguation, each word pair consists of the virtual root (VR) of
a semantic parse tree under construction (whose root is virtually preset), as head, and a
predicate candidate as its dependent. Theoretically, all words in the sentence in question
can be a predicate candidate. To reduce their number, we opt for a simple POS tag pruning
strategy that only verbs and nouns are allowed as predicate candidates. (2) For argument
identification/classification, each word pair consists of an identified predicate, as head, and
another word as its dependent (or its argument, in conventional term). Potentially, any
other word in the same sentence can be its argument candidate. Pruning off as many
argument candidates as possible is thus particularly significant in improving the efficiency
and performance of the classifier.

There are two ways to collect argument candidates for a given predicate, one from the
syntactic dependency tree and the other from the linear path of an input sentence. For
the former (referred to as synPth hereafter), we use a dependency version of the pruning
algorithm by Xue and Palmer (2004), which is given as follows with a necessary modification
to allow a predicate itself also to be included in its own argument candidate list, because a
nominal predicate sometimes takes itself as its own argument.
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ID FORMa LEMMA POS HEADb DEPRELc PREDd ARG Labele

1 Investor investor NN 2 NMOD A0
2 focus focus NN 3 SBJ focus.01 A1
3 shifted shift VBD 7 OBJ shift.01 A1
4 quickly quickly RB 3 MNR AM-MNR
5 , , , 7 P
6 traders trader NNS 7 SBJ A0
7 said say VBD 0 ROOT say.01
8 . . . 7 P

a. Word form, or token.
b. Syntactic head of the current token, identified by an ID.
c. Syntactic dependency relation of the current token to its HEAD.
d. Roleset of a semantic predicate.
e. Argument labels for semantic predicates in text order.

Table 1: An example of input sentence from CoNLL-2008 shared task data set

Initialization: Given a predicate as the current node in a syntactic dependency tree.

1. Collect all its syntactic children as argument candidates, by traversing the children
from left to right.

2. Reset the current node to its syntactic head and repeat Step 1 till the root of the tree.

3. Collect the root and stop.

This algorithm is effective in collecting both words in the path from a given predicate
to the root and their children as argument candidates. However, a more efficient one is still
needed to lend stronger support to our SRL system that is designed to tackle argument
identification/classification in a single stage. Following the observation that arguments
usually tend to surround their predicate in a close distance, the auxiliary label noMoreArg
is introduced to signify where the pruning stops collecting argument candidates. For training
sample generation, this label is assigned to the next word as soon as the arguments of the
current predicate have been saturated with previously collected words, in light of the original
training data as illustrated in Table 1. Accordingly, the pruning process stops collecting
any more candidates. For decoding, it signals the decoder to stop searching, along a similar
traverse as the pruning, for any more arguments for an identified predicate. This adaptive
technique improves the pruning efficiency significantly, saving about 1/3 training time and
memory at the cost of missing very few more true arguments than the pruning without
this label, according to our experiments. The training sample generated this way from the
sentence in Table 1, by means of both POS pruning and the above pruning algorithm, is
illustrated in Table 2, with a few class labels in the third column.

To collect argument candidates along the linear path (referred to as linPth hereafter)
instead of the syntactic tree of a sentence, the classifier will search through all words around
a given predicate. In a way similar to how the pruning along synPth is improved, two
auxiliary labels, namely, noMoreLeftArg and noMoreRightArg, are introduced to signify
where the adaptive pruning along linPth stops, skipping those words too far away from the
predicate. Given below is an example to illustrate how these two labels are used, where e in
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Head-dependent word pair Label
VR Investor NONE PRED

VR focus 01

VR shifted 01

VR traders NONE PRED

VR said 01

focus Investor A0

focus focus noMoreArg

shifted focus A1

shifted quickly AM-MNR

shifted said noMoreArg

said shifted A1

said , NONE ARG

said traders A0

said . NONE ARG

Table 2: An example of training sample generated via pruning

the input sequence is a predicate with two arguments, labeled with A0 and A1, respectively.
The two labels are assigned to the next two words c and g, respectively, indicating no more
arguments farther than them from the predicate. Accordingly, the word sequence from c to
g are taken as training sample.

a b c d e f g h .
noMoreLeftArg A1 A0 noMoreRightArg

The total list of class labels in our model, including those from the CoNLL-2008 data set
and a few auxiliary ones newly introduced on purpose, is provided in Table 9 in Appendix A.
These labels are in three categories, namely, 22 PropBank sense labels as predicate classes,
54 argument classes, and 2–3 auxiliary labels as extra classes, for a total of 78-79. Pruning
along linPth needs one more label than that along synPth. Note that our work does not
assume whether the same sense label in the training and the test set means the same for
different words. The tendency of a particular word form to associate with its senses in a
statistically significant way throughout the data set allows our classifier to predict sense
labels using word form features.

In principle, an auxiliary label is assigned to the last item in the sample that is generated
for a predicate via pruning along a traversal order, be it syntactic or linear. That is, it is
assigned to the first item immediately after the last argument of the predicate has been
seen during the pruning. An auxiliary label is treated in exactly the same way as all other
argument labels during training and decoding, except its extra utility to signal where to
stop a search.

5. Feature Generation and Selection

Following many previous works (Gildea & Jurafsky, 2002; Carreras & Màrquez, 2005;
Koomen et al., 2005; Màrquez, Surdeanu, Comas, & Turmo, 2005; Dang & Palmer, 2005;
Pradhan, Ward, Hacioglu, Martin, & Jurafsky, 2005; Toutanova, Haghighi, & Manning,
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2005; Jiang & Ng, 2006; Liu & Ng, 2007; Surdeanu, Marquez, Carreras, & Comas, 2007;
Johansson & Nugues, 2008; Che, Li, Hu, Li, Qin, Liu, & Li, 2008), we carefully examine
the factors involved in a wide range of features that have been or can be used to facilitate
the undertaking of the two SRL subtasks, for both verbal and nominal predicates. Our
endeavor is to further decompose these factors into some more fundamental elements, so
that the largest possible space of feature templates can be explored for more effective and
novel combinations of them into features.

5.1 Feature Element

All features adopted for this work are intended to make full use of these elements, which are
mainly drawn from the word property and syntactic connection of a node in the syntactic
parse tree of an input sentence. The sequences or sets of tree nodes, whose basic elements
are drawn to form features via feature generation by means of many predefined feature
templates, are identified through the path and family relations as stipulated below.

Word Property This type of elements include word form (denoted as form and its
split form as spForm),3 lemma (as lemma and spLemma), part-of-speech tag (as pos and
spPos), and syntactic and semantic dependency labels (as dprel and semdprel).4

Syntactic Connection This includes syntactic head (as h), left/right farthest/nearest
child (as slm, ln, rm and rn), and high/low support verb or noun. Note that along the
path from a given word to the root of a syntactic tree, the first/last verb is called its
low/high support verb, respectively. This notion is widely adopted in the field (Toutanova
et al., 2005; Xue, 2006; Jiang & Ng, 2006).5 In this work, we extend it to both nouns
and prepositions. Besides, we also introduce another syntactic head feature pphead for a
given word in question, to retain its left most sibling if headed by a preposition, or its
original head otherwise, aimed at drawing utility from the fact that a preposition usually
carries little semantic information. The positive effect of this new feature is confirmed by
our experiments.

Path There are two basic types of path from an argument candidate a to a given
predicate p, namely, the linear path linePath as the sequence of input words between
them (inclusive) and the other path dpPath between them (inclusive) as in their syntactic
dependency tree. Given the two paths from them to the root r of the tree that meet
at a node r′, we have their common part dpPathShare from r′ to r, their different parts
dpPathArgu and dpPathPred from a and p to r′, respectively, and the path dpPath between
a and p. Similarly, we have a dpPath between any two nodes in a syntactic tree.

Family Two child sets are differentiated for a given predicate or argument candidate,
one (as children) including all syntactic children and the other (as noFarChildren) ex-
cluding only the leftmost and the rightmost one. The latter is introduced as a feature to
differentiate the modifiers (i.e., children) close to the head from those far away.

3. Note that in CoNLL-2008, many treebank tokens are split at the position of a hyphen (-) or a forward
slash (/), resulting in two types of form for each, namely, non-split and split.

4. The lemma and pos, for both training and test, are directly from the pre-analyzed columns of an input
file, automatically generated by the organizer of CoNLL shared tasks.

5. Note that the notion of the term support verb is slightly different in these works. It is used here to refer
to a verb that introduces a long-distance argument to a nominal predicate from outside of the noun
phrase headed by the nominal predicate.
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Others There are also a number of other elements, besides those in the above categories,
that play a significant role in feature generation. Many of them are derived from inter-word
relationships. Listed below are a number of representative ones.

dpTreeRelation It returns the relationship of a and p in an input syntactic tree. The
possible values for this feature include parent, sibling, etc.

isCurPred It checks whether a word in question is the current predicate, and returns the
predicate itself if yes, or a default value otherwise.

existCross It checks if a potential dependency relation between a given pair of words
may cross any existing relation in the semantic tree under construction.

distance It returns the distance between two words along a given path, be it dpPath or
linePath, in number of words.

existSemdprel It checks whether a given argument label under a predicate has been as-
signed to any other word.

voice It returns either Active or Passive for a verb and a default value for a noun.

baseline A small set of simple rules6 are used to generate SRL output as the baseline
for CoNLL evaluation (Carreras & Màrquez, 2005). This baseline output can be
selectively used as features, in two categories: baseline Ax tags the head of the first
NP before and after a predicate as A0 and A1, respectively, and baseline Mod tags
the modal verb dependent of a predicate as AM-MOD.

A number of features such as existCross and existSemdprel have to depend on the
semantic dependencies or dependency labels in the existing part of a semantic parse tree
under (re)construction for a sentence, be it for training or decoding. Note that both training
and decoding first take the candidate word pairs from a given sentence as input, as illustrated
in Table 2, and then undergo a process of selecting a subset of the candidates to (re)construct
a semantic parse tree, which consists of a root, some predicate(s) as its child(ren), and the
argument(s) of the predicate(s) as its grandchild(ren). The decoding infers an optimal
semantic tree for a sentence with the aid of a trained ME model (see Section 6). The
training reconstructs the gold standard semantic tree of an input sentence when scanning
through its word pairs in sequence and differentiating the true ones in the tree from the
others. The true ones rebuild the tree part by part. All features (including existCross

and existSemdprel) extracted from both the true ones, as in the partially (re)built parts
of the tree, and the others in the current context are fed to the ME model for training.
In other words, the feature generation is based on gold standard argument labels during
training and on predicted ones during decoding.

5.2 Feature Generation

Sequences of syntactic tree nodes are first collected by means of the paths and/or the family
relations defined above. Three strategies are then applied to combine elements of the same
type (e.g., form, spPos) from these nodes into a feature via string concatenation. The three
strategies of concatenation are: (1) sequencing (as seq), which concatenates given element
strings in their original order in the path, (2) unduplicating (as noDup), which further frees

6. Developed by Erik T K Sang, of the University of Antwerp, Belgium.
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seq from adjacent duplicates, and (3) bagging (as bag), which concatenates unique element
strings in alphabetical order.

Given below are a number of typical feature templates to illustrate how individual
features are derived in the ways as described above, with the aid of the following operators:
x+y (the concatenation of x and y), x.y (the attribute y of x), x:y (the path from x to y),
and x:y|z (the collection of all instances of attribute z along the path from x to y).

a.lm.lemma The lemma of the leftmost child of the argument candidate a.

p.h.dprel The dependency label of the syntactic head of predicate candidate p.

p-1.pos + p.pos The concatenation of the POS tags of two consecutive predicates.

a:p|dpPath.lemma.bag The bag of all lemmas along the dpPath from a to p.

a:p.highSupportNoun|linePath.dprel.seq The seq of all dependency labels along the
linePath from a to the high support noun of p.

In this way, a set of 781 feature templates,7 henceforth referred to as FT , is generated
to specify the allowable feature space for feature selection. Many of them are generated
by analogy to existing feature templates in the literature. For example, given a feature
template like a.lm.lemma which has been used in some previous works, its analogous ones
such as a.rm.lemma, a.rn.lemma and a.ln.lemma are included in the FT .

Predicate sense labels in the data set are also utilized as a type of element in various
feature templates in the FT . However, it is worth noting that the same sense label associated
with different words, e.g., 02 in take.02 and in say.02, is not assumed to have anything
in common or anything to do with each other. For predicate disambiguation, however,
these features always combine a predicate sense with a word form, and hence naturally
differentiate between the same sense label for different words. To predict a predicate sense
label is always to predict it in association with a word form. That is, a sense label is never
used in separation from a word form. In this way, our model gives a very high precision for
sense label prediction according to our empirical results.

5.3 Feature Template Selection

It is a complicated and hence computationally expensive task to extract an optimal subset
of feature templates from a large feature space. For the sake of efficiency, a greedy procedure
for feature selection has to be applied towards this goal, as illustrated in many previous
works, e.g., by Jiang and Ng (2006), and Ding and Chang (2008). The algorithm that
we implemented for this purpose is presented in Algorithm 1 below, which imposes fewer
assumptions than those in previous works, aiming at a higher efficiency. It repeats two
main steps until no further performance gain is achievable on the given development set:

1. Include any template from the rest of FT into the current set of candidate templates
if its inclusion would lead to a performance gain.

2. Exclude any template from the current set of candidate templates if its exclusion
would lead to no deterioration in performance. By repeatedly adding/removing the

7. Available at http://bcmi.sjtu.edu.cn/∼zhaohai/TSRLENAllT.txt, in a macro language as used in our
implementation, far not as readable as the notation of the illustrations given here.
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most/least useful template, the algorithm aims to return a better or smaller candidate
set for next round.

Given n candidate feature templates, the algorithm by Ding and Chang (2008) requires
O(n2) time to execute a training/test routine, whereas the one by Jiang and Ng (2006)
requires O(n) time, assuming that the initial set of feature templates is “good” enough
and the others can be handled in a strictly incremental way. The time complexity of our
algorithm can also be analyzed in terms of the execution time of the training-and-test routine
scr(M(.)), for all other subroutines such as sorting are negligible while compared against
its execution time. In Algorithm 1, recruitMore first calls this routine |FT − S| ≤ n
times in the for loop, and then shakeOff calls it |Smax| ≤ n times to prepare for the
sorting, followed by at most another |Smax| times in the inner while loop. Assuming that
the first while loop and the outer while in shakeOff iterate k1 and k2 times, respectively,
the algorithm is of O(k1(|FT − S|+ k2(|Smax|+ |Smax|))) = O(k1k2n) time.

Empirically, however, we have k1, k2 << n, in that our experiments seldom show any
k1 > 5 or k2 > 10, especially when running with 1/10 FT randomly chosen as the initial S.
In particular, the first while loop often iterates only 2-3 times, and after its first iteration k2
drops rapidly. The observation that k1k2 varies only in a very limited range suggests that
we may have O(k1k2n) = O(n) as an empirical estimation of the efficiency of the algorithm
in this particular context. A reasonable account for this is that as the first while loop
comprises of only two functions, namely, recruitMore to recruit positive feature templates
and shakeOff to filter out negative ones, so as to improve the model in either case, it is
likely that the positive/negative ones remain positive/negative consistently throughout the
looping. As a result, only very few of them remain outside/inside the candidate set for
further recruiting/filtering after a couple of iterations of the loop.

This efficiency allows a large-scale engineering of feature selection to be accomplished
at a reasonable cost of time. In our experiments with 1/10 FT randomly selected as the
initial S, the greedy selection procedure was performed along one of the two argument
candidate traverse schemes (i.e., the synPth and linPth) on NomBank, PropBank or their
combination, and output six feature template sets Ss

N , Ss
P , S

s
N+P , S

l
N , Sl

P and Sl
N+P , of

186, 87, 246, 120, 80 and 118 selected templates, respectively, for performance evaluation
and comparison. About 5500 machine learning routines ran for the synPth scheme and
nearly 7000 routines for the linPth. A contrastive analysis of these template sets, with a
focus on the top 100 or so most important templates from each of them, is presented in
Appendix A through Tables 9-17, where the rank columns present the rankings of feature
templates in terms of their importance in respective feature template sets. The importance
of a feature template in a template set is measured in terms of the performance change by
adding or removing that template, and the performance of a model using a template set is
measured by its labeled F1 score on a given test set, following the conventional practice of
SRL evaluation in CoNLL shared tasks.

It is interesting to note that the six template sets have a tiny intersection of only 5
templates, as listed in Table 10, each manifesting a notable variance of importance ranking
in different sets. Excluding these five, the rest of the overlap of the top 100 of the synPth
sets Ss

N , Ss
P and Ss

N+P is also very small, of only 11 templates, in contrast to that of the

linPth sets Sl
N , Sl

P and Sl
N+P , which is about 4 times larger, of 46 templates; as listed in
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Algorithm 1 Greedy Feature Selection

Input
A training data set: T
A development data set: D
The set of all feature templates: FT

Denotation
M(S) = M(S, T ), a model using feature template set S, trained on T ;
scr(M) = scr(M,D), the evaluation score of model M on D;
Since T and D are fixed, let scr(M(S)) = scr(M(S, T ), D) for brevity.

Algorithm

1: S = {f0, f1, ..., fk}, a random subset of FT ; � FT : a globally accessible constant
2: while do
3: Cr = recruitMore(S);
4: if Cr == {} then return S;
5: S′ = shakeOff(S + Cr);
6: if scr(M(S)) ≥ scr(M(S′)) then return S;
7: S = S′;
8: end while

1: function recruitMore(S) � Retrieve more positive templates from FT − S
2: Cr = {}, and p = scr(M(S));
3: for each f ∈ FT − S do
4: if p < scr(M(S + {f})) then Cr = Cr + {f};
5: end for
6: return Cr;
7: end function

1: function shakeOff(Smax) � Shake off useless templates from Smax

2: while do
3: S = S0 = Smax;
4: sort S in the descending ordera of scr(M(S − {f})) for each f ∈ S;
5: while (S = S − {f0}) �= {} do
6: Smax = argmaxx∈{Smax, S}scr(M(x)); � Drop f0 ∈ S if it is useless
7: end while
8: if S0 == Smax then return S0; � If none dropped
9: end while

10: end function

a. Namely in the ascending order of the importance of f in S, estimated by scr(M(S))− scr(M(S−{f})).
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Tables 11 and 12, respectively. Besides these shared templates, these six sets hold 84, 71,
84, 69, 29 and 67 others in their top 100, as listed in Tables 13-18, respectively, where a
negative/positive subscript denotes a preceding/following word. For example, a.lm -1.lemma

returns the lemma of the previous word of a’s left most child.

The rather small overlap of the six sets suggests that the greedy feature selection algo-
rithm maintains a stable efficiency while working out these template sets of huge divergence,
lending evidence to support the empirical estimation above. Despite this divergence, each
of these template sets enables our SRL model to achieve a state-of-the-art performance on
the CoNLL-2008 data set,8 indicating the effectiveness of this approach, for which more
details of evaluation will be provided in Section 7 below.

6. Decoding

Following exactly the same procedure of generating the training sample, our ME classifier,
after training, outputs a series of labels for the sequence of word pairs generated from an
input sentence, inferring its predicates and their arguments one after another. Different
from most existing SRL systems, it instantiates an integrative approach that conducts all
predication with the same trained model. However, following the common practice of incor-
porating task-specific constraints into a global inference (Roth & Yih, 2004; Punyakanok,
Roth, Yih, & Zimak, 2004), we opt for further developing a decoding algorithm to infer
the optimal argument structure for any predicate that is identified this way by the clas-
sifier. The main differences of our work from Punyakanok et al. (2004) are that (1) they
use ILP for joint inference, which is exact, and we use beam search, which is greedy and
approximate, and (2) the constraints (e.g., no duplicate argument label is allowed) that
they impose on arguments through individual linear (in)equalities are realized through our
constraint fulfillment features (e.g., existCross and existSemdprel).

Specifically, the decoding is to identify the arguments among candidate words by in-
ferring the best semantic role label for each candidate (cf. the training sample in Table
2 with one label per word). Let A = {a0, a1, ..., an−1} be the candidates for a predicate,
where each ai embodies all available properties of a word, including a candidate label, and
let A′

i = a0 a1 ... ai−1 be a partial argument structure (of our target under search) that has
been determined and ready for use as the context for inferring the next argument. Instead of
counting on best-first search, which simply keeps picking the next best argument according
the conditional probability p(ai|A′

i), we resort to a beam search for a better approximation
of the global optimization for the maximal probability in

Ã = argmax
A′⊆A

n∏

i=0

p(ai|A′
i), (1)

where A′
i consists of the first i elements of A′. Ideally, the beam search returns the most

probable subset of A as arguments for the predicate in question. It rests on a conditional
maximum entropy sequential model incorporating global features into the decoding to infer
the arguments that are not necessarily in a sequential order. As in previous practice, our

8. Note that an early version of this model also illustrated a top-ranking performance on CoNLL-2009
multilingual data sets (Zhao, Chen, Kit, & Zhou, 2009).
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ME model adopts a tunable Gaussian prior (Chen & Rosenfeld, 1999) to estimate p(ai|A′
i)

and applies the L-BFGS algorithm (Nocedal, 1980; Nash & Nocedal, 1991) for parameter
optimization.

7. Evaluation

The evaluation of our SRL approach is conducted with various feature template sets on the
official training/development/test corpora of CoNLL-2008 (Surdeanu et al., 2008). This
data set is derived by merging a dependency version of the Penn Treebank 3 (Marcus,
Santorini, & Marcinkiewicz, 1993) with PropBank and NomBank. Note that CoNLL-2008
is essentially a joint learning task on both syntactic and semantic dependencies. The re-
search presented in this article is focused on semantic dependencies, for which the primary
evaluation measure is the semantic labeled F1 score (Sem-F1). Other scores, including the
macro labeled F1 score (Macro-F1), which was used to rank the participating systems in
CoNLL-2008, and Sem-F1/LAS, the ratio between labeled F1 score for semantic dependen-
cies and the labeled attachment score (LAS) for syntactic dependencies, are also provided
for reference.

7.1 Syntactic Input

Two types of syntactic input are used to examine the effectiveness of our integrative SR-
L approach. One is the gold standard syntactic input available from the official data set
and the other is the parsing results of the same data set by two state-of-the-art syntactic
parsers, namely, the MSTparser9 (McDonald, Pereira, Ribarov, & Hajič, 2005; McDonald
& Pereira, 2006) and the parser of Johansson and Nugues (2008). However, instead of using
the original MSTparser, we have it substantially enriched with additional features, following
Chen, Kawahara, Uchimoto, Zhang, and Isahara (2008), Koo, Carreras, and Collins (2008),
and Nivre and McDonald (2008). The latter one, henceforth referred to as J&N for short,
is a second-order graph-based dependency parser that takes advantage of pseudo-projective
techniques and resorts to syntactic-semantic reranking for further refining its final outputs.
However, only its 1-best outputs before the reranking are used for our evaluation, even
thought the reranking can slightly improve its parsing performance. Note that this re-
ward of reranking through joint-learning for syntactic and semantic parsing is gained at a
huge computational cost. On the contrary, our approach is intended to show that highly
comparable results can be achieved at much lower cost.

7.2 Experimental Results

The effectiveness of the proposed adaptive approach to pruning argument candidates is
examined with the above three syntactic inputs, and the results are presented in Table 3,10

where a coverage rate is the proportion of true arguments in pruning output. Note that
using auxiliary labels does not affect this rate, which has to be accounted for by the choice
of traverse path and the quality of syntactic input, as suggested by its difference in the
synPth rows. The results show that the pruning reduces more than 50% candidates along

9. Available at http://mstparser.sourceforge.net.
10. Decimal figures in all tables herein are percentages unless otherwise specified.

216



Semantic Dependency Parsing

Syntactic Input (LAS) Path Original Pruning Reduction Coverage

MST (88.39%)
linP th 5.29M 1.57M -70.32 100.0
synPth 2.15M 1.06M -50.70 95.0

J&N (89.28%)
linP th 5.28M 1.57M -70.27 100.0
synPth 2.15M 1.06M -50.70 95.4

Gold (100.0%)
linP th 5.29M 1.57M -70.32 100.0
synPth 2.13M 1.05M -50.70 98.4

Table 3: Reduction of argument candidates by the adaptive pruning

Path x Sx
N Sx

P Sx
N+P

linPth 7,103 7,214 7,146
synPth 5,609 5,470 5,572

Reduction -21.03 -24.18 -22.03

Table 4: Number of executions of the training-and-test routine in greedy feature selection

synPth, at the cost of losing 1.6-4.6% true ones, and more than 70% along linPth without
any loss. Nevertheless, the candidate set so resulted from synPth is 1/3 smaller in size than
that from linPth.

The number of times that the training-and-test routine is executed in the greedy selection
of all six feature sets are presented in Table 4, showing that synPth saves 21%-24% execution
times. Given the estimation of the time complexity of the selection algorithm as O(k1k2n)
for executing the routine, empirically we have 7<k1k2<10 on a feature space of size n=781
for our experiments, verifying the very high efficiency of the algorithm.

As pointed out by Pradhan, Ward, Hacioglu, Martin, and Jurafsky (2004), argument
identification (before classification) is a bottleneck problem in the way of improving SRL
performance. Narrowing down the set of predicate candidates as much as possible in a reli-
able way has been shown to be a feasible means to alleviate this problem. The effectiveness
of our adaptive pruning for this purpose can be examined through comparative experiments
in terms of time reduction and performance enhancement. The results from a series of such
experiments are presented in Table 5, showing that the adaptive pruning saves the training
and test time by about 30% and 60%, respectively, while enhancing the performance (in
Sem-F1 score) by 23.9%–24.8%, nearly a quarter. These results also confirm a significant
improvement upon its non-adaptive origin (Xue & Palmer, 2004) and the twofold benefit
of pruning off arguments far away from their predicates, which follows from the assump-
tion that true arguments tend to be close to their predicates. It is straightforward that
using the noMoreArg label reduces more training samples than not using (see Section 4)
and hence leads to a greater reduction of training time. Using this label also decreases
the test time remarkably. During decoding, a noMoreArg label, once assigned a probability
higher than all other possible role labels for the current word pair, hints the decoder to
stop working on the next word pair, resulting in a further test time reduction by 18.5–21.0
percentage points upon the non-adaptive pruning. The particularly low performance with-
out pruning also reflects the soundness of the motivation for candidate pruning from both
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Bank Features Pruninga Training Redu. Test Redu. Sem-F1

PropBank 87
− 122,469s 747s 66.85

−Adaptiveb 109,094s -10.9 372s -50.2 80.59
+Adaptive 83,208s -32.1 234s -68.7 82.80

NomBank
246

− 432,544s 2,795s 64.85
+ −Adaptive 392,216s -9.3 1,615s -42.2 79.77

PropBank +Adaptive 305,325s -29.4 1,029s -63.2 80.91

a. Syntactic input: MST; Traverse scheme: synPth; Machine configuration: Four six-core
IntelR© XeonR© X5690 3.46GHz processors, 48G memory.

b. The original pruning as in Xue and Palmer (2004), not using noMoreArg.

Table 5: Time reduction and performance enhancement by the adaptive pruning

Syn. Input Feature
Path x

Nomi- Verb- Nomi- Verb- Sem- Sem-
(LAS) Set F1

x
N F1

x
P F1

x
N+P F1

x
N+P F1

x
N+P F1

x
N+P /LAS

Initial
linPth 44.58 58.83 41.18 56.34 51.14 57.86

MST synPth 44.67 63.24 42.42 61.28 54.79 61.99
(88.39%)

Selected
linPth 77.93 82.72 76.75 82.30 80.05 90.56
synPth 77.89 82.80 77.52 83.24 80.91 91.54

Initial
linPth 44.84 58.84 42.16 56.40 51.36 57.53

J&N synPth 45.01 63.26 43.64 61.36 55.12 61.74
(89.28%)

Selected
linPth 77.73 83.21 76.45 82.70 80.15 89.77
synPth 77.70 83.90 76.79 83.71 80.88 90.59

Initial
linPth 45.57 61.79 42.41 59.09 53.12 53.12

Gold synPth 45.89 67.63 43.76 65.51 57.77 57.77
(100%)

Selected
linPth 80.43 89.44 79.44 89.07 84.99 84.99
synPth 80.37 90.37 80.20 90.27 86.02 86.02

Table 6: Performance of random initial and greedily selected feature sets

the machine learning and linguistic perspective. The pruning provides a more balanced
training dataset for classifier training than without pruning. Note that without pruning,
most word pairs generated for the training are irrelevant and far away from the current
predicate, inevitably interfering with the informative features from the truly relevant ones
in the very small minority and, hence, leading to an unsatisfactory performance. Although
the pruning, especially its adaptive version, is rooted in a linguistic insight gained from em-
pirical observations on real data, most previous works on semantic parsing simply took the
pruning as an indispensable step towards a good parsing performance, seldom paying much
attention to the poor performance without pruning nor comparing it with the performance
by different pruning strategies.

Table 6 presents a comprehensive results of our semantic dependency parsing on the
three syntactic inputs aforementioned of different quality. A number of observations can
be made from these results. (1) The greedy feature selection, as encoded in Algorithm 1
above, boosts the SRL performance drastically, raising the Sem-F1 scores in the synPth
rows from 54.79%–57.77% of the initial feature sets, the baseline, to 80.88%–86.02% of the

218



Semantic Dependency Parsing

Syn. Input
Feature set Path x

Nomi- Verb- Sem- Sem- Loss in
(LAS) F1

x
N+P F1

x
N+P F1

x
N+P F1

x
N+P /LAS F1

x
N+P

Sl
N+P - Sense linP th 76.51 82.09 79.82 90.30 -0.29

MST Ss
N+P - Sense synPth 76.76 82.75 80.30 90.85 -0.75

(88.39%) Sl
N + Sl

P linP th 76.78 82.20 79.99 90.50 -0.07
Ss
N + Ss

P synPth 76.60 82.76 80.24 90.78 -0.83

Table 7: Experimental results on feature ablation and feature set combination

selected feature sets, by an increment of 46.73%–48.90%. The rise in corresponding linPth
rows is even larger. Among the three inputs, the largest increment is on the gold standard,
suggesting that the feature selection has a greater effect on an input of better quality.
(2) The traverse scheme synPth leads to a better model than linPth, as reflected in the
difference of Sem-F1 and Sem-F1/LAS scores between them, indicating that this integrative
SRL approach is sensitive to the path along which argument candidates are traversed.
The difference of their Sem-F1/LAS scores, for instance, is in the range of 7.14%–8.75%
and 0.91%–1.21% for the initial and the selected feature sets, respectively. The significant
advantage of synPth is confirmed consistently, even though an optimized feature set narrows
down the performance discrepancy between the two so radically. (3) The result that both
Nomi-F1

x
N and Verb-F1

x
P are higher than corresponding F1

x
N+P consistently throughout

almost all experimental settings except one shows that the feature selection separately
on Nombank or PropBank (for verbal or nominal predicates, respectively) gives a better
performance than that on the combination Nombank+PropBank for both. This has to
be explained by the interference between the two data sets due to their heterogeneous
nature, namely, the interference between the nominal and verbal predicate samples. Hence,
optimizing a feature set specifically for a particular type of predicates is more effective than
for both. (4) An overall comparison of our system’s SRL performance on the three syntactic
inputs of different quality (as reflected in their LAS) shows that the performance as a whole
varies in accord with the quality of input. This is exhibited in the contrast of the Sem-F1

scores on these inputs, even though a small LAS difference may not necessarily lead to a
significant performance difference (for instance, MST has a LAS of 0.89 percentage point
lower than J&N but gives a Sem-F1 score as high in one of the four experimental settings).
The table also shows that a LAS difference of 11.61 percentage points, from 88.39% to 100%,
corresponds to a Sem-F1 score difference of at most 5.14 percentage points, from 80.88% to
86.02%, in the best setting (i.e., using the selected feature set and taking synPth).

However, Sem-F1 scores cannot be trusted to faithfully reflect the competence of a
semantic parser, because the quality of syntactic input is also a decisive factor to decide
such scores. For this reason, we have the Sem-F1/LAS ratio as an evaluation metric.
Interestingly, our parser’s scores of this ratio on the two syntactic inputs of a LAS 10.82–
11.61 percentage points below the gold standard are, contrarily, 4.57–5.52 percentage points
higher. This is certainly not to mean that the parser is able to rescue, in a sense, some true
semantic parses from an erroneous syntactic input. Instead, it can only be explained by the
parser’s high tolerance of imperfections in the syntactic input.

Table 7 further presents experimental results on feature ablation and feature set combi-
nation. The former is to examine the effect of sense features and the latter that of feature
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optimization. Along synPth, both the ablation of sense feature and the mix of two feature
sets respectively optimized (through the greedy selection) on the NomBank and PropBank
lead to a significant performance loss of 0.75%–0.83%, in comparison with the performance
of the feature set Ss

N+P optimized on the combination of the two treebanks as given in Table
6. Along linPth, they lead to a much less significant and an insignificant loss, respestively.
These results show that both sense features and the greedy selection of features are more
significant in joining with the adaptive pruning along synPth to achieve a performance gain.

7.3 Comparison and Analysis

In order to evaluate the parser impartially in a comparative manner, its performance along
synPth is compared with that of the other state-of-the-art systems in CoNLL-2008. They are
chosen for this comparison because of being ranked among top four among all participants
in the shared task or using some sophisticated joint learning techniques. The one of Titov,
Henderson, Merlo, and Musillo (2009) that adopts a similar joint learning approach as
Henderson, Merlo, Musillo, and Titov (2008) is also included, because of their significant
methodological difference from the others. In particular, the former has attained the best
performance to date in the direction of genuine joint learning. The reported performance of
all these systems on the CoNLL-2008 test set in terms of a series of F1 scores is presented in
Table 8 for comparison. Ours is significantly better (t = 14.6, P < 0.025) than all the others
except the post-evaluation result of Johansson and Nugues (2008). Contrary to the best
three systems in CoNLL-2008 (Johansson & Nugues, 2008; Ciaramita, Attardi, Dell’Orletta,
& Surdeanu, 2008; Che et al., 2008) that use SRL pipelines, our current work is intended
to integrate them into one. Another baseline, namely, our current model using the feature
set from the work of Zhao and Kit (2008), instead of a random set, is also included in the
table for comparison, showing a significant performance enhancement on top of the previous
model and, then, a further enhancement by the greedy feature selection.

Although this work draws necessary support from the basic techniques (especially those
for traverse along synPth) underlying our previous systems for CoNLL-2008 and -2009
(Zhao & Kit, 2008; Zhao, Chen, Kit, & Zhou, 2009; Zhao, Chen, Kazama, Uchimoto, &
Torisawa, 2009), what marks its uniqueness is that all SRL sub-tasks are performed by one
integrative model with one selected feature set. Our previous systems dealt with predicate
disambiguation as a separate sub-task. This is our first attempt at a fully integrated SRL
system.

The fact that our integrated system is yet to give a performance on a par with the post-
evaluation result of Johansson and Nugues (2008) seems attributable to a number of factors,
including the ad hoc features adopted in their work to handle linguistic constructions such
as raising/control and coordination. However, the most noticeable ones are the following
discrepancies between the two systems, in addition to pipeline vs. all-in-one integration.
(1) They have the n-best syntactic candidates as input, which without doubt provide more
useful information than the 1-best that we use. (2) Then, they exploit reranking as a joint
learning strategy to make fuller use of the n-best candidates and any intermediate semantic
result once available, resulting in a gain of 0.5% increment of Sem-F1 score. (3) They
use respective sub-systems to deal with verbal and nominal predicates in a more specific
manner, following the observation that adaptive optimization of feature sets for nominal
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Systemsa LAS
Sem- Macro- Sem-F1 Pred- Argu- Verb- Nomi-
F1 F1 /LAS F1

b F1
c F1 F1

Ours:Gold 100.0 86.02 92.27 86.02 89.25 84.54 90.27 80.20
Johansson:2008*d 89.32 81.65 85.49 91.41 87.22 79.04 84.78 77.12

Ours:MST 88.39 80.91 85.09 91.54 87.15 78.01 83.23 77.52
Ours:Johansson 89.28 80.88 85.12 90.59 86.47 78.29 83.71 76.79
Johansson:2008 89.32 80.37 84.86 89.98 85.40 78.02 84.45 74.32
Ours:Baselinee 88.39 79.42 84.34 89.85 86.60 76.08 81.71 76.07
Ciaramita:2008* 87.37 78.00 82.69 89.28 83.46 75.35 80.93 73.80

Che:2008 86.75 78.52 82.66 90.51 85.31 75.27 80.46 75.18
Zhao:2008* 87.68 76.75 82.24 87.53 78.52 75.93 78.81 73.59

Ciaramita:2008 86.60 77.50 82.06 89.49 83.46 74.56 80.15 73.17
Titov:2009 87.50 76.10 81.80 86.97 – – – –
Zhao:2008 86.66 76.16 81.44 87.88 78.26 75.18 77.67 73.28

Henderson:2008* 87.64 73.09 80.48 83.40 81.42 69.10 75.84 68.90
Henderson:2008 86.91 70.97 79.11 81.66 79.60 66.83 73.80 66.26

a. Ranked according to Sem-F1, and only first authors are listed for the sake of space limitation.
b. Labeled F1 for predicate identification and classification.
c. Labeled F1 for argument identification and classification.
d. A superscript * indicates post-evaluation results, available from the official website of CoNLL-

2008 shared task at http://www.yr-bcn.es/dokuwiki/doku.php?id=conll2008:start.
e. Syntactic input and traverse scheme: as Ours:MST; Features: as Zhao:2008

Table 8: Performance comparison of the best existing SRL systems

or verbal predicates respectively is more likely to give a better performance than that for
a mix of both. This observation is also confirmed by evidence in our experimental results:
F1

x
N and F1

x
P scores are consistently higher than respective F1

x
N+P ones in Table 6 above.

Because of the integrative nature of our approach, however, our priority has to be given
to optimizing the whole feature set for both verbal and nominal predicates. It is nevertheless
understood that all these point to potential ways to further enhance our system, e.g., by
taking advantage of specialized feature sets for various kinds of words and/or utilizing some
joint learning techniques such as syntactic-semantic reranking, in a way that the integrity
of the system can be maintained properly.

The difference between the joint learning in the work of Johansson and Nugues (2008)
and that of Titov et al. (2009) is worth noting. The former is a kind of cascade-style joint
learning that first has a syntactic submodel to provide the n-best syntactic trees and a
semantic submodel to infer correspondent semantic structures, and then a reranking model,
with the log probabilities of the syntactic trees and semantic structures as its features, to find
the best joint syntactic-semantic analysis, resulting in an improvement on top of individual
submodels. In contrast to the former with a non-synchronous pipeline from syntactic to
semantic parsing, the latter adopts a stricter all-in-one strategy of joint learning, where
syntactic and semantic dependencies are learnt and decoded synchronously, based on an
augmented version of the transition-based shift-reduce parsing strategy (Henderson et al.,
2008). Regrettably, however, the performance of this approach is still far from the top of
the ranked list in Table 8, indicating the particular significance of our current work.
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Whether it is worth integrating some form of joint-learning into an integrative system
such as ours depends on the cost-effectiveness of doing so. It has been illustrated that such
joint learning does lead to certain performance improvement, as in CoNLL shared task on
SRL and successive works, e.g., by Johansson and Nugues (2008). However, a great deal of
computational cost has to be paid in order to enable such a reranking procedure to handle
multiple syntactic inputs. This certainly makes it impractical for real applications, not to
mention that an integrative system is born with a particularly strong demand for integrity
to preclude itself from accommodating such a stand-alone submodel.

8. Conclusion

Semantic parsing, which aims to derive and instantiate the semantic structure of a sentence
via identifying semantic relations between words, plays a critical role in deep processing of
natural language. In this article, we have presented an integrative approach to semantic
dependency parsing in the form of semantic role labeling, its implementation as an all-in-
one word pair classifier, and a comprehensive evaluation of it using three syntactic inputs
of different quality. The evaluation results confirm the effectiveness and practicality of this
approach. The major contributions of this research are the following. It exhibits a significant
success for the first time that an integrative SRL system has achieved a performance next
only to that of the best pipeline system, indicating the potentials of the integrative approach
besides its practicality for real applications. The large-scale feature selection engineering
underlying the success of this work also demonstrates (1) how the largest feature space ever
in use in this field is formed by allowing a wide range of flexible (re)combinations of basic
elements extracted from the known features and properties of input words and (2) how a
speedy adaptive feature selection procedure is formulated and applied to select the most
effective set of features from the allowable feature space.

The core techniques that have contributed to this success are developed based on the two
types of traverse path, along syntactic tree branches vs. linear input word sequence. Both
argument candidate pruning and feature selection are performed along an identical path.
The strategy of using auxiliary labels to facilitate argument candidate pruning, following the
observation that true arguments tend to be close to their predicates, works well with both
traverse schemes. Interestingly, although the feature selection procedure outputs two very
different feature sets for each of NomBank, PropBank and their combination whilst working
along the two paths, both feature sets lead the SRL system to a very close performance on
the same test data, a competitive performance on top of all but one best pipeline system,
confirming the robustness and effectiveness of the feature selection procedure.

Evidence is also presented in our evaluation results to reconfirm the finding in the previ-
ous works of semantic parsing that feature sets optimized specifically for verbal or nominal
predicates outperform a collective one for both. However, the competitive performance of
the collective one that we have arrived at also suggests that a harmonious rival feature set
for both types of predicate as a whole is reachable and its slight performance difference
from the specific sets is fairly acceptable as the unavoidable small cost for exchange for
the higher integrity and practicality of an integrative SRL system. This competitiveness
is attributable at least to two main factors. One is the very large feature space in use,
which provides about a dozen times as many feature templates as those in the previous
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works (e.g., see Xue & Palmer, 2004; Xue, 2006). The other is the ME classifier that can
accommodate so many features in one model. According to our experience in this piece of
work, the ME model is not vulnerable to the use of many overlapping features, from which
SVM and other margin-based learners usually suffer a lot.
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Appendix A. Feature Templates and their Importance Rankings

Type PropBank Extra/Auxiliary Total

Predicate 01˜21 (21) NONE PRED 22

Argument

A0˜5 AM-ADV C-AM-ADV R-AM-ADV NONE ARG

AA, AM AM-CAU C-AM-CAU R-AM-CAU

C-A0˜4 AM-DIR C-AM-DIR R-AM-DIR noMoreArg

R-A0˜4 AM-DIS C-AM-DIS R-AM-EXT (for synPth) 56

R-AA AM-EXT C-AM-EXT R-AM-LOC

AM-PRD AM-LOC C-AM-LOC R-AM-MNR noMoreLeftArg

AM-PRT AM-MNR C-AM-MNR R-AM-PNC noMoreRighArg

AM-REC AM-MOD C-AM-NEG R-AM-TMP (for linPth) 57

AM-TM AM-NEG C-AM-PNC C-R-AM-TMP

AM-TMP AM-PNC C-AM-TMP SU (54)

Table 9: The list of class labels for predicate and argument

Template Rank in: Ss
N+P Ss

N Ss
P Sl

N+P Sl
N Sl

P

p.lm.dprel 41 39 6 82 113 60

a:p|dpPath.dprel 35 31 52 2 62 2

a.lemma + p.lemma 10 44 4 5 36 6

a.lemma + a.dprel + a.h.lemma 55 40 49 112 69 44

a.spLemma + p.spLemma 4 97 15 13 68 26

Table 10: Overlap of the six resulted feature template sets
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Template Rank in: Ss
N+P Ss

N Ss
P

p−1.pos + p.pos 2 37 79

p−1.spLemma 27 13 59

p.spForm + p.lm.spPos + p.noFarChildren.spPos.bag + p.rm.spPos 7 45 63

a.isCurPred.lemma 83 94 75

a.isCurPred.spLemma 36 38 86

a:p|existCross 48 77 82

a:p|dpPath.dprel.bag 47 14 85

a:p|dpPathPred.spForm.bag 97 24 5

a:p|dpPath.spLemma.seq 67 59 71

a:p|linePath.spForm.bag 85 48 61

a.semdprel = A0 ? 50 86 40

Table 11: Overlap of Ss
N , Ss

P and Ss
N+P besides Table 10

Template Rank in: Sl
N+P Sl

N Sl
P

p.spLemma + p.currentSense 18 28 56

p.currentSense + a.spLemma 33 57 17

p.voice + (a:p|direction) 65 120 25

p.children.dprel.noDup 11 54 40

p.rm.dprel 60 114 3

p.rm.form 113 110 80

p−1.spLemma + p.spLemma 38 61 69

p.voice 26 4 10

p.form + p.children.dprel.noDup 96 81 65

p.lm.form + p.noFarChildren.spPos.bag + p.rm.form 88 106 5

p.lemma 4 26 50

p.lemma + p1.lemma 7 5 34

p.spForm 39 100 36

p.spForm + p.children.dprel.bag 91 6 30

p.spForm + p.lm.spForm + p.noFarChildren.spPos.bag + p.rm.spForm 104 10 14

p.splemma 9 65 64

p.spLemma + p.h.spForm 100 11 70

p.spLemma + p1.spLemma 72 112 33

p1.pos 76 104 28

a−1.isCurPred.lemma 67 109 77

a−1.isCurPred.lemma + a.isCurPred.lemma 42 24 43

a−1.isCurPred.spLemma + a.isCurPred.spLemma 14 89 62

a.isCurPred.Lemma + a1.isCurPred.Lemma 29 44 67

a.isCurPred.spLemma + a1.isCurPred.spLemma 50 45 59

a.spPos.baseline Ax + a.voice + (a:p|direction) 24 9 46

a.spPos.baseline Mod 86 80 18

a.h.children.dprel.bag 97 35 45

a.lm−1.spPos 47 63 49

a.lm1.lemma 49 30 68

a.children.spPos.seq + p.children.spPos.seq 19 90 76

a.rm.dprel + a.pos 21 17 24

a.rm.dprel + a.spPos 30 7 22

a.rm−1.spPos 6 74 15

a.rm.lemma 36 50 4
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a.rn.dprel + a.spPos 28 33 72

a−1.lemma + a.lemma 27 46 37

a:p|dpPathArgu.dprel.seq 3 96 1

a:p|dpPathArgu.pos.seq 75 79 9

a:p|dpPathPred.dprel.seq 12 64 35

a.form 53 94 78

a.form + a.pos 32 93 32

a.form + a1.form 94 31 38

a.spForm + a.spPos 16 73 48

a.spForm + a1.spForm 79 38 52

a.spLemma + a.dprel 43 118 7

a.spLemma + a.h.spForm 110 2 51

Table 12: Overlap of Sl
N , Sl

P and Sl
N+P besides Table 10

Template Rank Template Rank

p.lemma + p.currentSense 82 p.spLemma + p.currentSense 80

p.currentSense + a.lemma 57 p.currentSense + a.spLemma 18

a.form + p.semdprel is ctype ? 3 a.form + p.ctypeSemdprel 4

a.form + p.semdprel is rtype ? 5 a.form + p.rtypeSemdprel 6

p.lm.form 47 p.lm.spForm 7

p−1.form + p.form 71 p−1.spLemma + p.spLemma 92

p−2.form 78 p−2.spForm 61

p−2.spForm + p−1.spForm 15 p.form 68

p.form + p.dprel 74 p.lemma 63

p.lemma + p.h.form 10 p.pos 62

p.spForm + p.dprel 46 p.spForm + p.children.dprel.bag 90

p.spLemma + p.children.dprel.noDup 43 p.spLemma + p.h.spForm 27

p.spLemma + p1.spLemma 49 p1.pos 28

a.voice + (a:p|direction) 23 a.children.adv.bag 95

a is leaf in syntactic tree ? 16 a.lm.dprel + a.form 75

a.lm.dprel + a.spPos 67 a.lm−1.spLemma 100

a.lm.pos + a.pos 50 a.lm.spPos 8

a.pphead.spLemma 19 a.rm.dprel + a.spPos 26

a.rm−1.form 81 a.rm−1.spForm 55

a.rm1.spPos 79 a.rn.dprel + a.spForm 32

a.highSupportVerb.form 56 a.highSupportVerb.spForm 99

a.lowSupportPorp.form 51 a.lowSupportPorp.lemma 91

a.lowSupportPorp.spLemma 69 a−1.lemma + a1.lemma 20

a−1.pos 70 a−1.pos + a.pos 84

a−1.spForm 85 a−1.spPos + a1.spPos 98

a:p|dpPath.distance 9 a:p|dpPath.spLemma.bag 73

a:p|dpPathArgu.spLemma.bag 96 a:p|dpPathPred.spLemma.bag 2

a:p|dpPathPred.spPos.bag 93 a:p|dpPathArgu.dprel.seq 22

a:p|linePath.dprel.bag 88 a.semdprel = A2 ? 35

a.form + a.children.pos.seq 53 a.form + a.form 58

a.form + a.pos 1 a.pos + a.children.spPos.seq 12

a.spForm + a.children.spPos.seq 76 a.spForm + a.children.spPos.bag 65

a.spForm + a.spPos 87 a.spForm + a1.spForm 52

a.spLemma 11 a.spLemma + a.pphead.spForm 64

a.spLemma + a1.spLemma 60 a.spPos + a.dprel + a.h.spPos 41
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a1.form 54 a1.spForm 83

a1.spPos 33 (a:p|dpTreeRelation) + p.form 25

(a:p|dpTreeRelation) + p.spPos 29 (a:p|dpTreeRelation) + a.spPos 30

(a:p|dpPath.dprel.seq) + p.spForm 36

a−1.isCurPred.spLemma + a.isCurPred.spLemma 17

a.noFarChildren.spPos.bag + a.rm.spPos 21

a.children.spPos.seq + p.children.spPos.seq 34

a.highSupportNoun:p|dpPath.dprel.seq 89

(a.highSupportNoun:p|dpTreeRelation) + p.form 66

(a.highSupportVerb:p|dpTreeRelation) + a.spForm 72

(a.lowSupportVerb:p|dpTreeRelation) + a.spForm 42

Table 13: Feature templates of Ss
N besides Tables 10 and 11

Template Rank Template Rank

p.rm.dprel 47 p.dprel 25

p.children.dprel.bag 66 p.lm.spPos 48

p.children.pos.seq 70 p.rm.dprel 51

p−2.pos 23 p−2.spForm + p−1.spForm 43

p.dprel = OBJ ? 50 p.lemma + p.h.form 68

p.lemma+p1.lemma 3 p.pos 26

p.spForm 76 p.spForm + p.children.dprel.noDup 60

p.splemma 9 p.spLemma+p1.spLemma 1

p1.spPos 21 a.lowSupportVerb:p|dpTreeRelation 32

a.children.adv.bag 20 a.dprel 13

a.children.dprel.bag 7 a.h.lemma 8

a.h.spLemma 72 a.lm.dprel + a.spPos 31

a.lm−1.spLemma 54 a.pphead.lemma 80

a.pphead.spLemma 46 a.rm.dprel + a.spPos 78

a−1.lemma + a1.lemma 16 a−1.pos 24

a−1.spLemma + a.spLemma 29 a:p|linePath.distance 55

a:p|dpPath.distance 22 a:p|dpPathPred.dprel.bag 53

a:p|dpPath.spForm.seq 12 a:p|dpPathArgu.spForm.seq 11

a:p|dpPathArgu.spLemma.bag 84 a:p|dpPathPred.spLemma.bag 2

a:p|dpPathArgu.spLemma.seq 17 a:p|dpPath.spPos.bag 65

a:p|dpPathPred.spPos.bag 64 a:p|dpPathArgu.dprel.seq 28

a:p|linePath.spLemma.seq 42 a:p|linePath.spLemma.bag 27

a:p|dpPathPred.spPos 62 a.existSemdprel A0 67

a.existSemdprel A1 56 a.existSemdprel A2 57

a.semdprel = A2 ? 77 a.dprel = OBJ ? 73

a.form + a.children.pos.seq 10 a.pos + p.pos 45

a.spLemma + a.dprel 87 a.spLemma+a.dprel+a.h.spLemma 19

a1.lemma 14 a1.spPos 69

(a:p|dpTreeRelation) + a.spPos 81 (a:p|dpPath.dprel.seq) + p.spPos 18

a−1.isCurPred.spLemma + a.isCurPred.spLemma 41

a−2.isCurPred.lemma + a−1.isCurPred.lemma 58

a.isCurPred.spLemma + a1.isCurPred.spLemma 74

a.lowSupportVerb:p|dpPath.dprel.seq 33

a.lowSupportVerb:p|dpPathArgu.dprel.seq 34

a.lowSupportVerb:p|dpPathArgu.spPos.seq 35

a.lowSupportVerb:p|dpPathShared.dprel.seq 36
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a.lowSupportVerb:p|dpPathShared.spPos.seq 37

a.lowSupportVerb:p|dpPathPred.dprel.seq 38

a.lowSupportVerb:p|dpPathPred.spPos.seq 39

a.highSupportNoun:p|dpPath.dprel.seq 83

a.lowSupportVerb:p|dpPath.dprel.seq 30

(a.highSupportVerb:p|dpTreeRelation) + a.spPos 44

Table 14: Feature templates of Ss
P besides Tables 10 and 11

Template Rank Template Rank

p.lemma + p.currentSense 100 p.currentSense + a.lemma 61

a.form + p.semdprel is ctype ? 90 a.form + p.ctypeSemdprel 91

a.form + p.semdprel is rtype ? 92 a.form + p.rtypeSemdprel 93

p.dprel 8 p.children.pos.seq 6

p.rm.dprel 46 p.lowSupportProp:p|dpTreeRelation 12

p−1.spForm + p.spForm 54 p.voice 9

p.lemma+p1.lemma 18 p.pos + p.dprel 5

p.splemma 88 p.spLemma+p.h.spForm 3

p.spPos + p.children.dprel.bag 15 p.spPos + p1.spPos 14

p1.spForm 26 a−1.isCurPred.lemma 28

a.isCurPred.pos 84 a.isCurPred.spPos 96

a1.isCurPred.Lemma 37 a1.isCurPred.spLemma 22

a:p|direction 57 (a:p|dpPath.dprel.seq) + a.spForm 11

a.form.baseline Mod 73 a.pos.baseline Mod 74

a.spForm.baseline Mod 75 a.baseline Mod 76

a.lm.Lemma 59 a.lm.spForm 60

a.lm.spPos 65 a.rm.lemma 81

a.highSupportNoun.pos 62 a.highSupportNoun.spPos 20

a.highSupportVerb.spPos 42 a.lowSupportNoun.pos 87

a.lowSupportPorp.spLemma 98 a.lowSupportVerb.pos 56

a−1.spLemma+a.spLemma 38 a:p|dpPathPred.spLemma.seq 63

a:p|linePath.spForm.seq 80 a:p|linePath.spLemma.seq 53

a:p|linePath.spLemma.bag 86 a:p|linePath.spPos.seq 51

a:p|linePath.spPos.bag 66 a:p|dpPathPred.spPos 39

a.existSemdprel A0 49 a.existSemdprel A1 1

a.form 94 a.form = p.form ? 40

a.form + a.form 95 a.lemma 43

a.lemma + a.dprel 21 a.lemma + a.h.form 29

a.lemma + a.pphead.form 44 a.spForm = p.spForm ? 89

a.spLemma + a.pphead.spForm 24 a.spPos + a.spPos 82

(a:p|dpPath.dprel.seq) + p.form 45 (a:p|dpPath.dprel.seq) + p.spForm 25

(a:p|dpPath.dprel.seq) + a.form 13

p.lm.form + p.noFarChildren.spPos.bag + p.rm.form 52

a−2.isCurPred.lemma + a−1.isCurPred.lemma 64

a.isCurPred.pos + a1.isCurPred.pos 99

a.isCurPred.spLemma + a1.isCurPred.spLemma 23

a.form.baseline Ax + a.voice + (a:p|direction) 77

a.spForm.baseline Ax+ a.voice + (a:p|direction) 78

a.spPos.baseline Ax + a.voice + (a:p|direction) 79

a.highSupportNoun:p|dpPathShared.dprel.seq 30

a.highSupportVerb:p|dpPathShared.dprel.seq 68
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a.lowSupportNoun:p|dpPath.dprel.seq 16

a.lowSupportNoun:p|dpPathArgu.dprel.seq 31

a.lowSupportNoun:p|dpPathArgu.spPos.seq 32

a.lowSupportNoun:p|dpPathShared.dprel.seq 33

a.lowSupportNoun:p|dpPathShared.spPos.seq 34

a.lowSupportNoun:p|dpPathPred.dprel.seq 17

a.lowSupportVerb:p|dpPathArgu.dprel.seq 69

a.lowSupportVerb:p|dpPathArgu.spPos.seq 70

a.lowSupportVerb:p|dpPathShared.dprel.seq 71

a.lowSupportVerb:p|dpPathShared.spPos.seq 72

(a.highSupportVerb:p|dpTreeRelation) + a.form 58

(a.lowSupportNoun:p|dpTreeRelation) + p.spPos 19

Table 15: Feature templates of Ss
N+P besides Tables 10 and 11

Template Rank Template Rank

p−1.spLemma 74 p−2.form 55

p1.spPos 19 a1.isCurPred.Lemma 71

a1.isCurPred.spLemma 53 a.children.dprel.bag 42

a.h.lemma 23 a.lm.dprel + a.pos 63

a.lm−1.lemma 31 a.lm.Lemma 29

a.pphead.lemma 27 a.pphead.spLemma 39

a.lowSupportNoun.spPos 8 a.lowSupportPorp.form 73

a.lowSupportPorp.lemma 47 a.lowSupportPorp.spForm 79

a.lowSupportPorp.spLemma 57 a−1.spPos 58

a−1.spPos + a1.spPos 54 a.semdprel = A2 ? 20

(a:p|dpTreeRelation) + p.pos 41 (a:p|dpTreeRelation) + p.spPos 21

a−2.isCurPred.spLemma + a−1.isCurPred.spLemma 61

a.lowSupportPorp:p|dpPathShared.dprel.seq 12

a.lowSupportPorp:p|dpPathShared.spPos.seq 13

a.lowSupportVerb:p|dpPath.dprel.seq 16

(a.highSupportVerb:p|dpTreeRelation) + a.form 11

(a.lowSupportNoun:p|dpTreeRelation) + p.pos 75

(a.lowSupportNoun:p|dpTreeRelation) + p.spPos 66

Table 16: Feature templates of Sl
P besides Tables 10 and 12

Template Rank Template Rank

p.rm.dprel 88 p.children.dprel.seq 27

p.lowSupportNoun.spForm 16 p.lowSupportProp:p|dpTreeRelation 72

p−1.form + p.form 103 p−1.lemma + p.lemma 91

p−1.pos+p.pos 32 p−1.spForm + p.spForm 40

p−1.spLemma 13 p−2.form + p−1.form 99

p−2.pos 18 p−2.spForm 39

p.dprel = OBJ ? 59 p.form + p.dprel 95

p.lemma + p.h.form 42 p.pos + p.dprel 1

p.spPos + p1.spPos 34 p1.spForm 86

a.voice + (a:p|direction) 75 a.isCurPred.lemma 43

a.isCurPred.spLemma 29 a.lm.dprel + a.dprel 98
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a.lm.dprel + a.pos 76 a.lm−1.spLemma 3

a.lm.pos + a.pos 19 a.lm.spForm 107

a.lm.spPos 49 a.ln.dprel + a.pos 25

a.rm1.spPos 21 a.highSupportNoun.lemma 14

a.highSupportNoun.pos 48 a.highSupportNoun.spPos 51

a.lowSupportVerb.pos 97 a.lowSupportVerb.spLemma 78

a.lowSupportVerb.spPos 12 a−1.lemma 101

a−1.spLemma+a.spLemma 77 a−2.pos 102

a:p|linePath.distance 67 a:p|dpTreeRelation 20

a:p|dpPathPred.spPos 115 a.dprel = OBJ ? 116

a.form + p.form 83 a.pos + p.pos 92

a.spForm + p.spForm 87 a.spForm + a.children.spPos.seq 53

a.spForm + a.children.spPos.bag 119 a.spLemma+a.dprel+a.h.spLemma 60

a.spLemma + a.pphead.spForm 66 a.spLemma + a1.spLemma 55

a1.pos 52 a1.spPos 23

(a:p|dpTreeRelation) + p.form 111 (a:p|dpTreeRelation) + p.spForm 8

(a:p|dpTreeRelation) + a.form 84 (a:p|dpTreeRelation) + a.spForm 41

(a:p|dpTreeRelation) + a.spPos 15 (a:p|dpPath.dprel.seq) + p.form 56

(a:p|dpPath.dprel.seq) + p.spForm 108 (a:p|dpPath.dprel.seq) + a.form 70

(a:p|dpPath.dprel.seq) + a.spForm 37

p.spForm + p.lm.spPos + p.noFarChildren.spPos.bag + p.rm.spPos 117

a−2.isCurPred.lemma + a−1.isCurPred.lemma 58

(a1:p|direction) + (a2:p|direction) 105

a.noFarChildren.spPos.bag + a.rm.spPos 22

a.highSupportVerb:p|dpTreeRelation 85

(a.highSupportVerb:p|dpTreeRelation) + a.form 47

(a.lowSupportNoun:p|dpTreeRelation) + p.form 82

(a.lowSupportNoun:p|dpTreeRelation) + p.spForm 71

Table 17: Feature templates of Sl
N besides Tables 10 and 12

Template Rank Template Rank

p.currentSense + a.spPos 69 p.rm.dprel 117

p.lm.form 101 p.lm.spForm 51

p.lowSupportNoun.spForm 99 p.lowSupportProp:p|dpTreeRelation 74

p−1.form + p.form 106 p−1.pos+p.pos 1

p−1.spForm + p.spForm 98 p−2.form + p−1.form 40

p−2.pos 87 p−2.spForm 54

p.form + p.dprel 114 p.spForm + p.dprel 115

p.spPos + p1.spPos 45 p1.spForm 37

p1.spPos 102 a.voice + (a:p|direction) 10

a.isCurPred.lemma 52 a.isCurPred.spLemma 66

a1.isCurPred.Lemma 41 a1.isCurPred.spLemma 64

a.children.dprel.bag 48 a.lm.dprel + a.dprel 70

a.lm−1.lemma 20 a.lm−1.spLemma 17

a.lm.Lemma 84 a.lm.pos + a.pos 8

a.lm.spForm 34 a.lm.spPos 59

a.ln.dprel + a.pos 63 a.rm1.spPos 111

a.lowSupportNoun:p|dpTreeRelation 93 a.lowSupportVerb.spLemma 15

a−1.lemma 81 a−1.spLemma+a.spLemma 31

a−1.spPos 109 a−1.spPos + a1.spPos 92
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a:p|linePath.distance 80 a:p|dpTreeRelation 57

a:p|dpPathPred.spPos 85 a.existSemdprel A2 77

a.semdprel = A2 ? 78 a.spForm + a.children.spPos.seq 71

a.spForm + a.children.spPos.bag 61 a.spLemma+a.dprel+a.h.spLemma 90

a.spLemma + a.pphead.spForm 62 a1.lemma 68

a1.spPos 44 (a:p|dpTreeRelation) + a.form 25

(a:p|dpTreeRelation) + a.spForm 73 (a:p|dpTreeRelation) + a.spPos 58

(a:p|dpPath.dprel.seq) + p.form 22 (a:p|dpPath.dprel.seq) + p.spForm 83

(a:p|dpPath.dprel.seq) + a.form 89 (a:p|dpPath.dprel.seq) + a.spForm 103

p.spForm + p.lm.spPos + p.noFarChildren.spPos.bag + p.rm.spPos 108

a−2.isCurPred.lemma + a−1.isCurPred.lemma 23

a−2.isCurPred.spLemma + a−1.isCurPred.spLemma 46

a.noFarChildren.spPos.bag + a.rm.spPos 95

a.highSupportNoun:p|dpPath.dprel.seq 55

a.lowSupportVerb:p|dpPath.dprel.seq 35

(a.highSupportNoun:p|dpTreeRelation) + p.form 116

(a.highSupportNoun:p|dpTreeRelation) + p.spForm 118

(a.lowSupportNoun:p|dpTreeRelation) + p.spPos 56

(a.lowSupportVerb:p|dpTreeRelation) + a.form 105

(a.lowSupportVerb:p|dpTreeRelation) + a.spForm 107

Table 18: Feature templates of Sl
N+P besides Tables 10 and 12
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