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ABSTRACT

In recent years, there are many great successes in using deep
architectures for unsupervised feature learning from data, es-
pecially for images and speech. In this paper, we introduce re-
cent advanced deep learning models to classify two emotional
categories (positive and negative) from EEG data. We train a
deep belief network (DBN) with differential entropy features
extracted from multichannel EEG as input. A hidden markov
model (HMM) is integrated to accurately capture a more re-
liable emotional stage switching. We also compare the per-
formance of the deep models to KNN, SVM and Graph reg-
ularized Extreme Learning Machine (GELM). The average
accuracies of DBN-HMM, DBN, GELM, SVM, and KNN in
our experiments are 87.62%, 86.91%, 85.67%, 84.08%, and
69.66%, respectively. Our experimental results show that the
DBN and DBN-HMM models improve the accuracy of EEG-
based emotion classification in comparison with the state-of-
the-art methods.

Index Terms— EEG, Emotion Classification, Affective
Computing, Deep Belief Network

1. INTRODUCTION

There are many early interdisciplinary researches about emo-
tion in the past decades. And emotion related study is still
very popular in many fields such as neuroscience, psycholo-
gy and computer science. In computer science, the detection
and modeling of emotion plays an important role in human
machine interaction and tries to make machines more ‘sym-
pathetic’. In multimedia content analysis, affective charac-
teristics of multimedia are important features for describing
multimedia content [1]. However, due to the fuzzy bound-
aries of emotion, the detection and modeling of emotion using
artificial intelligence and machine learning techniques still re-
mains a big challenge and many open research questions are
still remained [2].
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Among the approaches to emotion recognition, methods
based on electroencephalogram (EEG) signals are more re-
liable because of its high accuracy and objective evaluation
compared to other external appearance such as facial expres-
sion and gesture. However due to the low signal to noise ratio
(SNR), it is often very hard to analyze EEG signals ‘by hand’
even for neurophysiologists. Recent developing deep learn-
ing in machine learning community allows automated feature
extraction and feature selection and eliminates the limitation
of hand-crafted feature [3]. Besides the success in image
and speech domain, deep learning methods have been intro-
duced to process physiological signals recent years, such as
electroencephalography (EEG), electromyogram (EMG), and
electrocardiogram (ECG) [3].

Martinez et al. trained an efficient deep convolution neu-
ral network to classify four cognitive states (relaxation, anx-
iety, excitement and fun) using skin conductance and blood
volume pulse signals [3]. Martin et al. applied deep belief
nets (DBN) and hidden Markov model to detect sleep stage
using multimodal clinical sleep datasets. Their results using
raw data with a deep model were comparable to handmade
features approach [4]. Soleymani et al. proposed a user-
independent emotion recognition method with EEG and eye
gaze data and they used logarithms of the power spectral den-
sity as EEG features [1]. Duan et al. firstly introduced d-
ifferential entropy to emotion recognition and compared dis-
criminative properties of different features. They used SVM
as a classifier and achieved average accuracy of 81.17% [5].
Wang et al. systematically compared three kinds of EEG fea-
tures (power spectrum feature, wavelet feature and nonlinear
dynamical feature) for emotion classification. They proposed
an approach to track the trajectory of emotion changes with
manifold learning [6].

In this paper, we introduce recent advanced deep learning
models to EEG-based emotion classification. The main con-
tributions of this paper are as follows: First, we find that neu-
ral signatures associated with positive and negative emotions
in beta and gamma frequency bands do exist. Second, we
show that differential entropy (DE) features extracted from
EEG data possess accurate and stable information for emo-
tion classification. Finally, the paper compares the results be-
tween deep modals and shallow models like KNN, SVM and



GELM. Moreover, DBN-HMM performs well when com-
pared with the state-of-the-art classification methods.

2. METHODS

Figure 1 shows the overview of the five setups for EEG-based
emotion classification used in this work. After feature ex-
traction from multichannel EEG data, we bulid the emotion
models with different classifiers.
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Fig. 1. Overview of the five setups for EEG-based emotion
classification used in this work

2.1. Differential Entropy Feature Extraction

Differential entropy extends the idea of Shannon entropy and
is used to measure the complexity of a continuous random
variable. It has been proven that, for a fixed length EEG
segment, differential entropy is equivalent to the logarithm
energy spectrum in a certain frequency band [5]. So differ-
ential entropy can be calculated in five frequency bands (δ:
1-3Hz, θ: 4-7Hz, α: 8-13Hz, β: 14-30Hz, γ: 31-50Hz) with
O(KN logN) time complexity, where K is the number of
electrodes, N is the size of samples.

Since EEG data has the higher low frequency energy over
high frequency energy, DE has the balance ability of discrim-
inating EEG pattern between low and high frequency energy.
For a specified EEG sequence, we use a 512-point Short-Time
Fourier Transform with a non-overlapped Hanning window of
1s to extract five frequency bands signals of raw EEG signals
and calculate differential entropy for each frequency band.

2.2. Classification with GELM

Extreme Learning Machine (ELM) is a single hidden layer
feed forward neural networks (SLFNs). Peng et al. pro-
posed a discriminative Graph regularized Extreme Learning
Machine (GELM) based on the idea that similar samples
should share similar properties and obtain much better per-
formance in comparison with other state-of-the-art models for
face recognition [7].

Given a training data set L = {(xi, ti)|xi ∈ Rd, ti ∈
Rm}, where xi = (xi1, xi2, · · · , xid)

T and ti = (ti1, ti2, · ·
·, xim)T . In GELM, the adjacent W is defined as follows:

xi =

{
1/Nt, if both hi and hj belong to the tth class
0, otherwise;

(1)
where hi = (g1(xi), · · · , gK(xi))

T and hj =
(g1(xj), · · · , gK(xj))

T are hidden layer output for two
input samples xi and xj . Then we can compute the graph
Laplacian L = D − W , where D is a diagonal matrix
and each of the entries in D is the column sums of W .
Therefore GELM incorporate two regularization terms into
conventional ELM model. The objective function of GELM
is as follows:

min
β

||Hβ − T ||22 + λ1Tr(HβLβTHT ) + λ2||β||22 (2)

where Tr(HβLβTHT ) is the graph regularization term,
||β||2 is the l2-norm regularization term, and λ1 and λ2 are
regularization parameters to balance two terms.

By setting the differentiate of the objective function (2)
with respect to β as zero, we have

β = (HHT + λ1HLHT + λ2I)
−1HT (3)

In GELM, the constraint imposed on output weights en-
forces the output of samples from the same class to be similar.
The constraint can be formulated as a regularization term to
the objective function of basic ELM, which also makes the
output weight matrix calculated directly.

2.3. Classification with DBN and HMM

Deep Belief Networks (DBN) is a probabilistic generative
model with deep architecture, which characterizes the input
data distribution using hidden variables. A DBN is construct-
ed by stacking a predefined number of restricted Boltzmann
machines (RBMs) on top of each other where the output from
a lower-level RBM is the input to a higher-level RBM, see
Figure 2. An efficient greedy layer-wise algorithm is used to
pre-train each layer of networks.

In an RBM, the joint distribution p(v, h; θ) over the visi-
ble units v and hidden units h, given the model parameters , is
defined in terms of an energy function E(v, h; θ) of

p(v, h; θ) =
exp(−E(v, h; θ))

Z
(4)

For a Bernoulli (visible) - Bernoulli (visible) RBM, the
energy function is defined as

E(v, h; θ) = −
I∑

i=1

J∑
j=1

wijvihj −
I∑

i=1

bivi −
J∑

j=1

bjhj (5)



where wij is the symmetric interaction term between visible
unit vi and hidden unit hj , bi and aj are the bias term, I and
J are the numbers of visible and hidden units, respectively.
The conditional probabilities cans be efficiently calculated as

P (hj = 1|v; θ) = σ(

I∑
i=1

wijvi + aj) (6)

P (vj = 1|h; θ) = σ(
J∑

j=1

wijhj + bi) (7)

where σ(x) = 1/(1 + exp(x)).

...

...

...

Fig. 2. The graphical depiction of DBN

Taking the gradient of the log likelihood log p(v; θ),we
can derive the update rule for the RBM weights as:

△wij = Edata(vihj)− Emodel(vihj) (8)

where Edata(vihj) is the expectation observed in the train-
ing set and Emodel(vihj) is that same expectation under the
distribution defined by the model. But Emodel(vihj) is in-
tractable to compute so the contrastive divergence (CD) ap-
proximation to the gradient is used where Emodel(vihj) is
replaced by running the Gibbs sampler initialized at the data
for one full step.

EEG-based emotion recognition is actually a sequen-
tial pattern recognition and emotional states change slowly.
Therefore, we combine DBN and HMM to form a DBN-
HMM model. The HMM, based on dynamic programing op-
erations, can help port the strength of a static classifier to han-
dle dynamic or sequential patterns. Combining DBN and H-
MM can help bridge the gap between static and sequence pat-
tern recognition, which has been successfully used in sleep
stage classification using EEG [4].

3. EXPERIMENTS

In the experiment, we choose some emotional movie clips to
help subjects elicit their own emotion states. There are total-
ly twelve clips (six for positive and six for negative ) in one

experiment and each of them last for about 4 minutes. All the
movie clips are carefully chosen as stimuli to help elicit sub-
jects’ right emotion, which include Schindler’s List, Titanic,
The Sound of Music, Les Miserables, The Day After Tomor-
row, Kung Fu Panda, and High School Musical. The selection
criteria for movie clips are as follows: (a) the length of the w-
hole experiment should not be too long in case it will make
subjects fatigue; (b) the videos should be understood without
explanation; and (c) the videos should elicit a single desired
target emotion.

Three men and three women with self-reported normal or
corrected-to-normal vision and normal hearing participated in
the experiments. In advance, the participating test subject will
be informed about the procedure. Subjects were instructed to
sit comfortably, watch the forthcoming movie clips attentive-
ly, and refrain as much as possible from overt movements.
Subjects got paid for their participation after the experiments.
Each subject participated in the experiment twice at intervals
of one week or longer.

We performed the experiments in a quiet environment in
the morning or early in the afternoon. EEG was recorded us-
ing an ESI NeuroScan System at a sampling rate of 1000 Hz
from 62-channel electrode cap according to the internation-
al 10-20 system. To remove eye-movement artifacts, we also
recorded the electrooculogram (EOG). A pressure sensor was
employed to record the response from the subjects in the ex-
periments. There is a 10s hint before each clips and 20s rest
after each clip. Figure 3 shows the detailed protocol. For
further analysis, the raw EEG data was first downsampled to
200Hz sampling rate. In order to filter the noise and remove
the artifacts, The EEG data was then processed with a band-
pass filter between 0.3Hz to 50Hz.

Session K-2 Session K-1 Session K Session K+1 Session K+2

Hint of 
start

Movie 
clip

Rest

10 sec 4 min 20 sec

Posi!ve 

Emo!on

Posi!ve 

Emo!on

Posi!ve 

Emo!on

Nega!ve 

Emo!on

Nega!ve 

Emo!on

Fig. 3. Protocol of the EEG experiment

4. RESULTS AND DISCUSSION

4.1. Differential Entropy Feature

After transforming EEG sequences into frequency domain,
we extract the differential entropy feature for each frequen-
cy band (Delta, Theta, Alpha, Beta and Gamma) and each
channel (62 channels). We totally get 310 DE features for
each sample. All the features used here are further smoothed
by offline linear dynamic system (LDS) approach to filter out



noise that is unrelated to emotional states. The DE feature
map of one experiment is shown in Figure 4.
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Fig. 4. The DE feature map in one experiment. Time frames
are on the horizontal axis, and DE features are on the vertical
axis.

Previous researches have shown that higher frequency
brain activity reflects emotional and cognitive processes [8]
[9]. The observed frequencies have been divided into specific
groups, as specific frequency ranges are more prominent in
certain states of mind. High frequency bands (Beta and Gam-
ma) have more discriminative information for emotion recog-
nition than lower ones. As shown in Figure 4, the high fre-
quency oscillation has specified patterns for positive or nega-
tive tasks, which is very useful for emotion recognition.

4.2. Classifier Training

This study employed and evaluated five classifiers, KNN,
SVM, GELM, DBN, DBN-HMM, for EEG-based emotion
recognition. For training and testing, data from the first eight
sessions of one experiment were used to train the model, and
the data from the rest four sessions in the same experiment
were used to test it. For KNN, we chosed k=1 for baseline.
We also used SVM to classify the emotion state for each EEG
segment. Here we used LIBSVM software to build the SVM
classifier and employed linear kernel.

For GELM, there are three hyper-parameters: the number
of hidden nodes, the parameter λ1 for graph regularization
and λ2 for l2-norm regularization. Previous GELM literature
has shown that the performance of GELM is not sensitive to
the number of hidden nodes. So we set this parameter as 10
times the dimension of input data in all our experiments. We
just tuned the two regularization parameters in this study.

For Deep Belief Networks (DBN), we constructed a DBN
with two hidden layers. The DBN structure for unsupervised

learning stage is 310-100-30 and for supervised learning stage
is 310-100-30-2. The mini-batch size in unsupervised learn-
ing stage and supervised learning stage is 200. We set both
the unsupervised learning rate and supervised learning rate as
0.05 in the experiment. Before putting DE features into DBN,
Scaling to values between 0 and 1 is done by subtracting the
mean, divided by the standard deviation and finally adding
0.5. We implemented DBN with the DBNToolbox Matlab
code [4] in this study.

4.3. Classification Performance

The performance of different classifiers applied with DE fea-
tures in twelve experiments of six subjects are shown in Ta-
ble 1. We also compare the performance of DE feature on dif-
ferent frequency bands (Delta, Theta, Alpha, Beta, and Gam-
ma). Figure 5 shows the plot of the average accuracies for
different classifiers in five frequency bands. As we can see
from Table 1 and Figure 5, Gamma and Beta frequency bands
perform better than other frequency bands. The result shows
that beta and gamma oscillation of brain activity are more re-
lated than other frequency oscillation.
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Fig. 5. The average accuracies for different classifiers in five
frequency bands and total frequency bands

From the average accuracies and standard deviations in
Table 1, we can see that GELM performs better than oth-
er classifiers in low individual frequency features, DBN per-
forms better in high individual frequency features and all fre-
quency features. This shows DBN has an ability to perform
feature selection procedure to filter out the unrelated features
and achieves a better result. Feature extraction and feature
selection are crucial phases in the process of emotion model-
ing. The efficiency of DBN model can combine feature ex-
traction and feature selection when doing unsupervised and
supervised learning.

While the average accuracies for different classifiers in
five frequency bands are demonstrated in Figure 5, it is also



Table 1. Classification accuracies using different classifiers and different frequency bands
Subject Trial Classifier Delta(%) Theta(%) Alpha(%) Beta(%) Gamma(%) Total1(%)

#1

1
GELM 77.33 66.28 65.70 89.97 85.32 77.33
SVM 53.83 65.96 60.21 67.87 47.02 65.53
DBN 57.10 63.23 65.32 72.58 65.81 74.19

DBN-HMM 57.90 62.26 69.36 71.45 65.32 74.35

2
GELM 64.83 70.49 72.97 76.04 86.19 73.55
SVM 47.87 66.17 54.89 65.11 75.53 78.30
DBN 47.10 56.13 55.81 76.94 86.45 80.48

DBN-HMM 47.10 59.52 57.26 78.06 87.26 81.13

#2

1
GELM 65.26 48.98 97.24 97.82 97.97 97.67
SVM 62.55 68.72 93.62 97.45 97.45 97.45
DBN 65.32 65.00 95.97 98.06 98.06 97.26

DBN-HMM 67.26 65.16 96.29 98.06 98.06 98.06

2
GELM 77.03 51.45 93.75 97.67 97.82 97.38
SVM 62.55 68.72 93.62 97.45 97.45 97.45
DBN 64.84 60.65 91.29 98.06 98.06 98.06

DBN-HMM 66.13 58.87 92.58 98.06 98.06 98.06

#3

1
GELM 65.26 64.97 71.51 68.90 74.13 73.84
SVM 45.32 44.26 45.74 60.85 75.32 77.66
DBN 52.10 55.48 65.65 70.00 83.06 86.61

DBN-HMM 52.26 54.68 70.81 71.29 82.58 87.10

2
GELM 81.70 61.00 58.91 78.81 87.32 79.78
SVM 47.92 53.39 55.47 63.02 84.38 77.08
DBN 67.05 57.57 61.40 73.21 73.54 78.37

DBN-HMM 67.89 54.74 55.24 73.54 73.71 79.70

#4

1
GELM 64.85 65.17 73.03 94.06 94.54 90.37
SVM 41.93 48.44 48.44 89.84 95.05 77.60
DBN 58.74 47.42 75.21 84.53 92.85 80.87

DBN-HMM 58.90 46.26 78.54 86.69 93.18 82.70

2
GELM 71.11 77.21 76.73 94.22 97.59 92.13
SVM 63.54 66.93 60.68 90.88 91.41 94.27
DBN 67.22 58.07 62.40 91.85 95.51 87.19

DBN-HMM 70.22 59.57 64.56 91.68 96.01 89.35

#5

1
GELM 59.59 45.49 51.16 71.08 87.94 83.14
SVM 64.89 60.85 63.83 79.15 79.57 84.26
DBN 77.90 56.13 55.16 84.03 86.13 89.03

DBN-HMM 79.84 56.13 57.58 84.84 86.29 90.48

2
GELM 59.30 45.64 41.28 39.10 46.80 76.02
SVM 56.38 54.68 51.06 72.98 80.85 82.13
DBN 52.58 57.42 58.87 83.06 75.16 84.19

DBN-HMM 52.10 59.19 59.68 84.84 75.97 83.71

#6

1
GELM 75.92 63.24 78.81 97.43 95.67 91.19
SVM 54.69 42.45 88.02 96.61 95.05 86.38
DBN 59.40 48.75 73.38 92.51 93.34 92.97

DBN-HMM 59.40 48.92 76.21 91.18 93.68 93.23

2
GELM 67.90 69.02 89.89 97.59 97.75 95.67
SVM 54.17 77.34 91.93 96.61 91.93 90.89
DBN 57.90 72.05 79.53 95.17 97.67 93.68

DBN-HMM 58.40 75.37 80.70 95.67 97.84 93.51

Mean
GELM 68.37 61.63 70.88 84.60 87.99 85.67
SVM 56.43 59.57 66.59 82.97 85.86 84.08
DBN 61.98 58.36 69.22 85.96 88.40 86.91

DBN-HMM 61.45 58.39 71.57 85.45 87.33 87.62

Std.
GELM 7.35 10.42 16.75 17.79 14.71 9.37
SVM 7.70 11.02 18.84 14.84 14.36 9.66
DBN 8.36 6.69 13.40 10.16 10.84 7.62

DBN-HMM 9.16 7.52 13.72 9.95 10.93 7.48
1 ‘Total’ represents the combination of five EEG frequency bands.

important to see classification accuracies for each subject. Ta-
ble 1 shows classification accuracies for four classifiers on 6
subjects, each subject for 2 trials. From Table 1, we can see
that while the accuracies vary between different subjects, DB-
N and DBN-HMM outperform over other existing methods
for most subjects according to the results of total frequency
bands. There are many factors that may affect the classifica-
tion accuracies between the subjects, including subjects’ edu-

cation background, sociability and their true evoked emotion-
al state when participating in the experiments. The confusion
matrix of different classifiers on one trial experiment for one
subject is shown in Figure 6.

One of the good questions is whether there exists an ef-
ficient model that reliably and robustly identifies emotion in
different time for each subject. From Table 1, we can see that
our models can achieve similar prediction accuracies for each



Fig. 6. The confusion matrix of different classifiers on one
trial experiment for one subject (the numbers are shown in
percents)

subject’s two trials, despite manifest differences between peo-
ple’s psychology, which shows the potential strength of the
proposed methods to identify emotion in different time.

The best accuracy of all frequency-band features is
achieved with the DBN-HMM, followed by DBN, GELM,
SVM and lastly KNN. The means and standard deviations
of accuracies in percentage (%) of KNN, SVM, GELM, DB-
N, and DBN-HMM are 69.66/19.80, 84.08/9.66, 85.67/9.37,
86.91/7.62, 87.62/7.48. The results show that DBN-HMM
and DBN models outperform over other models with high-
er mean accuracy and lower standard deviations. The DB-
N model achieves 2.83% higher accuracy and 2.04% lower
standard deviation than SVM. DBN-HMM model achieves
3.54% higher accuracy and 2.18% lower standard deviation
than SVM. DBN-HMM perform slightly better than DBN.
While GELM sometimes can achieve best performance for
some trials, the results of GELM fluctuate more between sub-
jects than DBN and DBN-HMM.

5. CONCLUSION

This study measures brain activity based on EEG and uses
machine learning methods to accurately read emotions in in-
dividuals. This paper applied deep learning (DL) to the con-
struction of reliable models of emotion recognition from EEG
data. The algorithm was tested on 62 channels EEG signals
for predicting the positive and negative emotional states while
watching emotionally laden movie clips. The dataset was de-
rived from 6 subjects, each for two trails at intervals of one
week or longer. We also compared the performance with KN-
N, SVM and GELM in this study.

In this paper, the experiment results show that high
frequency-band (beta and gamma) features are more related to

emotion recognition, which is consistent with previous work,
proposing higher frequency brain activity reflecting emotion-
al and cognitive processes [8] [9]. We also showed that the
DBN and DBN-HMM methods obtained higher accuracy and
lower standard deviation than GELM, SVM and KNN. The
reliability of classifications achieved suggests that such neu-
ral signatures associated with positive or negative emotions
do exist.
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