Machine Learning

Xz Gene H
Eric Xing

Graphical Models

Reading:

© Eric Xing @ CMU, 2006-2010




Multivariate Distribution in High- | $32¢
D Space oo
e A possible world for cellular signal transduction:
[ Receptor A ] X, [ Receptor B ] X,
[ Kinase C ] X3 [ Kinase D ] X4 [ Kinase E ] X
[ TFF } X,
[ Gene G ] X [ Gene H ] Xg
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Recap of Basic Prob. Concepts %
e Representation: what is the joint probability dist. on multiple
variables?
P(X{ X5, X3, X4, X5, X, X5, Xg,)
A ] ]
e How many state configurations in total? --- 28
e Are they all needed to be represented? — — —
e Do we get any scientific/medical insight? ]
L

e Learning: where do we get all this probabilities?

e Maximal-likelihood estimation? but how many data do we need?

e Where do we put domain knowledge in terms of plausible relationships between variables, and
plausible values of the probabilities?

e Inference: If not all variables are observable, how to compute the
conditional distribution of latent variables given evidence?

e Computing p(H A) would require summing over all 26 configurations of the
unobserved variables
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What is a Graphical Model? 13
--- example from a signal transduction pathway o

e A possible world for cellular signal transduction:

[ReceptorA ] X, [ReceptorB ] X,

[ Kinase C ] X3 [ Kinase D ] X4 [ Kinase E ]x5

[ TFF } X,
[ Gene G ] X7 [ Gene H ] Xs
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GM: Structure Simplifies
Representation

e Dependencies among variables

o l _____________________________________________________________________ Membrane !

[ Kinase C ] X3 [ Kinase D ] X, [ Kinase E }:<5

1
Nucleus i
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Probabilistic Graphical Models,
con'd

a If Xi's are conditionally independent (as described by a PGM;, the

joint can be factored to a product of simpler terms, e.g.,
Receptor A X X,

P(Xy, Xy, X3, Xy, X, Xg, X7, Xg)

= P(Xy) P(X;) P(X5| Xy) P(Xy] X,) P(Xq| Xy)
P(Xel X3, Xg) P(X7] Xg) P(Xg| Xs, Xo)

5

a Why we may favor a PGM?

» Representation cost: how many probability statements are needed?

2+2+4+4+4+8+4+8=36, an 8-fold reduction from 28!

= Algorithms for systematic and efficient inference/learning computation
» Exploring the graph structure and probabilistic (e.g., Bayesian, Markovian) semantics

= |ncorporation of domain knowledge and causal (logical) structures
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Specification of a BN

e There are two components to any GM:

e the qualitative specification
e the quantitative specification
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Qualitative Specification

e Where does the qualitative specification come from?

Eric Xing

Prior knowledge of causal relationships

Prior knowledge of modular relationships

Assessment from experts

Learning from data

We simply link a certain architecture (e.g. a layered graph)

© Eric Xing @ CMU, 2006-2010




Two types of GMs

e Directed edges give causality relationships (Bayesian
Network or Directed Graphical Model):

P(Xy, X,, X3, Xy, Xe, Xg, X7, Xg)

= P(Xy) P(X3) P(X5| Xy) P(X4] X5) P(Xs| Xy)
P(Xgl X3, X4) P(X7] Xg) P(Xg| X5, Xo)

e Undirected edges simply give correlations between variables
(Markov Random Field or Undirected Graphical model):

POX,, X Xgr Xay Xes Xe, Xy Xg)
(o )x [
= UZ exp{E(X)+EX)+E (X5, X;)+E(Xy, X)+E(Xs, X)) )
+ E(Xe X3, Xp)+E(X7, Xe)TE(Xg, X5, Xe)} -
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Bayesian Network:

e A BN is a directed graph whose nodes represent the random
variables and whose edges represent direct influence of one
variable on another.

e Itis a data structure that provides the skeleton for representing a
joint distribution compactly in a factorized way;

e |t offers a compact representation for a set of conditional
Independence assumptions about a distribution;

e \We can view the graph as encoding a generative sampling process
executed by nature, where the value for each variable is selected by
nature using a distribution that depends only on its parents. In other
words, each variable is a stochastic function of its parents.
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Bayesian Network: Factorization Theorem

e Theorem:

Given a DAG, The most general form of the probability
distribution that is consistent with the graph factors according
to “node given its parents™:
P(X)=] [ P(X1X,)
i=1:d
where X is the set of parents of X;, d is the number of nodes
(variables) in the graph.

P(Xy, Xp, Xay Xgs Xe, Xgr X Xo)

:> = P(Xy) P(Xp) P(X5| Xp) P(X,| X3) P(X5] Xy)
P(Xel X3, X,) P(X7| Xg) P(Xg| Xs, X¢)
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000
Bayesian Network: Conditional 555:
Independence Semantics oo
Structure: DAG P T

« Meaning: a node is o
conditionally independent
of every other node in the ot@ M

network outside its Markov
blanket

Local conditional distributions X’ﬂ‘

(CPD) and the DAG <@ N

completely determine the \\‘ -

joint dist. child ) \‘

- Children's co-parent ]

Descendent

Give causality relationships,
and facilitate a generative
process
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Local Structures &
Independencies

e Common parent CB8 D
e Fixing B decouples A and C

"given the level of gene B, the levels of A and C are independent” @ O

e (Cascade

e Knowing B decouples A and C CA_> B > CC O

"given the level of gene B, the level gene A provides no
extra prediction value for the level of gene C"

e Knowing C couples A and B
because A can "explain away" B w.r.t. C CC D

"If A correlates to C, then chance for B to also correlate to B will decrease"
e The language is compact, the concepts are rich!
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A simple justification
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Graph separation criterion

e D-separation criterion for Bayesian networks (D for Directed
edges):

Definition: variables x and y are D-separated (conditionally

independent) given z if they are separated in the moralized
ancestral graph

e Example:

X
X x{ y—
. Y
— z y = z Y

original graph ancestral moral ancestral
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Global Markov properties of
DAGs

e X is d-separated (directed-separated) from Z given Y if we can't
send a ball from any node in X to any node in Z using the "Bayes-
ball* algorithm illustrated bellow (and plus some boundary
conditions):

C: Sl . l— : :: i: :” .
- » Defn: I{&)=all independence
properties that correspond to d-

& separation:

/ 1(G) = {X L 2|V :dsep (X;Z|Y)]

K/D %/5 « D-separation is sound and complete
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Example: e
‘ X4 e Complete the I(G) of this
graph:
X g a
X) LYz,
s X Xo L,
Yo | X f X)
X2 Xz [ Y| Y49 X
X LY+ | X,
Yq LYo (X7

\z‘tl. X1 XS(%[
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Towards quantitative specification of
probability distribution

e Separation properties in the graph imply independence
properties about the associated variables

e Forthe graph to be useful, any conditional independence
properties we can derive from the graph should hold for the
probability distribution that the graph represents

e The Equivalence Theorem

For a graph G,

Let 9, denote the family of all distributions that satisfy 1(G),

Let 9, denote the family of all distributions that factor according to G,
Then 9,=9,.
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Example

e Speech recognition

- )
) A OO0
=lillii="0006 ¢

Hidden Markov Model
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Knowledge Engineering

e Picking variables

Observed
Hidden

e Picking structure

e Picking Probabilities

Eric Xing

CAUSAL
Generative

Zero probabilities
Orders of magnitudes
Relative values

© Eric Xing @ CMU, 2006-2010
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Example, con'd

e Evolution

ancestor

T years

Tree Model
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Example, con'd

e Genetic Pedigree
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Conditional probability tables
(CPTs)

a® |0.75 b% 10.33

0.67

P(a,b,c.d) =
P(a)P(b)P(c|a,b)P(d|c)

a' 10.25 b

afho a%b? a'lbo a'b?
cO 0.45 1 0.9 0.7
c! 0.55 0 0.1 0.3
l __
‘ do 0.3 |05
d? 07 0.5
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Conditional probability density
func. (CPDs)

P(a,b,c.d) =
A~N(u,, 2)  B~N(uy, 5,) P(a)P(b)P(c|a,b)P(d|c)

o
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Conditionally Independent
Observations

Model parameters

@O--DD o
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“Plate” Notation

Eric Xing

‘ Model parameters
|

Data = {y,,...V,}

I=1:n

Plate = rectangle in graphical model

variables within a plate are replicated
In a conditionally independent manner

© Eric Xing @ CMU, 2006-2010
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Example: Gaussian Model

.o

I=1:n

Generative model:

P(Y1s---¥Yn | 1, ©)

» Likelihood = p(data | parameters)

=p(D]6)
=L(9)

= P p(yl | H, G)

= p(data | parameters)

= p(D |0)
where 0 = {, &}

= Likelihood tells us how likely the observed data are conditioned on a
particular setting of the parameters

Eric Xing

= Often easier to work with log L (0)

© Eric Xing @ CMU, 2006-2010
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Example: Bayesian Gaussian
Model

© o0 ®

&

I=1:n

Note: priors and parameters are assumed independent here
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Markov Random Fields

Structure: an undirected
graph

* Meaning: a node is
conditionally independent of
every other node in the network
given its Directed neighbors

 Local contingency functions
(potentials) and the cliques in
the graph completely determine
the joint dist.

 Give correlations between

variables, but no explicit way to
generate samples

Eric Xing © Eric Xing @ CMU, 2006-2010
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Global Markov property

e Let Hbe an undirected graph:

X4
zYC

e B separates A and C if every path from a node in A to a node
in C passes through a node in B: sep,, (A;C\B)

e A probability distribution satisfies the global Markov property
if for any disjoint A, B, C, such that B separates Aand C, A is
independent of C given B: I(H) = {AL C‘B) :sep, (A;C\B)}
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Soundness and completeness of
global Markov property

e Defn: An UG H is an I-map for a distribution P if [(H) < I(P),
l.e., P entails I(H).

e Defn: Pis a Gibbs distribution over H if it can be represented
as

P(Xl""’Xn) :él—[l//c(xc)

ceC

e Thm (soundness): If P is a Gibbs distribution over H, then H
Is an I-map of P.

e Thm (completeness): If —sep,(X; Z|Y), then X £ Z |Y'in
some P that factorizes over H.

Eric Xing © Eric Xing @ CMU, 2006-2010

31




Representation

e Defn: an undirected graphical model represents a distribution
P(X,,...,X,) defined by an undirected graph H, and a set of
positive potential functions y, associated with cliques of H,

s.t.
P(Xl’ ’Xn)_ HWC(X )

ceC
where Z is known as the partition function:

Z_ Z HWC(X)

4 X, €eC
e Also known as Markov Random Fields, Markov networks ...

e The potential function can be understood as an contingency
function of its arguments assigning "pre-probabilistic”" score of
their joint configuration.

Eric Xing © Eric Xing @ CMU, 2006-2010 32




Cliques

e For G={V,E}, a complete subgraph (clique) is a subgraph
G={V'1V,E'|E} such that nodes in V' are fully interconnected

o A gmaximal) clique is a complete subgraph s.t. any superset
V"EV'is not complete.

e A sub-clique is a not-necessarily-maximal clique.

2wwS

e Example: G

e max-cliques = {A,B,D}, {B,C,D},
e sub-cliques = {A,B}, {C,D}, ...~ all edges and singletons

Eric Xing © Eric Xing @ CMU, 2006-2010
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Example UGM — using max i
cliques oo
P(XI’XZ’X3’X4):%WC(X124)XWC(X234) |

L= ZWC(X124)XWC(X234) |

X11X2,X3,X4

e For discrete nodes, we can represent P(X,.,) as two 3D tables
instead of one 4D table
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Example UGM — using subcliques

2wS

e X1

1
P(X1’X2’X3’X4):EHWij(Xij) x2"
ij

1
= Wi (Xp2 W14 (X14 )W 23 (X23)W 24 (X24 )1 34 (X34)

Z
L= Z HWij(Xij)

X1, X2,X3,Xq 1]

e For discrete nodes, we can represent P(X,.,) as 5 2D tables
instead of one 4D table
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Interpretation of Cliqgue Potentials

——32

e The model implies X_1LZ|Y. This independence statement
implies (by definition) that the joint must factorize as:

px.y.z)=py)px|y)p(z|y)

e \We can write this as:

Py 2) =P PPEIY)
pix.y.2)=p(x1y)p(z.y)

e cannot have all potentials be marginals

e cannot have all potentials be conditionals

e The positive clique potentials can only be thought of as

general "compatibility

"
J

goodness" or "happiness" functions

over their variables, but not as probability distributions.

Eric Xing
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Exponential Form

e Constraining clique potentials to be positive could be inconvenient (e.g.,
the interactions between a pair of atoms can be either attractive or
repulsive). We represent a clique potential y (x.) in an unconstrained
form using a real-value "energy" function ¢.(x.):

V. (Xc) — exp{_ ¢c (Xc)}

For convenience, we will call ¢.(x.) a potential when no confusion arises from the context.

e This gives the joint a nice additive strcuture

(X)——exp{ D ¢ (X )} —eXP{ H (x)}

ceC
where the sum in the exponent is called the "free energy":

H(X) =2 ¢.(X.)

ceC

e |n physics, this is called the "Boltzmann distribution”.
e |n statistics, this is called a log-linear model.
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Example: Boltzmann machines

2NpS

e A fully connected graph with pairwise (edge) potentials on
binary-valued nodes (for x, e {~1,+1}or x, € {0,1}) is called a
Boltzmann machine

1 '
P(Xl’ Xz, X3, X4) = EeXp< Z¢U (XI,XJ)}
L

=%exp<26’ijxixj + > X, +C}
L i i
e Hence the overall energy function has the form:
H(x) = Zij (X — 10y (X; = p1) = (X— 1) O(x~ 1)
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Example: Ising (spin-glass)

models

e Nodes are arranged in a regular topology (often a regular
packing grid) and connected only to their geometric

neighbors.

e Same as sparse Boltzmann machine, where e,fso iff 7/ are

neighbors.
e.g., nodes are pixels, potential function encourages nearby pixels to have similar

intensities.

0O0O00O0
00000
0OO00O0

660660

e Potts model: multi-state Ising model.

Eric Xing
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Example: Modeling Go

Eric Xing

This is the middle position of a Go game.
Overlaid is the astimate for the probability of
becoming black or white for every intersection.
Large squares mean the probability is higher.

R N R e e
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GMs are your old friends

Density estimation m,s °
Parametric and nonparametric methods X
X
Regression
J X Y
Linear, conditional mixture, nonparametric o O
Q Q

Classification

Generative and discriminative approach X X
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An
(incomplete)
genealogy
of graphical
models

SBEM,
Boltzrmann
hMachines

Cooperative

Suantization

Wector

(Picture by Zoubin
Ghahramani and
Sam Rowelis)

Eric Xing
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Mixture of
Saussians
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Why graphical models

e Probability theory provides the glue whereby the parts are combined,
ensuring that the system as a whole is consistent, and providing ways to
interface models to data.

e The graph theoretic side of graphical models provides both an intuitively
appealing interface by which humans can model highly-interacting sets of
variables as well as a data structure that lends itself naturally to the design of
efficient general-purpose algorithms.

e Many of the classical multivariate probabilistic systems studied in fields
such as statistics, systems engineering, information theory, pattern
recognition and statistical mechanics are special cases of the general
graphical model formalism

e The graphical model framework provides a way to view all of these systems
as instances of a common underlying formalism.

--- M. Jordan
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