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Multivariate Distribution in High-
D SpaceD Space
 A possible world for cellular signal transduction: 
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TF F X6
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Recap of Basic Prob Concepts
 Representation: what is the joint probability dist. on multiple 

Recap of Basic Prob. Concepts
p j p y p

variables?

H t t fi ti i t t l? 28

),,,,,,,,(  87654321 XXXXXXXXP
A BA BA BA B

 How many state configurations in total? --- 28

 Are they all needed to be represented?
 Do we get any scientific/medical insight?
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 Learning: where do we get all this probabilities? 
 Maximal-likelihood estimation? but how many data do we need?
 Where do we put domain knowledge in terms of plausible relationships between variables, and 

plausible values of the probabilities?plausible values of the probabilities?

 Inference: If not all variables are observable, how to compute the 
conditional distribution of latent variables given evidence?
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g
 Computing p(H|A) would require summing over all 26 configurations of the 

unobserved variables



What is a Graphical Model?
l f i l t d ti th--- example from a signal transduction pathway

 A possible world for cellular signal transduction: 

Receptor A Receptor BX1 X2

p g

Ki C Ki EKi DX X XKinase C

TF F

Kinase EKinase DX3 X4 X5

TF F X6
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GM: Structure Simplifies 
RepresentationRepresentation

 Dependencies among variables

Receptor A Receptor BX1 X2

p g

Ki C Ki EKi D

Membrane

X X XKinase C

TF F

Kinase EKinase D

Cytosol

X3 X4 X5

TF F X6
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Gene G Gene H
Nucleus
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Probabilistic Graphical Models, 
con'd
 If Xi's are conditionally independent (as described by a PGM), the 

j i t b f t d t d t f i l t

con d

joint can be factored to a product of simpler terms, e.g., 

P(X1, X2, X3, X4, X5, X6, X7, X8)

Receptor A Receptor BX1 X2Receptor A Receptor BX1 X2X1 X2

( 1 2 3 4 5 6 7 8)

= P(X1) P(X2) P(X3| X1) P(X4| X2) P(X5| X2)
P(X6| X3, X4) P(X7| X6) P(X8| X5, X6)

Kinase C

TF F

Gene G Gene H

Kinase EKinase DX3 X4 X5

X6

X7 X8

Kinase C

TF F

Gene G Gene H

Kinase EKinase DX3 X4 X5

X6

X7 X8

X3 X4 X5

X6

X7 X8

 Why we may favor a PGM?
 Representation cost: how many probability statements are needed? 

888

 Algorithms for systematic and efficient inference/learning computation
• Exploring the graph structure and probabilistic (e.g., Bayesian, Markovian) semantics

2+2+4+4+4+8+4+8=36, an 8-fold reduction from 28! 
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 Incorporation of domain knowledge and causal (logical) structures



Specification of a BNSpecification of a BN
 There are two components to any GM:p y

 the qualitative specification
 the quantitative specification

A

C ED

BA

C ED

BA

C ED

B

C

F

G H

EDC

F

G H

EDC
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d
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DC P(F | C,D)
0.9 0.1

c 0.2 0.8

dc
d
d

DC P(F | C,D)

G HG HG H
d

c
0.01 0.99

0.9 0.1d
c d
c

0.01 0.99

0.9 0.1d
c
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Qualitative SpecificationQualitative Specification
 Where does the qualitative specification come from?q p

 Prior knowledge of causal relationships
 Prior knowledge of modular relationships
 Assessment from experts
 Learning from data
 We simply link a certain architecture (e.g. a layered graph) 
 …
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Two types of GMs

 Directed edges give causality relationships (Bayesian 

Two types of GMs

g g y p ( y
Network or Directed Graphical Model):

Receptor A Receptor BX1 X2Receptor A Receptor BX1 X2X1 X2

P(X1, X2, X3, X4, X5, X6, X7, X8)
Kinase C

TF F

Gene G Gene H

Kinase EKinase DX3 X4 X5

X6

X7 X8

Kinase C

TF F

Gene G Gene H

Kinase EKinase DX3 X4 X5

X6

X7 X8

X3 X4 X5

X6

X7 X8

P(X1, X2, X3, X4, X5, X6, X7, X8)

= P(X1) P(X2) P(X3| X1) P(X4| X2) P(X5| X2)
P(X6| X3, X4) P(X7| X6) P(X8| X5, X6)

 Undirected edges simply give correlations between variables 
(Markov Random Field or Undirected Graphical model):

Receptor A

Kinase C

TF F

Kinase EKinase D

Receptor BX1 X2

X3 X4 X5

Receptor A

Kinase C

TF F

Kinase EKinase D

Receptor BX1 X2

X3 X4 X5

X1 X2

X3 X4 X5

P(X1, X2, X3, X4, X5, X6, X7, X8)

= 1/Z exp{E(X1)+E(X2)+E(X3, X1)+E(X4, X2)+E(X5, X2)
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p{ ( 1) ( 2) ( 3 1) ( 4 2) ( 5 2)
+ E(X6, X3, X4)+E(X7, X6)+E(X8, X5, X6)}



Bayesian Network:Bayesian Network:
 A BN is a directed graph whose nodes represent the random 

variables and whose edges represent direct influence of one 
variable on another.

 It is a data structure that provides the skeleton for representing a 
joint distribution compactly in a factorized way;

 It offers a compact representation for a set of conditional 
independence assumptions about a distribution;

 We can view the graph as encoding a generative sampling process
executed by nature, where the value for each variable is selected by 
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nature using a distribution that depends only on its parents. In other 
words, each variable is a stochastic function of its parents.



Bayesian Network: Factorization TheoremBayesian Network: Factorization Theorem

 Theorem: 
Given a DAG, The most general form of the probability 
distribution that is consistent with the graph factors according 
to “node given its parents”:to node given its parents :

where is the set of parents of X d is the number of nodes





di

i i
XPP

:

)|()(
1

XX

Xwhere      is the set of parents of Xi, d is the number of nodes 
(variables) in the graph.

i
X

P(X1, X2, X3, X4, X5, X6, X7, X8)

= P(X ) P(X ) P(X | X ) P(X | X ) P(X | X )

Receptor A

Kinase C

TF F

Kinase EKinase D
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X3 X4 X5
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Kinase EKinase D
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X3 X4 X5
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= P(X1) P(X2) P(X3| X1) P(X4| X2) P(X5| X2)
P(X6| X3, X4) P(X7| X6) P(X8| X5, X6)
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Bayesian Network: Conditional 
Independence Semantics

Structure: DAG Ancestor

Independence Semantics

• Meaning: a node is 
conditionally independent

Ancestor

Parentof every other node in the 
network outside its Markov 
blanket

Y1 Y2

Parent

• Local conditional distributions 
(CPD) and the DAG
completely determine the

X

completely determine the 
joint dist. 

• Give causality relationships Children's co-parentChildren's co-parent

Child
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Give causality relationships, 
and facilitate a generative
process

Descendent



Local Structures & 
Independencies

B

Independencies
 Common parent

A C

p
 Fixing B decouples A and C

"given the level of gene B, the levels of A and C are independent"

A CB
 Cascade

 Knowing B decouples A and C
"given the level of gene B, the level gene A provides no 

t di ti l f th l l f C"

A B

extra prediction value for the level of gene C"

 V-structure
 Knowing C couples A and B

C
 Knowing C couples A and B

because A can "explain away" B w.r.t. C
"If A correlates to C, then chance for B to also correlate to B will decrease"
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 The language is compact, the concepts are rich!



A simple justificationA simple justification
B

A C
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Graph separation criterionGraph separation criterion
 D-separation criterion for Bayesian networks (D for Directed p y (

edges):

D fi iti i bl d D t d ( diti llDefinition: variables x and y are D-separated (conditionally 
independent) given z if they are separated in the moralized 
ancestral graph

 Example:
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Global Markov properties of 
DAGsDAGs
 X is d-separated (directed-separated) from Z given Y if we can't 

send a ball from any node in X to any node in Z using the "Bayes-
ball" algorithm illustrated bellow (and plus some boundary 
conditions):

• Defn: I(G)all independence 
properties that correspond to d-p p p
separation:

 

• D-separation is sound and complete

 );(dsep:)(I YZXYZXG G
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Example:Example: 
 Complete the I(G) of this x4 graph:

x1

x4

x1

x3

x2

x3

2
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Towards quantitative specification of 
probability distributionprobability distribution

 Separation properties in the graph imply independence p p p g p p y p
properties about the associated variables

 For the graph to be useful, any conditional independence 
properties we can derive from the graph should hold for theproperties we can derive from the graph should hold for the 
probability distribution that the graph represents

 The Equivalence Theorem
For a graph G,
L t D d t th f il f ll di t ib ti th t ti f I(G)Let D1 denote the family of all distributions that satisfy I(G),
Let D2 denote the family of all distributions that factor according to G,
Then D1≡D2.
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ExampleExample
 Speech recognitionp g

A AA AX2 X3X1 XT

Y2 Y3Y1 YT... 

A AA AX2 X3X1 XT... 

Hidd M k M d lHidden Markov Model
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Knowledge EngineeringKnowledge Engineering
 Picking variablesg

 Observed
 Hidden

 Picking structure
 CAUSAL 
 Generative Generative 

 Picking Probabilities
Z b biliti Zero probabilities

 Orders of magnitudes
 Relative values 
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Example con'dExample, con d
 Evolution

ancestor

Qh Qm
T years

?

A C

Qh m

AGAGAC
A C

Tree Model
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Example con'dExample, con d
 Genetic Pedigree

A0

A1

Ag
B0

B1

Bg

g

F0

M
0

M
1

F1

Fg

Sg

C
0C
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Conditional probability tables 
(CPTs)

a0 0 75 b0 0 33 P( b d)

(CPTs)

a0 0.75
a1 0.25

b0 0.33
b1 0.67

P(a,b,c.d) = 
P(a)P(b)P(c|a,b)P(d|c)

a0b0 a0b1 a1b0 a1b1

A B
a b a b a b a b

c0 0.45 1 0.9 0.7
c1 0.55 0 0.1 0.3C

D
c0 c1

d0 0 3 0 5
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D d 0.3 0.5
d1 07 0.5



Conditional probability density 
func (CPDs)

P( b d)

func. (CPDs)

P(a,b,c.d) = 
P(a)P(b)P(c|a,b)P(d|c)A~N(μa, Σa) B~N(μb, Σb)

A B

C C~N(A+B, Σc)  C
)

D D~N(μ +C Σ ) C

P(
D|
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D D~N(μa+C, Σa)
D

C



Conditionally Independent 
ObservationsObservations

 Model parameters

y1 Datay2 yn-1 yn
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“Plate” NotationPlate  Notation

 Model parameters

yi
Data = {y1,…yn}

i=1:n

Plate = rectangle in graphical model

variables within a plate are replicated
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in a conditionally independent manner



Example: Gaussian ModelExample: Gaussian Model

 G ti d l Generative model:   

p(y1,…yn | , ) = P p(yi | , )



yi

i=1:n

=   p(data | parameters)
=   p(D  | )     

h  { }i=1:n where  = {, }

 Likelihood = p(data | parameters) 
= p( D |  )= p( D |  ) 
= L () 

 Likelihood tells us how likely the observed data are conditioned on a 
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particular setting of the parameters
 Often easier to work with log L () 



Example: Bayesian Gaussian 
ModelModel

  

yyi

i=1:n

Note: priors and parameters are assumed independent here
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Markov Random Fields

Structure: an undirected 

Markov Random Fields

graph

• Meaning: a node is g
conditionally independent of 
every other node in the network 
given its Directed neighbors

Y1 Y2

• Local contingency functions 
(potentials) and the cliques in 
the graph completely determine 

X

the joint dist. 

• Give correlations between 
variables but no explicit way to
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variables, but no explicit way to 
generate samples



Global Markov propertyGlobal Markov property
 Let H be an undirected graph:g p

 B separates A and C if every path from a node in A to a node B separates A and C if every path from a node in A to a node 
in C passes through a node in B:

 A probability distribution satisfies the global Markov property
f f C C

);(sep BCAH
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if for any disjoint A, B, C, such that B separates A and C, A is 
independent of C given B:  );(sep:))(I BCABCAH H



Soundness and completeness of 
global Markov propertyglobal Markov property
 Defn: An UG H is an I-map for a distribution P if I(H)  I(P), p ( ) ( )

i.e., P entails I(H).
 Defn: P is a Gibbs distribution over H if it can be represented 

asas




Cc

ccn Z
xxP )(),,( x1

1 

 Thm (soundness): If P is a Gibbs distribution over H, then H
is an I-map of P.

 Thm (completeness): If sepH(X; Z |Y), then X P Z |Y in 
some P that factorizes over H.
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so e t at acto es o e



RepresentationRepresentation
 Defn: an undirected graphical model represents a distribution g p p

P(X1 ,…,Xn) defined by an undirected graph H, and a set of 
positive potential functions yc associated with cliques of H, 
s.t. 1

where Z is known as the partition function:





Cc

ccn Z
xxP )(),,( x1

1 

 



nxx Cc

ccZ
,,

)(
1

x

 Also known as Markov Random Fields, Markov networks …
 The potential function can be understood as an contingency 

function of its arguments assigning "pre-probabilistic" score of
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function of its arguments assigning pre probabilistic  score of 
their joint configuration.   



CliquesCliques
 For G={V,E}, a complete subgraph (clique) is a subgraph { } p g p ( q ) g p

G'={V'ÍV,E'ÍE} such that nodes in V' are fully interconnected
 A (maximal) clique is a complete subgraph s.t. any superset 

V"ÉV' is not completeV ÉV  is not complete.
 A sub-clique is a not-necessarily-maximal clique.

A

DD BB

 Example: 
max cliques = {A B D} {B C D}

CC
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 max-cliques = {A,B,D}, {B,C,D}, 
 sub-cliques = {A,B}, {C,D}, … all edges and singletons 



Example UGM – using max 
cliquescliques 

AA

DD BB

CC

)()(),,,( 2341244321
1 xxxxxxP   )()(),,,( 2341244321 xx ccZ

xxxxP  

 
4321

234124
xxxx

ccZ
,,,

)()( xx 

 For discrete nodes, we can represent P(X1:4) as two 3D tables 
instead of one 4D table

4321
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Example UGM using subcliquesExample UGM – using subcliques 

AA

DD BB

CC

)(),,,( 4321
1 x
Z

xxxxP ijij 

)()()()()( 34342424232314141212
1 xxxxx 
Z

Z ij



 For discrete nodes we can represent P(X ) as 5 2D tables

 
4321 xxxx ij

ijijZ
,,,

)(x
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 For discrete nodes, we can represent P(X1:4) as 5 2D tables 
instead of one 4D table



Interpretation of Clique PotentialsInterpretation of Clique Potentials

YXX ZZ

 The model implies XZ|Y. This independence statement 
i li (b d fi iti ) th t th j i t t f t i

YXX ZZ

implies (by definition) that the joint must factorize as:

)|()|()(),,( yzpyxpypzyxp 

)|()()( yzpyxpzyxp
 We can write this as:                                            , but

 cannot have all potentials be marginals

),()|(),,(
)|(),(),,(

yzpyxpzyxp
yzpyxpzyxp





 cannot have all potentials be marginals
 cannot have all potentials be conditionals

 The positive clique potentials can only be thought of as 
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p q p y g
general "compatibility", "goodness" or "happiness" functions 
over their variables, but not as probability distributions.



Exponential FormExponential Form
 Constraining clique potentials to be positive could be inconvenient (e.g., 

the interactions between a pair of atoms can be either attractive or 
repulsive). We represent a clique potential c(xc)  in an unconstrained 
form using a real-value "energy" function c(xc):

For convenience, we will call c(xc) a potential when no confusion arises from the context.

 This gives the joint a nice additive strcuture

 )(exp)( cccc xx  

 This gives the joint a nice additive strcuture

 )(exp)(exp)( xxx H
ZZ

p
Cc

cc 







 



11 

where the sum in the exponent is called the "free energy":

I h i thi i ll d th "B lt di t ib ti "




Cc

ccH )()( xx 
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 In physics, this is called the "Boltzmann distribution".
 In statistics, this is called a log-linear model.



Example: Boltzmann machinesExample: Boltzmann machines
1

44 22

 A fully connected graph with pairwise (edge) potentials on 
binary-valued nodes (for                                  ) is called a 

33

   1011 ,or ,  ii xxy ( )
Boltzmann machine

   ,, ii









  xx
Z

xxxxP
ij

jiij )(exp),,,( ,
1

4321

 Hence the overall energy function has the form:








  Cxxx
Z i

ii
ij

jiij exp1
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 Hence the overall energy function has the form:
)()()()()(   xxxxxH T

ij jiji



Example: Ising (spin-glass) 
modelsmodels
 Nodes are arranged in a regular topology (often a regular g g p gy ( g

packing grid) and connected only to their geometric 
neighbors.

 Same as sparse Boltzmann machine, where ij0 iff i,j are 
neighbors.
 e.g., nodes are pixels, potential function encourages nearby pixels to have similar 
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e g , odes a e p e s, po e a u c o e cou ages ea by p e s o a e s a
intensities.

 Potts model: multi-state Ising model.



Example: Modeling GoExample: Modeling Go
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GMs are your old friendsGMs are your old friends

Density estimation
Parametric and nonparametric methods

m,s

X

Regression

Parametric and nonparametric  methods

X Y

X X

Classification

Linear, conditional mixture, nonparametric

Q Q

X Y

Classification
Generative and discriminative approach X X
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An 
(incomplete)(incomplete) 

genealogy 
f hi lof graphical 

models

(Picture by Zoubin 
Ghahramani and 
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Sam Roweis)



Why graphical models
 Probability theory provides the glue whereby the parts are combined, 

Why graphical models

ensuring that the system as a whole is consistent, and providing ways to 
interface models to data. 

 The graph theoretic side of graphical models provides both an intuitively 
appealing interface by which humans can model highly-interacting sets of 
variables as well as a data structure that lends itself naturally to the design of 
efficient general-purpose algorithms. 

 Many of the classical multivariate probabilistic systems studied in fields 
such as statistics, systems engineering, information theory, pattern 
recognition and statistical mechanics are special cases of the general 
graphical model formalismgraphical model formalism
• -- examples include mixture models, factor analysis, hidden Markov models, Kalman filters and Ising models. 

 The graphical model framework provides a way to view all of these systems 
as instances of a common underlying formalism. 
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y g

--- M. Jordan


