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Inference ProblemsInference Problems
 Compute the likelihood of observed data
 Compute the marginal distribution            over a particular subset           

of nodes
 Compute the conditional distribution                  for disjoint subsets A

and B
 Compute a mode of the density
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Inference in GMInference in GM
 HMM

y2 y3y1 yT... 

A AA Ax2 x3x1 xT... 
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Inference ProblemsInference Problems
 Compute the likelihood of observed data
 Compute the marginal distribution            over a particular subset           

of nodes
 Compute the conditional distribution                  for disjoint subsets A

and B
 Compute a mode of the density

 Methods we have

Message Passing
Brute force Elimination

g g
(Forward-backward , Max-product 

/BP, Junction Tree)
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Sharing intermediate termsIndividual computations independent



Recall forward backward on HMMRecall forward-backward on HMM

A AA Ax2 x3x1 xT

y2 y3y1 yT... 

... 

F d l ith

A AA Ax2 x3x1 xT
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Message passing for treesMessage passing for trees

Let m (x ) denote the factor resulting fromLet mij(xi) denote the factor resulting from 
eliminating variables from bellow up to i, 
which is a function of xi:

f

This is reminiscent of a message sent 
from j to i.i

j

mij(xi) represents a "belief" of xi from xj!

k l
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The General Sum-Product 
AlgorithmAlgorithm
 Tree-structured GMs

M P i T Message Passing on Trees:

 On trees, converge to a unique fixed point after a finite number of 
iterations
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Junction Tree RevisitedJunction Tree Revisited
 General Algorithm on Graphs with Cyclesg p y

 Steps: => Triangularization => Construct JTsp > Triangularization > Construct JTs

=> Message Passing on Clique Trees

B CS
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Local ConsistencyLocal Consistency
 Given a set of functions                                            associated 

with the cliques and separator sets

 They are locally consistent if:y y

 For junction trees, local consistency is equivalent to global 
consistency!
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An Ising model on 2 D imageAn Ising model on 2-D image
 Nodes encode hidden 

information (patch-
identity).

 They receive local 
information from theinformation from the 
image (brightness, 
color).

 Information is Information is 
propagated though the 
graph over its edges.

 Edges encode g
‘compatibility’ between 
nodes.

Eric Xing © Eric Xing @ CMU, 2006-2010 10

?air or water ?



Why Approximate Inference?Why Approximate Inference?
 Why can’t we just run junction tree on this graph?y j j g p







  XXXXp exp1)( 




  

 i
ii

ji
jiij XXX

Z
Xp 0exp)( 

 If NxN grid, tree width at least N
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g ,
 N can be a huge number(~1000s of pixels)

 If N~O(1000), we have a clique with 2100 entries



Solution 1: Belief Propagation on 
loopy graphs

kk

loopy graphs
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 May not converge or converge to a wrong solution



Recall BP on trees
kk

Recall BP on trees
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 BP on trees always converges to exact marginals



Solution 2: The naive mean field 
approximation
 Approximate p(X) by fully factorized q(X)=iqi(Xi)

approximation
pp p( ) y y q( ) iqi( i)

 For Boltzmann distribution p(X)=exp{i < j qijXiXj+qioXi}/Z :

mean field equation:
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 xjqj resembles a “message” sent from node j to i jX
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jqj g j

 {xjqj : j  Ni} forms the “mean field” applied to Xi from its neighborhood}:{ iqj jX
j
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Recall Gibbs sampling
 Approximate p(X) by fully factorized q(X)=iqi(Xi)

Recall Gibbs sampling
pp p( ) y y q( ) iqi( i)

 For Boltzmann distribution p(X)=exp{i < j qijXiXj+qioXi}/Z :

Gibbs predictive distribution:
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Summary So FarSummary So Far
 Exact inference methods are limited to tree-structured graphsg p

 Junction Tree methods is exponentially expensive to the tree-
idthwidth

 Message Passing methods can be applied for loopy graphs Message Passing methods can be applied for loopy graphs, 
but lack of analysis!

 Mean-field is convergent, but can have local optimal

f ?
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 Where do these two algorithm come from? Do they make 
sense?



Next StepNext Step …
 Develop a general theory of variational inferencep g y

 Introduce some approximate inference methods 

 Provide deep understandings to some popular methods
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Exponential Family GMsExponential Family GMs
 Canonical Parameterization

 Effective canonical parameters

Canonical Parameters Sufficient Statistics Log-normalization Function

 Regular family: 

 Minimal representation:  
 if there does not exist a nonzero vector               such that                is a 

constant

Eric Xing © Eric Xing @ CMU, 2006-2010 18



ExamplesExamples
 Ising Model (binary r.v.: {-1, +1})g ( y { })

 Gaussian MRF
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Mean ParameterizationMean Parameterization
 The mean parameter      associated with a sufficient statistic           

is defined as

R li bl t t Realizable mean parameter set

 A convex subset of 
 Convex hull for discrete case

 Convex polytope when is finite
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Convex polytope when             is finite



Convex PolytopeConvex Polytope
 Convex hull representationp

 Half-plane based representation
 Minkowski-Weyl Theorem: 

 any polytope can be characterized by a finite collection of linear inequality a y po ytope ca be c a acte ed by a te co ect o o ea equa ty
constraints

Eric Xing © Eric Xing @ CMU, 2006-2010 21



ExampleExample
 Two-node Ising Modelg

 Convex hull representation

 Half-plane representation
 Probability Theory:
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Marginal PolytopeMarginal Polytope
 Canonical Parameterization

 Mean parameterization

 Marginal distributions over nodes and edges

 Marginal Polytope
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Conjugate DualityConjugate Duality
 Duality between MLE and Max-Ent:

F ll i i l t ti f i For all                     , a unique canonical parameter             satisfying 

 The log partition function has the variational form The log-partition function has the variational form

 For all the supremum in (*) is attained uniquely at specified by the For all                 , the supremum in ( ) is attained uniquely at                        specified by the 
moment-matching conditions

 Bijection for minimal exponential familyj p y
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Roles of Mean ParametersRoles of Mean Parameters
 Forward Mapping:pp g

 From              to  the mean parameters
 A fundamental class of inference problems in exponential family models

 Backward Mapping:g
 Parameter estimation to learn the unknown 
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ExampleExample
 Bernoulli

 If
If

Unique!

 If
No gradient stationary point in the Opt. problem (**)

 Reverse mapping:
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Unique!



Variational Inference In GeneralVariational Inference In General
 An umbrella term that refers to various mathematical 

t l f ti i ti b d f l ti f bltools for optimization-based formulations of problems, as 
well as associated techniques for their solution

 General idea:
 Express a quantity of interest as the solution of an optimization problem

 The optimization problem can be relaxed in various ways
 Approximate the functions to be optimized Approximate the functions to be optimized
 Approximate the set over which the optimization takes place

 Goes in parallel with MCMC
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A Tree Based Outer Bound to aA Tree-Based Outer-Bound to a 
 Local Consistent (Pseudo-) Marginal Polytope( ) g y p

 normalization
 marginalization

 Relation to Relation to 
 holds for any graph
 holds for tree-structured graphs
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A ExampleA                     Example
 A three node graph (binary r.v.) 1g p ( y )

3 2

1

F h For any                    , we have 
 For                                             , we have  

 an exercise?
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Bethe Entropy ApproximationBethe Entropy Approximation

 Approximate the negative entropy , which Approximate the negative entropy         , which 
doesn’t has a closed-form in general graph.

 Entropy on tree (Marginals)Entropy on tree (Marginals)
 recall:

 entropy

 Bethe entropy approximation (Pseudo-marginals) Bethe entropy approximation (Pseudo marginals)
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Bethe Variational Problem (BVP)Bethe Variational Problem (BVP)
 We already have:

 a convex (polyhedral) outer bound 

 the Bethe approximate entropy

 Combining the two ingredients, we have Combining the two ingredients, we have

 a simple structured problem (differentiable & constraint set is a simple 
polytope)

 Max-product is the solver!
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Nobel Prize in Physics (1967) 



Connection to Sum Product AlgConnection to Sum-Product Alg.
 Lagrangian method for BVP:

 Sum-product and Bethe Variational (Yedidia et al., 2002)p ( , )
 For any graph G, any fixed point of the sum-product updates specifies a 

pair of                such that

 For a tree-structured MRF, the solution                  is unique, where            
correspond to the exact singleton and pairwise marginal distributions of 
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p g p g
the MRF, and the optimal value of BVP is equal to 



ProofProof
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DiscussionsDiscussions
 The connection provides a principled basis for applying the 

d t l ith f l hsum-product algorithm for loopy graphs

 However,
 this connection provides no guarantees on the convergence of the sum-product 

alg. on loopy graphs
 the Bethe variational problem is usually non-convex. Therefore, there are no 

guarantees on the global optimumguarantees on the global optimum
 Generally, there are no guarantees that                    is a lower bound of 

 However however However, however
 the connection and understanding suggest a number of avenues for improving 

upon the ordinary sum-product alg., via progressively better approximations to 
the entropy function and outer bounds on the marginal polytope!
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Inexactness of Bethe and Sum-
ProductProduct

 From Bethe entropy approximation py pp
 Example

1 4

From pseudo marginal outer bound

32

 From pseudo-marginal outer bound
 strict inclusion
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Summary of LBPSummary of LBP
 Variational methods in general turn inference into an optimization 

blproblem

 However, both the objective function and constraint set are hard to 
deal with

 Bethe variational approximation is a tree-based approximation to pp pp
both objective function and marginal polytope

 Belief propagation is a Lagrangian-based solver for BVPp p g g g

 Generalized BP extends BP to solve the generalized hyper-tree 
based variational approximation problem
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Tractable SubgraphTractable Subgraph
 Given a GM with a graph G, a subgraph F is tractable ifg p g p

 We can perform exact inference on it

E l Example:
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Mean ParameterizationMean Parameterization
 For an exponential family GM defined with graph G and p y g p

sufficient statistics       , the realizable mean parameter set

 For a given tractable subgraph F, a subset of mean 
parameters is of interestp

 Inner Approximation
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Optimizing a Lower BoundOptimizing a Lower Bound
 Any mean parameter              yields a lower bound on the log-y p y g

partition function

Moreo er eq alit holds iff and are d all co pled i e Moreover, equality holds iff      and     are dually coupled, i.e., 

 Proof Idea: (Jensen’s Inequality)

 Optimizing the lower bound gives 
 This is an inference!
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Mean Field Methods In GeneralMean Field Methods In General
 However, the lower bound can’t explicitly evaluated in generalp y g

 Because  the dual function          typically lacks an explicit form

Mean Field Methods Mean Field Methods
 Approximate the lower bound 

 Approximate the realizable mean parameter set

Th MF ti i ti bl The MF optimization problem
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 Still a lower bound?



KL divergenceKL-divergence
 Kullback-Leibler Divergenceg

 For two exponential family distributions with the same STs:

Primal Form

Mixed FormMixed Form

Dual Form
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Mean Field and KL divergenceMean Field and KL-divergence
 Optimizing a lower boundp g

 Equivalent to minimize a KL-divergence

 Therefore we are doing minimization Therefore, we are doing minimization
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Naïve Mean FieldNaïve Mean Field
 Fully factorized variational distributiony
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Naïve Mean Field for Ising ModelNaïve Mean Field for Ising Model
 Sufficient statistics and Mean Parameters

 Naïve Mean Field
 Realizable mean parameter subset

 Entropy

 Optimization Problem
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Naïve Mean Field for Ising ModelNaïve Mean Field for Ising Model
 Optimization Problem

 Update Rule

 resembles “message” sent from node to resembles message  sent from node      to   

 forms the “mean field” applied to     from its 
neighborhood
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Non Convexity of Mean FieldNon-Convexity of Mean Field
 Mean field optimization is always non-convex for any p y y

exponential family in which the state space        is finite

 Finite convex hull

 contains all the extreme points

 If                is a convex set, then 

 Mean field has been used successfully
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Structured Mean FieldStructured Mean Field
 Mean field theory is general to any tractable sub-graphsy g y g p
 Naïve mean field is based on the fully unconnected sub-graph

 Variants based on structured sub-graphs can be derived
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Topic modelsTopic models
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Variational Inference With no Tears

 Fully Factored Distribution
μ Σ

a at o a e e ce t o ea s
[Ahmed and Xing, 2006, Xing et al 2003]

 Fully Factored Distribution
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      nn zqqzq  :1,Laplace approximationLaplace approximation



Summary of GMFSummary of GMF
 Message-passing algorithms (e.g., belief propagation, mean field) 

are solving approximate versions of exact variational principle in 
exponential families

Th t di ti t t t i ti There are two distinct components to approximations:
 Can use either inner or outer bounds to 
 Various approximation to the entropy function

 BP: polyhedral outer bound and non-convex Bethe approximation
 MF: non-convex inner bound and exact form of entropy MF: non convex inner bound and exact form of entropy
 Kikuchi: tighter polyhedral outer bound and better entropy 

approximation
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