Machine Learning

Generative verses discriminative classifier

Eric Xing

Lecture 2, August 12, 2010

© Eric Xing @ CMU, 2006-2010

Generative and Discriminative classifiers

- Goal: Wish to learn f: $X \rightarrow Y$, e.g., P(Y|X)
- Generative:
 - Modeling the joint distribution of all data

- Discriminative:
 - Modeling only points at the boundary

Generative vs. Discriminative Classifiers

- Goal: Wish to learn f: $X \rightarrow Y$, e.g., P(Y|X)
- Generative classifiers (e.g., Naïve Bayes):
 - Assume some functional form for P(X|Y), P(Y)
 This is a 'generative' model of the data!
 - Estimate parameters of P(X|Y), P(Y) directly from training data
 - Use Bayes rule to calculate P(Y|X= x)
- Discriminative classifiers (e.g., logistic regression)
 - Directly assume some functional form for P(Y|X)
 This is a '*discriminative*' model of the data!
 - Estimate parameters of P(Y|X) directly from training data

Suppose you know the following

. . .

• Class-specific Dist.: P(X|Y)

• This is a generative model of the data!

Optimal classification

- **Theorem:** Bayes classifier is optimal!
 - That is

 $error_{true}(h_{Bayes})) \leq error_{true}(h), \ \forall h(\mathbf{x})$

- How to learn a Bayes classifier?
 - Recall density estimation. We need to estimate P(X|y=k), and P(y=k) for all k

Gaussian Discriminative Analysis

- learning f: $X \rightarrow Y$, where
 - X is a vector of real-valued features, $\mathbf{X}_n = \langle X_{n,1} \dots X_{n,m} \rangle$
 - Y is an indicator vector
- What does that imply about the form of P(Y|X)?
 - The joint probability of a datum and its label is:

$$p(\mathbf{x}_{n}, y_{n}^{k} = 1 | \mu, \sigma) = p(y_{n}^{k} = 1) \times p(\mathbf{x}_{n} | y_{n}^{k} = 1, \mu, \sigma)$$
$$= \pi_{k} \frac{1}{(2\pi\sigma^{2})^{1/2}} \exp\left\{\frac{1}{2\sigma^{2}}(\mathbf{x}_{n} - \mu_{k})^{2}\right\}$$

• Given a datum \mathbf{x}_n , we predict its label using the conditional probability of the label given the datum:

$$p(y_n^k = 1 | \mathbf{x}_n, \mu, \sigma) = \frac{\pi_k \frac{1}{(2\pi\sigma^2)^{1/2}} \exp\left\{-\frac{1}{2\sigma^2} (\mathbf{x}_n - \mu_k)^2\right\}}{\sum_{k'} \pi_{k'} \frac{1}{(2\pi\sigma^2)^{1/2}} \exp\left\{-\frac{1}{2\sigma^2} (\mathbf{x}_n - \mu_{k'})^2\right\}}$$

Conditional Independence

• X is **conditionally independent** of Y given Z, if the probability distribution governing X is independent of the value of Y, given the value of Z

$$(\forall i, j, k) P(X = i | Y = j, Z = k) = P(X = i | Z = k)$$

Which we often write

$$P(X \mid Y, Z) = P(X \mid Z)$$

• e.g.,

P(Thunder|Rain, Lightning) = P(Thunder|Lightning)

• Equivalent to:

$$P(X, Y \mid Z) = P(X \mid Z)P(Y \mid Z)$$

Naïve Bayes Classifier

- When X is multivariate-Gaussian vector:
 - The joint probability of a datum and it label is:

$$p(\mathbf{x}_{n}, y_{n}^{k} = 1 | \vec{\mu}, \Sigma) = p(y_{n}^{k} = 1) \times p(\mathbf{x}_{n} | y_{n}^{k} = 1, \vec{\mu}, \Sigma)$$
$$= \pi_{k} \frac{1}{(2\pi |\Sigma|)^{1/2}} \exp\left\{-\frac{1}{2}(\mathbf{x}_{n} - \vec{\mu}_{k})^{T} \Sigma^{-1}(\mathbf{x}_{n} - \vec{\mu}_{k})\right\}$$

• The naïve Bayes simplification

$$p(\mathbf{x}_{n}, y_{n}^{k} = 1 | \mu, \sigma) = p(y_{n}^{k} = 1) \times \prod_{j} p(x_{n,j} | y_{n}^{k} = 1, \mu_{k,j}, \sigma_{k,j})$$
$$= \pi_{k} \prod_{j} \frac{1}{(2\pi\sigma_{k,j}^{2})^{1/2}} \exp\left\{\frac{1}{2\sigma_{k,j}^{2}}(x_{n,j} - \mu_{k,j})^{2}\right\}$$

- More generally: $p(\mathbf{x}_n, y_n | \eta, \pi) = p(y_n | \pi) \times \prod_{j=1}^m p(x_{n,j} | y_n, \eta)$
 - Where p(. | .) is an arbitrary conditional (discrete or continuous) 1-D density

The predictive distribution

• Understanding the predictive distribution

$$p(y_{n}^{k} = \mathbf{1} | x_{n}, \bar{\mu}, \Sigma, \pi) = \frac{p(y_{n}^{k} = \mathbf{1}, x_{n} | \bar{\mu}, \Sigma, \pi)}{p(x_{n} | \bar{\mu}, \Sigma)} = \frac{\pi_{k} N(x_{n}, | \mu_{k}, \Sigma_{k})}{\sum_{k'} \pi_{k'} N(x_{n}, | \mu_{k'}, \Sigma_{k'})} *$$

• Under naïve Bayes assumption:

$$p(y_n^k = \mathbf{1} | x_n, \bar{\mu}, \Sigma, \pi) = \frac{\pi_k \exp\left\{-\sum_j \left(\frac{1}{2\sigma_{k,j}^2} (x_n^j - \mu_k^j)^2 - \log \sigma_{k,j} - C\right)\right\}}{\sum_{k'} \pi_{k'} \exp\left\{-\sum_j \left(\frac{1}{2\sigma_{k',j}^2} (x_n^j - \mu_{k'}^j)^2 - \log \sigma_{k',j} - C\right)\right\}} \quad **$$

• For two class (i.e., *K*=2), and when the two classes haves the same variance, ** turns out to be a logistic function

$$p(y_{n}^{1} = 1 | x_{n}) = \frac{1}{1 + \frac{\pi_{2} \exp\left\{-\sum_{j}\left(\frac{1}{2\sigma_{j}^{2}}(x_{n}^{j} - \mu_{2}^{j})^{2} - \log\sigma_{j} - C\right)\right\}}{\pi_{1} \exp\left\{-\sum_{j}\left(\frac{1}{2\sigma_{j}^{2}}(x_{n}^{j} - \mu_{1}^{j})^{2} - \log\sigma_{j} - C\right)\right\}}} = \frac{1}{1 + \exp\left\{-\sum_{j}\left(x_{n}^{j} - \frac{1}{\sigma_{j}^{2}}(\mu_{1}^{j} - \mu_{2}^{j}) + \frac{1}{\sigma_{j}^{2}}([\mu_{1}^{j}]^{2} - [\mu_{2}^{j}]^{2})\right) + \log\frac{(1 - \pi_{1})}{\pi_{1}}\right\}}$$

The decision boundary

• The predictive distribution

$$p(y_n^1 = 1 | x_n) = \frac{1}{1 + \exp\left\{-\sum_{j=1}^M \theta_j x_n^j - \theta_0\right\}} = \frac{1}{1 + e^{-\theta^T x_n}}$$

• The Bayes decision rule:

$$\ln \frac{p(y_n^1 = \mathbf{1} | x_n)}{p(y_n^2 = \mathbf{1} | x_n)} = \ln \left(\frac{\mathbf{1}}{\mathbf{1} + e^{-\theta^T x_n}} / \frac{e^{-\theta^T x_n}}{\mathbf{1} + e^{-\theta^T x_n}} \right) = \theta^T x_n$$

• For multiple class (i.e., K>2), * correspond to a softmax function

$$p(y_{n}^{k} = \mathbf{1} | x_{n}) = \frac{e^{-\theta_{k}^{T} x_{n}}}{\sum_{j} e^{-\theta_{j}^{T} x_{n}}}$$

Generative vs. Discriminative Classifiers

- Goal: Wish to learn f: $X \rightarrow Y$, e.g., P(Y|X)
- Generative classifiers (e.g., Naïve Bayes):
 - Assume some functional form for P(X|Y), P(Y)
 This is a 'generative' model of the data!
 - Estimate parameters of P(X|Y), P(Y) directly from training data
 - Use Bayes rule to calculate P(Y|X= x)
- Discriminative classifiers:
 - Directly assume some functional form for P(Y|X)
 This is a '*discriminative*' model of the data!
 - Estimate parameters of P(Y|X) directly from training data

Linear Regression

• The data:

 $\{(x_1, y_1), (x_2, y_2), (x_3, y_3), \cdots, (x_N, y_N)\}$

- Both nodes are observed:
 - X is an input vector
 - Y is a response vector

(we first consider y as a generic continuous response vector, then we consider the special case of classification where y is a discrete indicator)

 A regression scheme can be used to model p(y|x) directly, rather than p(x,y)

Linear Regression

Assume that Y (target) is a linear function of X (features):

• e.g.:
$$\hat{y} = \theta_0 + \theta_1 x_1 + \theta_2 x_2$$

• let's assume a vacuous "feature" $X_0=1$ (this is the intercept term, why?), and define the feature vector to be:

$$\mathbf{x} = [1, x_1, x_2]$$

• then we have the following general representation of the linear function:

$$\hat{y} = \mathbf{x}^T \boldsymbol{\theta}$$

- Our goal is to pick the optimal θ . How!
 - We seek θ that minimize the following **cost function**:

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{n} (\hat{y}_{i}(\bar{x}_{i}) - y_{i})^{2}$$

The Least-Mean-Square (LMS) method

• Consider a gradient descent algorithm:

$$\theta_{j}^{t+1} = \theta_{j}^{t} - \alpha \frac{\partial}{\partial \theta_{j}} J(\theta) \bigg|_{t}$$

• Now we have the following descent rule:

$$\theta_j^{t+1} = \theta_j^t + \alpha \sum_{i=1}^n (y_i - \vec{\mathbf{x}}_i^T \theta^t) x_i^j$$

• For a single training point, we have:

$$\theta_j^{t+1} = \theta_j^t + \alpha (y_i - \bar{\mathbf{x}}_i^T \theta^t) x_i^j$$

- This is known as the LMS update rule, or the Widrow-Hoff learning rule
- This is actually a "stochastic", "coordinate" descent algorithm
- This can be used as a **on-line** algorithm

Probabilistic Interpretation of LMS

• Let us assume that the target variable and the inputs are related by the equation:

$$y_i = \boldsymbol{\theta}^T \mathbf{x}_i + \boldsymbol{\varepsilon}_i$$

where $\boldsymbol{\epsilon}$ is an error term of unmodeled effects or random noise

• Now assume that ε follows a Gaussian $N(0,\sigma)$, then we have:

$$p(y_i \mid x_i; \theta) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{(y_i - \theta^T \mathbf{x}_i)^2}{2\sigma^2}\right)$$

• By independence assumption:

$$L(\theta) = \prod_{i=1}^{n} p(y_i \mid x_i; \theta) = \left(\frac{1}{\sqrt{2\pi\sigma}}\right)^n \exp\left(-\frac{\sum_{i=1}^{n} (y_i - \theta^T \mathbf{x}_i)^2}{2\sigma^2}\right)$$

© Eric Xing @ CMU, 2006-2010

Probabilistic Interpretation of LMS, cont.

• Hence the log-likelihood is:

$$l(\theta) = n \log \frac{1}{\sqrt{2\pi\sigma}} - \frac{1}{\sigma^2} \frac{1}{2} \sum_{i=1}^n (y_i - \theta^T \mathbf{x}_i)^2$$

• Do you recognize the last term?

Yes it is:
$$J(\theta) = \frac{1}{2} \sum_{i=1}^{n} (\mathbf{x}_{i}^{T} \theta - y_{i})^{2}$$

 Thus under independence assumption, LMS is equivalent to MLE of *θ* !

Classification and logistic regression

The logistic function

Logistic regression (sigmoid classifier)

• We can used the brute-force gradient method as in LR

 But we can also apply generic laws by observing the p(y|x) is an exponential family function, more specifically, a generalized linear model (see future lectures ...)

Training Logistic Regression: MCLE

- Estimate parameters $\theta = < \theta_0, \ \theta_1, \ \dots \ \theta_m >$ to maximize the **conditional likelihood** of training data
- Training data $\mathcal{D} = \{(x_1, y_1), \dots, (x_N, y_N)\}$

AT

• Data likelihood =
$$\prod_{i=1}^{N} P(x_i, y_i; \theta)$$

• Data conditional likelihood = $\prod_{i=1}^{N} P(x_i|y_i;\theta)$

$$\theta = \arg\max_{\theta} \ln \prod_{i} P(y_i | x_i; \theta)$$

Expressing Conditional Log Likelihood

$$l(\theta) \equiv \ln \prod_{i} P(y_i | x_i; \theta) = \sum_{i} \ln P(y_i | x_i; \theta)$$

• Recall the logistic function:

$$\mu = \frac{1}{1 + e^{-\theta^T x}}$$

and conditional likelihood: $P(y|x) = \mu(x)^y (1 - \mu(x))^{1-y}$

$$\begin{split} l(\theta) &= \sum_{i} \ln P(y_{i} | x_{i}; \theta) &= \sum_{i} y_{i} \ln u(x_{i}) + (1 - y_{i}) \ln(1 - \mu(x_{i})) \\ &= \sum_{i} y_{i} \ln \frac{u(x_{i})}{1 - \mu(x_{i})} + \ln(1 - \mu(x_{i})) \\ &= \sum_{i} y_{i} \theta^{T} x_{i} - \theta^{T} x_{i} + \ln(1 + e^{-\theta^{T} x_{i}}) \\ &= \sum_{i} (y_{i} - 1) \theta^{T} x_{i} + \ln(1 + e^{-\theta^{T} x_{i}}) \\ &\stackrel{\text{@ Eric Xing @ CMU, 2006-2010}}{ \\ \end{split}$$

Maximizing Conditional Log Likelihood

• The objective:

$$l(\theta) = \ln \prod_{i} P(y_i | x_i; \theta)$$
$$= \sum_{i} (y_i - 1) \theta^t x_i + \ln(1 + e^{-\theta^T x_i})$$

- Good news: $I(\theta)$ is concave function of θ
- Bad news: no closed-form solution to maximize $I(\theta)$

The Newton's method

• Finding a zero of a function

$$\theta^{t+1} := \theta^t - \frac{f(\theta^t)}{f'(\theta^t)}$$

The Newton's method (con'd)

• To maximize the conditional likelihood $l(\theta)$:

$$l(\theta) = \sum_{i} (y_i - 1)\theta^T x_i + \ln(1 + e^{-\theta^T x_i})$$

since *l* is convex, we need to find θ^* where $l'(\theta^*)=0$!

• So we can perform the following iteration:

$$\theta^{t+1} := \theta^t + \frac{l'(\theta^t)}{l''(\theta^t)}$$

The Newton-Raphson method

• In LR the θ is vector-valued, thus we need the following generalization:

$$\theta^{t+1} := \theta^t + H^{-1} \nabla_{\theta^t} l(\theta^t)$$

• ∇ is the gradient operator over the function

• H is known as the Hessian of the function

The Newton-Raphson method

• In LR the θ is vector-valued, thus we need the following generalization:

$$\theta^{t+1} := \theta^t + H^{-1} \nabla_{\theta^t} l(\theta^t)$$

• ∇ is the gradient operator over the function

$$\nabla_{\theta} l(\theta) = \sum_{i} (y_i - u_i) x_i = \mathbf{X}^T (\mathbf{y} - \mathbf{u})$$

• H is known as the Hessian of the function

$$H = \nabla_{\theta} \nabla_{\theta} l(\theta) = \sum_{i} u_{i} (1 - u_{i}) x_{i} x_{i}^{T} = \mathbf{X}^{T} \mathbf{R} \mathbf{X}$$

where $R_{ii} = u_{i} (1 - u_{i})$

© Eric Xing @ CMU, 2006-2010

Iterative reweighed least squares (IRLS)

• Recall in the least square est. in linear regression, we have:

$$\theta = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

which can also derived from Newton-Raphson

• Now for logistic regression:

$$\begin{aligned} \theta^{t+1} &= \theta^t + H^{-1} \nabla_{\theta^t} l(\theta^t) \\ &= \theta^t - (\mathbf{X}^T \mathbf{R} \mathbf{X})^{-1} \mathbf{X}^T (\mathbf{u} - \mathbf{y}) \\ &= (\mathbf{X}^T \mathbf{R} \mathbf{X})^{-1} \{ \mathbf{X}^T \mathbf{R} \mathbf{X} \theta^t - \mathbf{X}^T (\mathbf{u} - \mathbf{y}) \} \\ &= (\mathbf{X}^T \mathbf{R} \mathbf{X})^{-1} \mathbf{X}^T \mathbf{R} \mathbf{z} \end{aligned}$$

Generative vs. Discriminative Classifiers

- Goal: Wish to learn f: $X \rightarrow Y$, e.g., P(Y|X)
- Generative classifiers (e.g., Naïve Bayes):
 - Assume some functional form for P(X|Y), P(Y)
 This is a 'generative' model of the data!
 - Estimate parameters of P(X|Y), P(Y) directly from training data
 - Use Bayes rule to calculate P(Y|X= x)
- Discriminative classifiers:
 - Directly assume some functional form for P(Y|X)
 This is a '*discriminative*' model of the data!
 - Estimate parameters of P(Y|X) directly from training data

Naïve Bayes vs Logistic Regression

- Consider Y boolean, X continuous, X=<X¹ ... X^m>
- Number of parameters to estimate:

- Estimation method:
 - NB parameter estimates are uncoupled
 - LR parameter estimates are coupled

Naïve Bayes vs Logistic Regression

- Asymptotic comparison (# training examples \rightarrow infinity)
- when model assumptions correct
 - NB, LR produce identical classifiers
- when model assumptions incorrect
 - LR is less biased does not assume conditional independence
 - therefore expected to outperform NB

Naïve Bayes vs Logistic Regression

- Non-asymptotic analysis (see [Ng & Jordan, 2002])
- convergence rate of parameter estimates how many training examples needed to assure good estimates?

NB order log m (where m = # of attributes in X) LR order m

• NB converges more quickly to its (perhaps less helpful) asymptotic estimates

Some experiments from UCI data sets

Figure 1: Results of 15 experiments on datasets from the UCI Machine Learnin, repository. Plots are of generalization error vs. m (averaged over 1000 random train/test splits). Dashed line is logistic regression; solid line is naive Bayes.

Robustness

• The best fit from a quadratic regression

• But this is probably better ...

Bayesian Parameter Estimation

- Treat the distribution parameters θ also as a random variable
- The *a posteriori* distribution of θ after seem the data is:

 $p(\theta \mid D) = \frac{p(D \mid \theta) p(\theta)}{p(D)} = \frac{p(D \mid \theta) p(\theta)}{\int p(D \mid \theta) p(\theta) d\theta}$

This is Bayes Rule

posterior = $\frac{\text{likelihood} \times \text{prior}}{\text{marginal likelihood}}$

Bayes, Thomas (1763) An essay towards solving a problem in the doctrine of chances. *Philosophical Transactions of the Royal Society of London*, 53:370-418

The prior p(.) encodes our prior knowledge about the domain

Regularized Least Squares and MAP

What if $(\mathbf{A}^T \mathbf{A})$ is not invertible ?

$$\widehat{\beta}_{MAP} = \arg\max_{\beta} \log p(\{(X_i, Y_i)\}_{i=1}^n | \beta, \sigma^2) + \log p(\beta)$$

$$\log \text{ likelihood } \log \text{ prior}$$

I) Gaussian Prior

$$eta \sim \mathcal{N}(\mathbf{0}, au^2 \mathbf{I}) \qquad p(eta) \propto e^{-eta^T eta/2 au^2}$$

$$\widehat{\beta}_{\mathsf{MAP}} = \arg\min_{\beta} \sum_{i=1}^{n} (Y_i - X_i \beta)^2 + \lambda \|\beta\|_2^2 \qquad \begin{array}{l} \mathsf{Ridge Regression} \\ \downarrow \\ \mathsf{Closed form: HW} \\ \end{array}$$

Prior belief that β is Gaussian with zero-mean biases solution to "small" β

Regularized Least Squares and MAP

What if $(\mathbf{A}^T \mathbf{A})$ is not invertible ?

$$\hat{\beta}_{\text{MAP}} = \arg \max_{\beta} \underbrace{\log p(\{(X_i, Y_i)\}_{i=1}^n | \beta, \sigma^2) + \log p(\beta)}_{\text{log likelihood}} \\ \text{log prior}$$
II) Laplace Prior
$$\beta_i \stackrel{iid}{\sim} \text{Laplace}(0, t) \qquad p(\beta_i) \propto e^{-|\beta_i|/t} \\ \hat{\beta}_{\text{MAP}} = \arg \min_{\beta} \sum_{i=1}^n (Y_i - X_i \beta)^2 + \lambda \|\beta\|_1 \\ \text{Lasso} \\ \text{Closed form: HW} \qquad \text{constant}(\sigma^2, t)$$

Prior belief that β is Laplace with zero-mean biases solution to "small" β

© Eric Xing @ CMU, 2006-2010

Ridge Regression vs Lasso

Lasso (l1 penalty) results in sparse solutions – vector with more zero coordinates Good for high-dimensional problems – don't have to store all coordinates!

Case study: predicting gene expression

i.e., the expression intensity of a gene

Association Mapping as Regression

	Phenotype (BMI)	Genotype
Individual 1	2.5	CTCT CAC
Individual 2 :	4.8	GAGA CTC
Individual N	4.7	GTCT GTG
		Papign SNIDs Causal SNID
		Benign SNPs Causal SNP

Association Mapping as Regression

	Phenotype (BMI)	Genotype
Individual 1	2.5	0100
Individual 2	4.8	1111
Individual N	4.7	2210
	y _i	$= \sum_{j=1}^{J} x_{ij} \beta_j \qquad \frac{\text{SNPs with large}}{ \beta_j \text{ are relevant}}$

Experimental setup

• Asthama dataset

- 543 individuals, genotyped at 34 SNPs
- Diploid data was transformed into 0/1 (for homozygotes) or 2 (for heterozygotes)
- X=543x34 matrix
- Y=Phenotype variable (continuous)
- A single phenotype was used for regression

• Implementation details

- Iterative methods: Batch update and online update implemented.
- For both methods, step size α is chosen to be a small fixed value (10⁻⁶). This choice is based on the data used for experiments.
- Both methods are only run to a maximum of 2000 epochs or until the change in training MSE is less than 10-4

Convergence Curves

- For the batch method, the training MSE is initially large due to uninformed initialization
- In the online update, N updates for every epoch reduces MSE to a much smaller value.

The Learned Coefficients

Performance vs. Training Size

- The results from B and O update are almost identical. So the plots coincide.
- The test MSE from the normal equation is more than that of B and O during small training. This is probably due to overfitting.
- In B and O, since only 2000 iterations are allowed at most. This roughly acts as a mechanism that avoids overfitting.

Summary

• Naïve Bayes classifier

- What's the assumption
- Why we use it
- How do we learn it

• Logistic regression

- Functional form follows from Naïve Bayes assumptions
- For Gaussian Naïve Bayes assuming variance
- For discrete-valued Naïve Bayes too
- But training procedure picks parameters without the conditional independence assumption
- Gradient ascent/descent
 - General approach when closed-form solutions unavailable
- Generative vs. Discriminative classifiers
 - - Bias vs. variance tradeoff

Appendix

Parameter Learning from *iid* Data

- Goal: estimate distribution parameters θ from a dataset of N independent, identically distributed (*iid*), fully observed, training cases

 $D = \{x_1, \ldots, x_N\}$

- Maximum likelihood estimation (MLE)
 - 1. One of the most common estimators
 - 2. With iid and full-observability assumption, write $L(\theta)$ as the likelihood of the data:

 $L(\theta) = P(x_1, x_2, \dots, x_N; \theta)$ = $P(x; \theta) P(x_2; \theta), \dots, P(x_N; \theta)$ = $\prod_{i=1}^{N} P(x_i; \theta)$

3. pick the setting of parameters most likely to have generated the data we saw:

$$\theta^* = \arg \max_{\theta} L(\theta) = \arg \max_{\theta} \log L(\theta)$$

47

Example: Bernoulli model

- Data:
 - We observed *N iid* coin tossing: *D*={1, 0, 1, ..., 0}
- Representation:

Binary r.v:

• Model:

$$P(x) = \begin{cases} 1 - \theta & \text{for } x = 0 \\ \theta & \text{for } x = 1 \end{cases} \implies P(x) = \theta^{x} (1 - \theta)^{1 - x}$$

• How to write the likelihood of a single observation x_i ?

 $x_n = \{0,1\}$

 $P(x_i) = \theta^{x_i} (\mathbf{1} - \theta)^{\mathbf{1} - x_i}$

• The likelihood of dataset $D=\{x_1, \dots, x_N\}$:

$$P(x_1, x_2, ..., x_N \mid \theta) = \prod_{i=1}^{N} P(x_i \mid \theta) = \prod_{i=1}^{N} \left(\theta^{x_i} (1-\theta)^{1-x_i} \right) = \theta^{\sum_{i=1}^{N} x_i} (1-\theta)^{\sum_{i=1}^{N} 1-x_i} = \theta^{\text{#head}} (1-\theta)^{\text{#tails}}$$

© Eric Xing @ CMU, 2006-2010

Maximum Likelihood Estimation

• Objective function:

 $\boldsymbol{\ell}(\boldsymbol{\theta}; D) = \log P(D \mid \boldsymbol{\theta}) = \log \boldsymbol{\theta}^{n_h} (\mathbf{1} - \boldsymbol{\theta})^{n_t} = n_h \log \boldsymbol{\theta} + (N - n_h) \log(\mathbf{1} - \boldsymbol{\theta})$

- We need to maximize this w.r.t. θ
- Take derivatives wrt θ

- Sufficient statistics
 - The counts, n_h , where $n_k = \sum_i x_i$, are sufficient statistics of data D

Overfitting

Recall that for Bernoulli Distribution, we have

$$\widehat{\theta}_{ML}^{head} = \frac{n^{head}}{n^{head} + n^{tail}}$$

- What if we tossed too few times so that we saw zero head?
 We have θ^{head}_{ML} = 0, and we will predict that the probability of seeing a head next is zero!!!
- The rescue: "smoothing"
 - Where *n*' is know as the pseudo- (imaginary) count

$$\widehat{\theta}_{ML}^{head} = \frac{n^{head} + n'}{n^{head} + n^{tail} + n}$$

• But can we make this more formal?

© Eric Xing @ CMU, 2006-2010

Bayesian Parameter Estimation

- Treat the distribution parameters θ also as a random variable
- The *a posteriori* distribution of θ after seem the data is:

 $p(\theta \mid D) = \frac{p(D \mid \theta) p(\theta)}{p(D)} = \frac{p(D \mid \theta) p(\theta)}{\int p(D \mid \theta) p(\theta) d\theta}$

This is Bayes Rule

 $posterior = \frac{likelihood \times prior}{marginal likelihood}$

Bayes, Thomas (1763) An essay towards solving a problem in the doctrine of chances. *Philosophical Transactions of the Royal Society of London*, 53:370-418

The prior p(.) encodes our prior knowledge about the domain

Frequentist Parameter Estimation

Two people with different priors $p(\theta)$ will end up with different estimates $p(\theta|D)$.

- Frequentists dislike this "subjectivity".
- Frequentists think of the parameter as a fixed, unknown constant, not a random variable.
- Hence they have to come up with different "objective" estimators (ways of computing from data), instead of using Bayes' rule.
 - These estimators have different properties, such as being "unbiased", "minimum variance", etc.
 - The maximum likelihood estimator, is one such estimator.

Discussion

θ or $p(\theta)$, this is the problem!

Bayesian estimation for Bernoulli

- Beta distribution:
 - $P(\theta;\alpha,\beta) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} \theta^{\alpha-1} (1-\theta)^{\beta-1} = B(\alpha,\beta) \theta^{\alpha-1} (1-\theta)^{\beta-1}$
 - When x is discrete $\Gamma(x+1) = x\Gamma(x) = x!$
- Posterior distribution of θ :

 $P(\theta \mid x_1,...,x_N) = \frac{p(x_1,...,x_N \mid \theta) p(\theta)}{p(x_1,...,x_N)} \propto \theta^{n_h} (1-\theta)^{n_t} \times \theta^{\alpha-1} (1-\theta)^{\beta-1} = \theta^{n_h+\alpha-1} (1-\theta)^{n_t+\beta-1}$

- Notice the isomorphism of the posterior to the prior,
- such a prior is called a **conjugate prior**
- α and β are hyperparameters (parameters of the prior) and correspond to the number of "virtual" heads/tails (pseudo counts)

Bayesian estimation for Bernoulli, con'd

• Posterior distribution of θ :

 $P(\theta \mid x_1,...,x_N) = \frac{p(x_1,...,x_N \mid \theta) p(\theta)}{p(x_1,...,x_N)} \propto \theta^{n_h} (1-\theta)^{n_t} \times \theta^{\alpha-1} (1-\theta)^{\beta-1} = \theta^{n_h+\alpha-1} (1-\theta)^{n_t+\beta-1}$

• Maximum a posteriori (MAP) estimation:

$$\theta_{MAP} = \arg \max_{\theta} \log P(\theta \mid x_1, ..., x_N)$$

• Posterior mean estimation:

Bata parameters can be understood as pseudo-counts

$$\theta_{Bayes} = \int \theta p(\theta \mid D) d\theta = C \int \theta \times \theta^{n_h + \alpha - 1} (1 - \theta)^{n_t + \beta - 1} d\theta = \frac{n_h + \alpha}{N + \alpha + \beta}$$

- Prior strength: $A = \alpha + \beta$
 - A can be interoperated as the size of an imaginary data set from which we obtain the **pseudo-counts**

Effect of Prior Strength

• Weak prior A = 2. Posterior prediction:

$$p(x=h | n_h = 2, n_t = 8, \vec{\alpha} = \vec{\alpha} \times 2) = \frac{1+2}{2+10} = 0.25$$

• Strong prior A = 20. Posterior prediction:

$$p(x = h | n_h = 2, n_t = 8, \vec{\alpha} = \vec{\alpha} \times 20) = \frac{10 + 2}{20 + 10} = 0.40$$

• However, if we have enough data, it washes away the prior. e.g., $\vec{n} = (n_h = 200, n_f = 800)$. Then the estimates under weak and strong prior are $\frac{1+200}{2+1000}$ and $\frac{10+200}{20+1000}$, respectively, both of which are close to 0.2

Example 2: Gaussian density

• Data:

- We observed *N* iid real samples:
 - *D*={-0.1, 10, 1, -5.2, ..., 3}
- Model: $P(x) = (2\pi\sigma^2)^{-1/2} \exp\{-(x-\mu)^2/2\sigma^2\}$
- Log likelihood:

$$\boldsymbol{\ell}(\boldsymbol{\theta}; D) = \log P(D \mid \boldsymbol{\theta}) = -\frac{N}{2} \log(2\pi\sigma^2) - \frac{1}{2} \sum_{n=1}^{N} \frac{(x_n - \mu)^2}{\sigma^2}$$

• MLE: take derivative and set to zero:

$$\frac{\partial \ell}{\partial \mu} = (1/\sigma^2) \sum_n (x_n - \mu)$$

$$\frac{\partial \ell}{\partial \sigma^2} = -\frac{N}{2\sigma^2} + \frac{1}{2\sigma^4} \sum_n (x_n - \mu)^2$$

 $\mu_{MLE} = \frac{1}{N} \sum_{n} (x_n)$

 $\sigma_{MLE}^2 = \frac{1}{N} \sum_{n} (x_n - \mu_{ML})^2$

MLE for a multivariate-Gaussian

• It can be shown that the MLE for μ and Σ is

$$\mu_{MLE} = \frac{1}{N} \sum_{n} (x_n)$$

$$\Sigma_{MLE} = \frac{1}{N} \sum_{n} (x_n - \mu_{ML}) (x_n - \mu_{ML})^T = \frac{1}{N} S$$

where the scatter matrix is

$$S = \sum_{n} (x_{n} - \mu_{ML}) (x_{n} - \mu_{ML})^{T} = (\sum_{n} x_{n} x_{n}^{T}) - N \mu_{ML} \mu_{ML}^{T}$$

- The sufficient statistics are $\Sigma_n x_n$ and $\Sigma_n x_n x_n^T$.
- Note that $X^T X = \sum_n x_n x_n^T$ may not be full rank (eg. if N < D), in which case \sum_{ML} is not invertible

 $x_n = \begin{pmatrix} x_n^1 \\ x_n^2 \\ \vdots \\ x_n^K \end{pmatrix}$

Bayesian estimation

• Normal Prior:

$$P(\mu) = \left(2\pi\sigma_0^2\right)^{-1/2} \exp\left\{-\left(\mu - \mu_0\right)^2 / 2\sigma_0^2\right\}$$

• Joint probability:

$$P(x,\mu) = \left(2\pi\sigma^{2}\right)^{-N/2} \exp\left\{-\frac{1}{2\sigma^{2}}\sum_{n=1}^{N} (x_{n}-\mu)^{2}\right\}$$
$$\times \left(2\pi\sigma_{0}^{2}\right)^{-1/2} \exp\left\{-(\mu-\mu_{0})^{2}/2\sigma_{0}^{2}\right\}$$

• Posterior:

$$\mathcal{P}(\mu \mid \boldsymbol{x}) = (2\pi\tilde{\sigma}^2)^{-1/2} \exp\left\{-(\mu - \tilde{\mu})^2 / 2\tilde{\sigma}^2\right\}$$

where $\tilde{\mu} = \frac{N/\sigma^2}{N/\sigma^2 + 1/\sigma_0^2} \bar{x} + \frac{1/\sigma_0^2}{N/\sigma^2 + 1/\sigma_0^2} \mu_0$, and $\tilde{\sigma}^2 = \left(\frac{N}{\sigma^2} + \frac{1}{\sigma_0^2}\right)^{-1}$

Bayesian estimation: unknown μ, known σ

$$\mu_{N} = \frac{N/\sigma^{2}}{N/\sigma^{2} + 1/\sigma_{0}^{2}} \overline{x} + \frac{1/\sigma_{0}^{2}}{N/\sigma^{2} + 1/\sigma_{0}^{2}} \mu_{0}, \qquad \tilde{\sigma}^{2} = \left(\frac{N}{\sigma^{2}} + \frac{1}{\sigma_{0}^{2}}\right)^{-1}$$

- The posterior mean is a convex combination of the prior and the MLE, with weights proportional to the relative noise levels.
- The precision of the posterior $1/\sigma_N^2$ is the precision of the prior $1/\sigma_0^2$ plus one contribution of data precision $1/\sigma^2$ for each observed data point.
- Sequentially updating the mean
 - $\mu * = 0.8$ (unknown), $(\sigma^2) * = 0.1$ (known)
 - Effect of single data point

$$\mu_1 = \mu_0 + (x - \mu_0) \frac{\sigma_0^2}{\sigma^2 + \sigma_0^2} = x - (x - \mu_0) \frac{\sigma_0^2}{\sigma^2 + \sigma_0^2}$$

• Uninformative (vague/ flat) prior, $\sigma_0^2 \rightarrow \infty$ $\mu_N \rightarrow \mu_0$

© Eric Xing @ CMU, 2006-2010