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Machine Learning

Overfitting and Model Selection

Eric Xing

Lecture 6, August 13, 2010

Reading:
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Outline
 Overfitting

 kNN
 Regression

 Bias-variance decomposition
 Generalization Theory and Structural Risk Minimization

 The battle against overfitting: 
each learning algorithm has some "free knobs" that one can "tune" (i.e., 
heck) to make the algorithm generalizes better to test data. 

But is there a more principled way?
 Cross validation
 Regularization
 Feature selection
 Model selection --- Occam's razor
 Model averaging
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Overfitting: kNN
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Another example:
 Regression
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Overfitting, con'd
 The models:

 Test errors:
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What is a good model?

Low Robustness

Robust Model

Low quality  /High Robustness

Model built     

Known Data

New Data

LEGEND
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Bias-variance decomposition
 Now let's look more closely into two sources of errors in an 

functional approximator:

 Let h(x) = E[t|x] be the optimal predictor, and y(x) our actual 
predictor:

 expected loss = (bias)2 + variance + noise
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Four Pillars for SLT
 Consistency (guarantees generalization)

 Under what conditions will a model be consistent ?

 Model convergence speed (a measure for generalization)
 How does generalization capacity improve when sample size L grows?

 Generalization capacity control
 How to control in an efficient way model generalization starting with the only given 

information we have: our sample data? 

 A strategy for good learning algorithms
 Is there a strategy that guarantees, measures and controls our learning model 

generalization capacity ? 



© Eric Xing @ CMU, 2006-2010 10

%error

number of training examples

Test error

Training error

%error

number of training examples

Test error

Training error

Consistent training?
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 Q : Under which conditions will a learning model be 
consistent?

 A : A model will be consistent if and only if the function h that 
defines the model comes from a family of functions H with 
finite VC dimension d

 A finite VC dimension d not only guarantees a generalization 
capacity (consistency), but to pick h in a family H with finite 
VC dimension d is the only way to build a model that 
generalizes.

Vapnik main theorem
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Model convergence speed 
(generalization capacity)
 Q : What is the nature of model error difference between 

learning data (sample) and test data, for a sample of finite 
size m? 

 A : This difference is no greater than a limit that only depends 
on the ratio between VC dimension d of model functions 
family H, and sample size m, i.e., d/m

This statement is a new theorem that belongs to Kolmogorov-
Smirnov way for results, i.e., theorems that do not depend on 
data’s underlying probability law.



© Eric Xing @ CMU, 2006-2010 13

Sample size L

Confidence
Interval

Test data error

Learning sample error

% error

Model convergence speed
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How to control model 
generalization capacity

Risk Expectation = Empirical Risk + Confidence Interval

 To minimize Empirical Risk alone will not always give a good 
generalization capacity: one will want to minimize the sum of 
Empirical Risk and Confidence Interval

 What is important is not the numerical value of the Vapnik 
limit, most often too large to be of any practical use, it is the 
fact that this limit is a non decreasing function of model family 
function “richness”
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 With probability 1-δ, the following inequality is true:

 where w0 is the parameter w value that minimizes Empirical Risk:

Empirical Risk Minimization 
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Structural Risk Minimization
 Which hypothesis space should we choose?

 Bias / variance tradeoff

 SRM: choose H to minimize bound on true error!

unfortunately a somewhat loose bound...
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SRM strategy (1)
 With probability 1-δ,

 When m/d is small (d too large), second term of equation becomes 
large

 SRM basic idea for strategy is to minimize simultaneously both 
terms standing on the right of above majoring equation for ε(h)

 To do this, one has to make d a controlled parameter
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SRM strategy (2)
 Let us consider a sequence H1 < H2 < .. < Hn of model family 

functions, with respective growing VC dimensions 

d1 < d2 < .. < dn

 For each family Hi of our sequence, the inequality

is valid
 That is, for each subset, we must be able either to compute d, or to get a bound 

on d itself.

 SRM then consists of finding that subset of functions which 
minimizes the bound on the actual risk.
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SRM : find i such that expected risk ε(h) becomes 
minimum, for a specific d*=di, relating to a specific 
family Hi of our sequence; build model using h from Hi

Empirical 
Risk

Risk

Model Complexity

Total Risk

Confidence interval
In h/L

Best Model

h*

SRM strategy (3)
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Putting SRM into action: 
linear models case (1)
 There are many SRM-based strategies to build models:

 In the case of linear models
y = wTx + b,

one wants to make ||w|| a controlled parameter: let us call HC the 
linear model function family satisfying the constraint:

||w|| < C

Vapnik Major theorem:
When C decreases, d(HC) decreases
||x|| < R
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Putting SRM into action: 
linear models case (2)
 To control ||w||, one can envision two routes to model:

 Regularization/Ridge Regression, ie min. over w and b

RG(w,b) = S{(yi-<w|xi> - b)² |i=1,..,L} + λ ||w||²

 Support Vector Machines (SVM), ie solve directly an optimization 
problem (classif. SVM, separable data)

Minimize ||w||², 
with (yi= +/-1)
and yi(<w|xi> + b) >=1 for all i=1,..,L
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Regularized Regression
 Recall linear regression:

 Regularized LR:
 L2-regularized LR:

 L1-regularized LR:
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Bias-variance tradeoff
 λ is a "regularization" 

terms in LR, the smaller 
the λ, is more complex the 
model (why?)
 Simple (highly regularized) 

models have low variance but 
high bias.

 Complex models have low bias 
but high variance.

 You are inspecting an 
empirical average over 
100 training set. 

 The actual ED can not be 
computed
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Bias2+variance vs regularizer

 Bias2+variance predicts (shape of) test error quite well.
 However, bias and variance cannot be computed since it 

relies on knowing the true distribution of x and t (and hence 
h(x) = E[t|x]).
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The battle against overfitting
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Model Selection
 Suppose we are trying select among several different models 

for a learning problem.
 Examples:

1. polynomial regression

 Model selection: we wish to automatically and objectively decide if k should be, say, 0, 
1, . . . , or 10.

2. locally weighted regression,
 Model selection: we want to automatically choose the bandwidth parameter τ. 

3. Mixture models and hidden Markov model,
 Model selection: we want to decide the number of hidden states

 The Problem:
 Given model family                                    ,  find                   s.t. 
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1. Cross Validation
 We are given training data D and test data Dtest, and we would 

like to fit this data with a model pi(x;θ) from the family F  (e.g, 
an LR), which is indexed by i and parameterized by θ.

 K-fold cross-validation (CV)
 Set aside αN samples of D (where N = |D|). This is known as the held-out data

and will be used to evaluate different values of i.
 For each candidate model i, fit the optimal hypothesis pi(x;θ∗) to the remaining 

(1−α)N samples in D (i.e., hold i fixed and find the best θ).
 Evaluate each model pi(x|θ∗) on the held-out data using some pre-specified risk 

function.
 Repeat the above K times, choosing a different held-out data set each time, and 

the scores are averaged for each model pi(.) over all held-out data set. This gives 
an estimate of the risk curve of models over different i.

 For the model with the lowest risk, say pi*(.),  we use all of D to find the 
parameter values for pi*(x;θ∗).
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Example:
 When α=1/N, the algorithm is known as Leave-One-Out-

Cross-Validation (LOOCV)

MSELOOCV(M2)=0.962MSELOOCV(M1)=2.12
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Practical issues for CV
 How to decide the values for K and α

 Commonly used K = 10 and  α = 0.1.
 when data sets are small relative to the number of models that are being 

evaluated, we need to decrease α and increase K
 K needs to be large for the variance to be small enough, but this makes it time-

consuming.

 Bias-variance trade-off
 Small α usually lead to low bias. In principle, LOOCV provides an almost 

unbiased estimate of the generalization ability of a classifier, especially when the 
number of the available training samples is severely limited; but it can also have 
high variance.

 Large α can reduce variance, but will lead to under-use of data, and causing high-
bias.

 One important point is that the test data Dtest is never used in 
CV, because doing so would result in overly (indeed 
dishonest) optimistic accuracy rates during the testing phase.
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2. Regularization
 Maximum-likelihood estimates are not always the best (James 

and Stein showed a counter example in the early 60's)
 Alternative: we "regularize" the likelihood objective (also 

known as penalized likelihood, shrinkage, smoothing, etc.), by 
adding to it a penalty term:

where λ>0 and ||θ|| might be the L1 or L2 norm.

 The choice of norm has an effect
 using the L2 norm pulls  directly towards the origin, 
 while using the L1 norm pulls towards the coordinate axes, i.e it tries to set some 

of the coordinates to 0. 
 This second approach can be useful in a feature-selection setting.
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Recall Bayesian and Frequentist
 Frequentist interpretation of probability

 Probabilities are objective properties of the real world, and refer to limiting relative 
frequencies (e.g., number of times I have observed heads). Hence one cannot 
write P(Katrina could have been prevented|D), since the event will never repeat.

 Parameters of models are fixed, unknown constants. Hence one cannot write 
P(θ|D) since θ does not have a probability distribution. Instead one can only write 
P(D|θ).

 One computes point estimates of parameters using various estimators, θ*= f(D), 
which are designed to have various desirable qualities when averaged over future 
data D (assumed to be drawn from the “true” distribution).

 Bayesian interpretation of probability
 Probability describes degrees of belief, not limiting frequencies.
 Parameters of models are hidden variables, so one can compute P(θ|D) or 

P(f(θ)|D) for some function f.
 One estimates parameters by computing P(θ|D) using Bayes rule:
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Bayesian interpretation of 
regulation
 Regularized Linear Regression 

 Recall that using squared error as the cost function results in the LMS estimate
 And assume iid data and Gaussian noise, LMS is equivalent to MLE of θ

 Now assume that vector θ follows a normal prior with 0-mean and a diagonal 
covariance matrix

 What is the posterior distribution of θ?
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Bayesian interpretation of 
regulation, con'd
 The posterior distribution of θ

 This leads to a now objective

 This is L2 regularized LR! --- a MAP estimation of θ
 What about L1 regularized LR! (homework)

 How to choose λ. 
 cross-validation!
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3. Feature Selection
 Imagine that you have a supervised learning problem where 

the number of features d is very large (perhaps d
>>#samples), but you suspect that there is only a small 
number of features that are "relevant" to the learning task. 

 VC-theory can tell you that this scenario is likely to lead to 
high generalization error – the learned model will potentially 
overfit unless the training set is fairly large.

 So lets get rid of useless parameters!
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How to score features
 How do you know which features can be pruned?

 Given labeled data, we can compute some simple score S(i) that 
measures how informative each feature xi is about the class labels y.

 Ranking criteria:
 Mutual Information: score each feature by its mutual information with respect 

to the class labels

 Bayes error:

 Redundancy (Markov-blank score) …

 We need estimate the relevant p()'s from data, e.g., using MLE
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Feature Ranking 

 Bayes error of each gene

 information gain for each 
genes with respect to the 
given partition

 KL of each removal gene 
w.r.t. to its MB
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Feature selection schemes
 Given n features, there are 2n possible feature subsets (why?)

 Thus feature selection can be posed as a model selection 
problem over 2n possible models.

 For large values of n, it's usually too expensive to explicitly 
enumerate over and compare all 2n models. Some heuristic 
search procedure is used to find a good feature subset.

 Three general approaches:
 Filter: i.e., direct feature ranking, but taking no consideration of the subsequent 

learning algorithm
 add (from empty set) or remove (from the full set) features one by one based on S(i)
 Cheap, but is subject to local optimality and may be unrobust under different classifiers 

 Wrapper: determine the (inclusion or removal of) features based on performance 
under the learning algorithms to be used.  See next slide

 Simultaneous learning and feature selection.
 E.x. L1 regularized LR, Bayesian feature selection (will not cover in this class), etc.
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Case study   [Xing et al, 2001]

 The case: 
 7130 genes from a microarray dataset
 72 samples
 47 type I Leukemias (called ALL) 

and 25 type II Leukemias (called AML)

 Three classifier:
 kNN
 Gaussian classifier
 Logistic regression
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Regularization vs. Feature 
Selection
 Explicit feature selection often outperform regularization
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4. Information criterion
 Suppose we are trying select among several different models 

for a learning problem.

 The Problem:
 Given model family                                    ,  find                   s.t. 

 We can design J that not only reflect the predictive loss, but 
also the amount of information Mk can hold 
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Model Selection via Information 
Criteria
 Let f(x) denote the truth, the underlying distribution of the data
 Let g(x,θ) denote the model family we are evaluating

 f(x) does not necessarily reside in the model family
 θML(y) denote the MLE of model parameter from data y

 Among early attempts to move beyond Fisher's Maliximum 
Likelihood framework, Akaike proposed the following 
information criterion:

which is, of course, intractable (because f(x) is unknown)
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AIC and TIC
 AIC (An information criterion, not Akaike information criterion)

where k is the number of parameters in the model

 TIC (Takeuchi information criterion)

where

 We can approximate these terms in various ways (e.g., using the bootstrap) 
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5. Bayesian Model Averaging
 Recall the Bayesian Theory: (e.g., for date D and model M) 

P(M|D) = P(D|M)P(M)/P(D)

 the posterior equals to the likelihood times the prior, up to a constant. 

 Assume that P(M) is uniform and notice that P(D) is constant, 
we have the following criteria:

 A few steps of approximations (you will see this in advanced ML 
class in later semesters) give you this:

where N is the number of data points in D.
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Summary

 Structural risk minimization

 Bias-variance decomposition

 The battle against overfitting: 

 Cross validation
 Regularization
 Feature selection
 Model selection --- Occam's razor
 Model averaging 

 The Bayesian-frequentist debate
 Bayesian learning (weight models by their posterior probabilities)
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