Machine Learning

Data visualization and
dimensionality reduction
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Text document retrieval/labelling

e Represent each document by a high-dimensional vector in the

space of words
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Image retrieval/labelling
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Dimensionality Bottlenecks

e Data dimension

e Sensor response variables X:
1,000,000 samples of an EM/Acoustic field on each of N sensors
10242 pixels of a projected image on a IR camera sensor
N2 expansion factor to account for all pairwise correlations

e Information dimension

e Number of free parameters describing probability densities f(X) or f(S|X)
For known statistical model: info dim = model dim
For unknown model: info dim = dim of density approximation

e Parametric-model driven dimension reduction
e DR by sufficiency, DR by maximum likelihood

e Data-driven dimension reduction
e Manifold learning, structure discovery
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Intuition: how does your brain
store these pictures?




Brain Representation
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Brain Representation

e Every pixel?

e Or perceptually

meaningful structure?
Up-down pose
Left-right pose
Lighting direction

So, your brain successfully reduced
the high-dimensional inputs to an
intrinsically 3-dimensional
manifold!
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Two Geometries to Consider :

(Metric) data geometry (Non-metric) information geometry
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Data-driven DR °°

e Data-driven projection to lower dimensional subsapce

e Extract low-dim structure from high-dim data

e Data may lie on curved (but locally linear) subspace
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[3]
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Josh .B. Tenenbaum, Vin de Silva, and John C. Langford “A Global Geometric Framework for
Nonlinear Dimensionality Reduction” Science, 22 Dec 2000.

Jose Costa, Neal Patwari and Alfred O. Hero, “Distributed Weighted Multidimensional Scaling for
Node Localization in Sensor Networks”, IEEE/ACM Trans. Sensor Networks, to appear 2005.
Misha Belkin and Partha Niyogi, “Laplacian eigenmaps for dimensionality reduction and data
representation,” Neural Computation, 2003.
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What 1s a Manifold?

e A manifold is a topological space which is locally Euclidean.

e Represents a very useful and challenging unsupervised
learning problem.

e |n general, any object which is nearly "flat" on small
scales Is a manifold.

Eric Xing © Eric Xing @ CMU, 2006-2010
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Manifold Learning

e Discover low dimensional structures (smooth manifold) for
data in high dimension.

e Linear Approaches
Principal component analysis.

Multi dimensional scaling.

e Non Linear Approaches

Eric Xing

Local Linear Embedding
ISOMAP
Laplacian Eigenmap.
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Principal component analysis o

e Areas of variance in data are where items can be best discriminated
and key underlying phenomena observed

e If two items or dimensions are highly correlated or dependent
e They are likely to represent highly related phenomena

e We want to combine related variables, and focus on uncorrelated or independent ones,
especially those along which the observations have high variance

e We look for the phenomena underlying the observed covariance/co-
dependence in a set of variables

e These phenomena are called “factors” or “principal components” or
“iIndependent components,” depending on the methods used

e Factor analysis: based on variance/covariance/correlation
e Independent Component Analysis: based on independence
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An example: oo
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Principal Component Analysis o

e The new variables/dimensions

e Are linear combinations of the original
ones

e Are uncorrelated with one another
Orthogonal in original dimension space

e Capture as much of the original
variance in the data as possible

e Are called Principal Components

e Orthogonal directions of
greatest variance in data

([
e Projections along PC1 °
discriminate the data most
along any one axis
([

PC 2
PC1

v

First principal component is the direction of
greatest variability (covariance) in the data

Second is the next orthogonal (uncorrelated)
direction of greatest variability

e So first remove all the variability along the first component, and then
find the next direction of greatest variability

And so on ...

Eric Xing © Eric Xing @ CMU, 2006-2010 14



Computing the Components

e Projection of vector x onto an axis (dimension) u is u'x

e Direction of greatest variability is that in which the average square of
the projection is greatest:

Maximize uTXXTu
s.t ulu=1

Construct Langrangian u™XXTu — AuTu

Vector of partial derivatives set to zero
XXTuU—Au=(XxX"—A)u=0

As u # 0 then u must be an eigenvector of XXT with eigenvalue A

e ) is the principal eigenvalue of the correlation matrix C= XXT

e The eigenvalue denotes the amount of variability captured along that
dimension
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Computing the Components :

e Similarly for the next axis, etc.

e S0, the new axes are the eigenvectors of the matrix of
correlations of the original variables, which captures the
similarities of the original variables based on how data
samples project to them

7

v

e Geometrically: centering followed by rotation

° Linear transformation
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Eigenvalues & Eigenvectors :

e For symmetric matrices, eigenvectors for distinct eigenvalues
are orthogonal

SV 2y = A 53V 2 and 4, # 4, = v,ev, =0

e All eigenvalues of a real symmetric matrix are real.
if |S—Al|=0andS=S" = 1eR

e All eigenvalues of a positive semidefinite matrix are non-
negative

YweR" w'Sw>0,thenif Sv=Av=1>0
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0000
o000
Eigen/diagonal Decomposition oo
e Let S € R™*™be a square matrix with m linearly
Independent eigenvectors (a “non-defective” matrix)
Unique

for

e Theorem: Exists an eigen decomposition { distinct

eigen-
values

diagonal

S — UAU™!

(cf. matrix diagonalization theorem)

e Columns of U are eigenvectors of S

e Diagonal elements of A are eigenvalues of S

A = diag(Ai, ..., Am), A = Aiga

Eric Xing © Eric Xing @ CMU, 2006-2010
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PCs, Variance and Least-Squares | ¢

e The first PC retains the greatest amount of variation in the
sample

e The k" PC retains the kth greatest fraction of the variation in
the sample

e The k' largest eigenvalue of the correlation matrix C is the
variance in the sample along the ki PC

e The least-squares view: PCs are a series of linear least
sguares fits to a sample, each orthogonal to all previous ones

Eric Xing © Eric Xing @ CMU, 2006-2010 19



How Many PCs?

e For n original dimensions, sample covariance matrix is nxn, and has
up to n eigenvectors. So n PCs.

e Where does dimensionality reduction come from?
Can ignore the components of lesser significance.
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You do lose some information, but if the eigenvalues are small, you don’t
lose much

e
Eric Xing

n dimensions in original data
calculate n eigenvectors and eigenvalues

choose only the first p eigenvectors, based on their eigenvalues

final data set has only p dimensions
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Application: querying text doc.

a8 s
T2 +depresse=d
; : ®dixch e
Label Medical Topic aTEE patienis
F 9
M1  study of depressed patients after diacharge with regard to age of onset and eulture ANT M2
M2  culture of pleurcpnenmeonie lile orgenisma found in vaginal discharge of patienta 1 F
M1 El't.udljf Elhowd cestrogen production ia de‘preaaed by owarian irradiation . - 1 AAT A PR
M4  cortisone rapidly depresced the secondary rse in cestrogen output of patients shehavior *oEsirogeEn
Mb  bovatend to react to death anxety by acting out behawicr while girls tended & uliure
to become depressed * iy
M#  changeain children'a behawior following hoapitalization astndied a weels after
dia
MT aurgical technique to cloge ventrienlar septal defecta T T T T T T T T T 1
ME  chromescmal pbnormalities in blood enltnrea and bone marrow from lenkmemic ][] 0.2 .4 i X .8
patienta
Mi  atudy of christmaa disease with reapect to generation and enlture apf F ANy TREE
M1f  insulin not responaible for metabolic ghnormalities accompanying & prolonged
faat
M1l  closs relationship between high blood preamre and weacular disesse ] sabhnormalities
M1} meonse kdnera show & decline with respect to age in the ability to concertrate # bl
the urine during & water faat
M1}  fast cell generation in the ere lens epithelium of rats LIS ]
M14  faat rise of cerebral coxFgen preamire in rata wlinmane
*rine
2 — - .
“Tarma Locl manta rEspELL & A7
M1 MZ M3 M4 MR M& M7 ME M OMID MIL MIZ MIF MId
abnormalitiem 0 0 0 1] 1] 0 1] 1 0 1 0 1] 1] 0 * generalion
ara 1 0 0 1] 1] 0 1] 1] 0 0 0 1 1] 0
bahavior ¢ 0o ¢ © 1 1 © @ 0 © 0 0 © O AN IE
bl oud. 1] 0 0 1] 1] 0 1] 1 0 0 1 1] 1] 0 L
cloaa 1] 0 0 1] 1] 0 1 1] 0 0 1 1] 1] 0 aMs s F T
cultura 1 1 0 1] 1] 0 1] 1 1 0 0 L1 L] 0 S prexsure
deprasaed 1 0 1 1 1 0 1] 1] 0 0 0 1] 1] 0
discharge 1 1 0 1] 1] 1 1] 1] 0 0 0 1] 1] 0
disaasa 1] 0 0 1] 1] 0 1] 1] 1 0 1 1] 1] 0
fat 0 0 0 0 0 0 0 0 0 1 0 1 1 1 ga- . rais
fanaration 1] 0 0 1] 1] 0 1] 1] 1 0 0 1] 1 0
et oAt 1] 0 1 1 1] 0 1] 1] 0 0 0 1] 1] 0
patianta 1 1 0 1 1] 0 1] 1 0 0 0 1] 1] 0
preasura 1] 0 0 1] 1] 0 1] 1] 0 0 1 1] 1] 1
rats 1] 0 0 1] 1] 0 1] 1] 0 0 0 1] 1 1
respact o o o © o o © 1L o o o L o o | L |
risa 1] 0 0 1 1] 0 1] 1] 0 0 0 1] 1] 1
atudy 1 0 1 1] 1] 0 1] 1] 1 0 0 1] 1] 0
N,
Oie —
. . *{axi
© Eric Xing @ CMU, 2006-2010

Eric Xing

21



32 —

ekt

2 —

¢4 —

0 —

& AT B

& behavior

lep ressed

*idixcharge .
Spabenix
A NF2

i T
a

ToEnlToyEn

LA TRITTE,
* ol y

anf i

#ilineane

+ rise

Ly 1LY

Eric Xing

iR ) 1.0

{ 01451 —0.1199 ) =

cocococococococoooo o mE

0.1623 —0.1872
0.2068 —0.0488
0.0597  (.0614
0.1663 —0.1313
0.0258 —0.1246
0.4534  0.0386
0.8579  0.1710
0.2981  0.14%6 .
0.0690 —0.1576 345919 0 -
0.0540 —0.6535 ( 0 2.6471)
0.0599 —0.2878
0.1560  0.0661
0.4648  (.1091
0.0460 —0.3363
0.0369 —0.4166
0.1797  —0.1456
0.1087 —0.31%6
0.9814  0.0941

Kumbar of Mactors

k=12

k=4 [ =]

M 4
Ml
M E
Ml
M1
M
hil4
M3
M 4
M1
M2

1.0
0.5E
.56
0582
LA
LA
0.2
LLAGH |
.67
0.56
042

M E
b 2
M 2
MO
M2
MLl

0.8 ME 067
0B K12 066
.64 MO 054
.45
.46
.40

Within .40
threshold

K is the number of singular values used
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Summary: .

e Principle

Linear projection method to reduce the number of parameters

Transfer a set of correlated variables into a new set of uncorrelated variables
Map the data into a space of lower dimensionality

Form of unsupervised learning

e Properties

It can be viewed as a rotation of the existing axes to new positions in the space defined by
original variables

New axes are orthogonal and represent the directions with maximum variability

e Application: In many settings in pattern recognition and retrieval, we
have a feature-object matrix.

Eric Xing

For text, the terms are features and the docs are objects.

Could be opinions and users ...

This matrix may be redundant in dimensionality.

Can work with low-rank approximation.

If entries are missing (e.g., users’ opinions), can recover if dimensionality is low.
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Going beyond oo

e \What is the essence of the C matrix?

1
C = E[XXT] = =XX"

n

e The elements in C captures some kind of affinity between a
pair of data points in the semantic space

e \We can replace it with any reasonable affinity measure
2 . .
e E.g, D:(”xi = )ij : distance matrix MDS

e E.g., the geodistance ISOMAP

Eric Xing © Eric Xing @ CMU, 2006-2010 24



Nonlinear DR — Isomap 4

[Josh. Tenenbaum, Vin de Silva, John langford 2000]

e Constructing neighbourhood graph G

e [or each pair of points in G, Computing shortest path
distances ---- geodesic distances.
e Use Dijkstra's or Floyd's algorithm

e Apply kernel PCA for C given by the centred matrix of squared
geodesic distances.

e Project test points onto principal components as in kernel
PCA.

Eric Xing © Eric Xing @ CMU, 2006-2010 25



“Swiss Roll” dataset °°
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PCA, MD vs ISOMAP .

e The residual variance of PCA (open triangles), MDS (open
circles), and Isomap

0.8

B Bottom loop articulation
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0.2}

5 7 8 9 10
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ISOMAP algorithm Pros/Cons E
Advantages
e Nonlinear

e Globally optimal

e Guarantee asymptotically to recover the true
dimensionality

Drawback
e May not be stable, dependent on topology of data

e As N increases, pair wise distances provide better
approximations to geodesics, but cost more computation

Eric Xing © Eric Xing @ CMU, 2006-2010 28



Local Linear Embedding (a.k.a | &8s
LLE) i

e LLE is based on simple geometric intuitions.

e Suppose the data consist of N real-valued
vectors X, each of dimensionality D.

e Each data point and its neighbors expected to lie on or
close to a locally linear patch of the manifold.

Eric Xing © Eric Xing @ CMU, 2006-2010 29



Steps in LLE algorithm o

e Assign neighbors to each data point Xi

e Compute the weights W; that best linearly

reconstruct the data point from its neighbors, solving the
constrained least-squares problem.

e Compute the low-dimensional embedding vectors \7, best
reconstructed by W

Eric Xing © Eric Xing @ CMU, 2006-2010 30



Fit locally, Think Globally

‘ o ° Oq (‘D Select neighbors
o o
o 0--ee.. ..
o ° X, 2
o -
o @ o X
o 1
Oo ® Qo o]
o o
" ®
Reconstruct with
linear weights

Map to embedded coordinates
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From Nonlinear
Dimensionality
Reduction by
Locally Linear
Embedding

Sam T. Roweis and
Lawrence K. Saul
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Super-Resolution Through cece

Neighbor Embedding cewgeacverzos o

Training Xs'

Training Ys'

?

St
() "ﬁ L 3

Testing Xt

Testing Yt
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Intuition

e Patches of the image lie on a manifold

v
3

\ 4
BINES L~ S
S P

— ol
Training Xs gﬁ' :

imgl.jpy
Yy

High dimensional Manifold

Training Ys'
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Algorithm 4+

1. Get feature vectors for each low resolution training
patch.

2. For each test patch feature vector find K nearest
neighboring feature vectors of training patches.

3. Find optimum weights to express each test patch vector
as a weighted sum of its K nearest neighbor vectors.

4. Use these weights for reconstruction of that test patch in
high resolution.

Eric Xing © Eric Xing @ CMU, 2006-2010 34



Results

Training Xs'

Testing Xt

0000
o000
00
o0
o
ImgT.Jpg
Testlng Yt
35
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Summary:

e Principle
e Linear and nonlinear projection method to reduce the number of parameters
e Transfer a set of correlated variables into a new set of uncorrelated variables
e Map the data into a space of lower dimensionality
e Form of unsupervised learning

e Applications
e PCA and Latent semantic indexing for text mining
e Isomap and Nonparametric Models of Image Deformation
e LLE and Isomap Analysis of Spectra and Colour Images
e Image Spaces and Video Trajectories: Using Isomap to Explore Video Sequences
e Mining the structural knowledge of high-dimensional medical data using isomap

Isomap Webpage: http://isomap.stanford.edu/

Eric Xing © Eric Xing @ CMU, 2006-2010 36



Applying PCA and LDA:
Eigen-faces and Fisher-faces

L. Fei-Fei
Computer Science Dept.
Stanford University




Machine learning in computer vision

e Aug 13, Lecture 7: Dimensionality reduction,
Manifold learning
— Eigen- and Fisher- faces

References:
1. Turk and Penland, Eigenfaces for Recogmition, 1991
2, Belhumeur, Hespanha and Kriegman, Eigenfaces vs. Fisherfaces: Recogmition Using Class

Specific Linear Projection

':‘\

f'lr N _ﬂ i '|

i]]%i R A - f .
hgugn@ Machine Learning
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The Space of Faces

 Animage is a point in a high dimensional space
— An N x M image is a point in R\M
— We can define vectors in this space as we did in the 2D case

[Thanks to Chuck Dyer, Steve Seitz, Nishino]



Key ldea

e Images in the possible set ¥ ={)A(£L}are highly correlated.

e S0, compress them to a low-dimensional subspace that
captures key appearance characteristics of the visual DOFs.

« EIGENFACES: [Turk and Pentland]
USE PCA!



Principal Component Analysis (PCA)

 PCAis used to determine the most representing
features among data points.
— It computes the p-dimensional subspace such that the

projection of the data points onto the subspace has the
largest variance among all p-dimensional subspaces.



X2 a

[llustration of PCA

x1

One projection

X2 a

x1

PCA projection



Illustration of PCA

2rd principal
component

15t principal
component




Mathematical Formulation

Find a transformation, W,

Yk—ka

/ \\

, N

m-dimensional

Orthonormal w e R™

n-dimensional

Total scatter matrix:

Wapr = arg I’IlﬂK‘W STW‘

= [wl W, ...

N

k=1

Sp= (% — m)(x, - ﬂ)T

W]

corresponds to m eigen-
vectors of S+




Eigenfaces

 PCA extracts the eigenvectors of A
— Gives a set of vectors v, V,, Vg, ...

— Each one of these vectors is a direction in face space
» what do these look like?




Projecting onto the Eigenfaces

 The eigenfaces v, ..., Vi span the space of faces

— A face Is converted to eigenface coordinates by

X%((X_f)'vlv (X—i)'V2,..., (X_i)'VK)

J A\

al a2 aK
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Algorithm

Training

Note that each image is formulated into a long vector!

2. Compute average face u=1/NZx

3. Compute the difference image ¢, = x, — u



Algorithm

4. Compute the covariance matrix (total scatter matrix)
St=1/NZ ¢; ¢;" = BBT, B=[¢y, ¢, ... ¢y]
5. Compute the eigenvectors of the covariance
matrix , W

Testing

Projection in Eigenface
Projection o; = W (X —u), W = {eigenfaces}

2. Compare projections



Illustration of Eigenfaces

# The visualization of eigenvectors:

Wl

These are the first 4 eigenvectors from a training set of 400
Images (ORL Face Database). They look like faces, hence
called Eigenface.



- | 4

Eigenfaces look somewhat like generic faces.
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Reconstruction and Errors
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Summary for PCA and Eigenface

* Non-iterative, globally optimal solution

 PCA projection is optimal for reconstruction
from a low dimensional basis, but may NOT be
optimal for discrimination...



Linear Discriminant Analysis (LDA)

o Using Linear Discriminant Analysis (LDA) or
Fisher’s Linear Discriminant (FLD)

» Eigenfaces attempt to maximise the scatter of the
training images in face space, while Fisherfaces
attempt to maximise the between class scatter,
while minimising the within class scatter.



Using two classes as example:
X2 a

Illustration of the Projection

x1

Poor Projection

X2 a

x1

N

Good Projection



feature 2

Comparing with PCA

4

—+

O class1 :
class 2

feature 1




Variables

N Sample images:
c classes:

Average of each class:

Total average:



Scatters

e Scatter of class i Si= (= X =)

Xk EXi

* Within class scatter:  |[s,, =X S,

C
e Between class scatter: [Ss = E‘Zi ‘(ﬂi —,U)(,Ui —ﬂ)T

e Total scatter: S; =S, +Sg




[Hlustration




Mathematical Formulation (1)

® After projection: Ve =W T x,

# Between class scatter (of y’s):
# Within class scatter (of y’s):




Mathematical Formulation (2)
e The desired projection:

‘gB‘—argmax’W > W‘
‘SW‘ ’\N S W‘

 How is it found ? = Generalized Eigenvectors
SgW; =A; Syy W, 1=1,....m

W, =arg max

# Data dimension is much larger than the
number of samples n>>N

#The matrix s,, is singular: [Rank(Sy )< N —c




Fisherface (PCA+FLD)

* Project with PCAt0 N-cspace [z =W, X,

W, =arg mVeX|WT STW‘

e Project with FLD to c¢-1 space Vie =W g 2

W TW 5, SeW oW

pca pca

W, =arg max
e WOW W Sy W e W

pca pca




[llustration of FisherFace

e Fisherface




Results: Eigenface vs. Fisherface (1)

* Input: 160 images of 16 people
e Train: 159 images

e Test: 1 Image

e Variation in Facial Expression, Eyewear, and Lighting
With Without 3 Lighting 5 expressions
glasses  glasses conditions

--

i

- =
I r J el .




Eigenface vs. Fisherface (2)

o " Eigenface
.\\kk —-1 Eigenface wio first
three components
I BN BN B B B B BN BN DS B B B B B B BN BN B B B . Flsherface {Tla%}
0 50 100 150

Number of Principal Components



discussion

 Removing the first three principal
components results in better performance
under variable lighting conditions

e The Firsherface methods had error rates
lower than the Eigenface method for the
small datasets tested.



Manifold Learning for
Object Representation

L. Fei-Fei
Computer Science Dept.
Stanford University




Machine learning in computer vision

e Aug 13, Lecture 7: Dimensionality reduction, Manifold
learning

— Applications to object representation
(slides courtesy to David Thompson)

”,—_—\\ +=[1 B% =5 \.]
\ 1/ vog 5 ~J

il ]

r'{.’r_f LT :';
Y

Machine Learning

8/8/2010 L. Fei-Fei, Dragon Star 2010, Stanford 68



manifolds In vision

plenoptic function




manifolds In vision

appearance variation

Braeburn Cortland E nger Gald
= 1 *1_|.
i .
Gaolden Delicious Aed Delicicus Granny Smith Haneycrisp Janathan
Helntosh Farific Rose Pauls Red Wealthy

images from hormel corp.



manifolds In vision

deformation

images from www.golfswingphotos.com



manifold learning

Find a low-D basis for
describing high-D data.

X~=X" S.T.
dim(X") << dim(X)

uncovers the intrinsic
dimensionality




If we knew all pairwise distances...

Chicago Raleigh Boston Seattle S.F. Austin Orlando

Chicago 0

Raleigh 641 0

Boston 851 608 0

Seattle 1733 2363 2488 0

S.F. 1855 2406 2696 684 0

Austin 972 1167 1691 1764 1495 0
Orlando 994 520 1105 2565 2458 1015 0

Distances calculated with geobytes.com/CityDistanceTool



Multidimensional Scaling (MDS)

For n data points, and a distance matrix D,

...we can construct a m-dimensional space to preserve
Inter-point distances by using the top eigenvectors of D
scaled by their eigenvalues



MDS result in 2D
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Actual plot of cities
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Don’'t know distances




Don’'t know disthaces




why do manifold learning?

1. data compression

2. “curse of dimensionality”
3. de-noising

4. visualization

5. reasonable distance metrics



reasonable distance metrics




reasonable distance metrics

linear interpolation



reasonable distance metrics

manifold interpolation



Isomap for images

. Build a data graph G.
 Vertices: images
. (U,v) Is an edge Iff SSD(u,v) i1s small

» For any two images, we approximate the
distance between them with the “shortest path”

on G



Isomap

1. Build a sparse graph with K-nearest neighbors

(distance matrix Is
sparse)




Isomap

2. Infer other interpoint distances by finding shortest
paths on the graph (Dijkstra's
algorithm).




Isomap

shortest-distance on a graph Is easy to
compute

Dijkstra®™= algorithm
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Isomap results



Isomap: pro and con

- preserves global structure
- few free parameters
- sensitive to noise, noise edges

- computationally expensive (dense matrix
eigen-reduction)



Leakage problem
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Locally Linear Embedding

Find a mapping to preserve
local linear relationships
between neighbors




Locally Linear Embedding
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Map to embedded coordinates




LLE: Two key steps

1. Find weight matrix W of linear
coefficients:

2
EW) =3 | Xi= ) WX,

1

Enforce sum-to-one constraint.



LLE: Two key steps

2. Find projected vectors Y to minimize
reconstruction error

2

(YY) =)

()

Y; — ZjWijf’}

must solve for whole dataset
simultaneously



' Result

LLE

local

preserves
topology




LLE: Result
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LLE: Result

Figure 3. Two dimensional embedding of
N =400 images of a rotating teapot, obtained
by SDE using © = 4 nearest neighbors. For
this experiment, the teapot was rotated 360
degrees; the low dimensional embedding is
a full circle. A representative sample of im-
ages are superimposed on top of the embed-

ding.



LLE: Result
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Figure 6. Results of SDE using i = 4 nearest
neighbors on N =638 images of handwritten
TWOoS. Representative images are shown next

to circled points.



LLE: pro and con

- no local minima, one free parameter
- Incremental & fast
- simple linear algebra operations

- can distort global structure
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