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Machine Learning

Data visualization and 
dimensionality reduction

Eric Xing

Lecture 7, August 13, 2010
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Text document retrieval/labelling
 Represent each document by a high-dimensional vector in the 

space of words
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Image retrieval/labelling
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Dimensionality Bottlenecks

 Data dimension
 Sensor response variables X: 

 1,000,000 samples of an EM/Acoustic field on each of N sensors
 10242 pixels of a projected image on a IR camera sensor
 N2 expansion factor to account for all pairwise correlations

 Information dimension
 Number of free parameters describing probability densities f(X) or f(S|X)

 For known statistical model: info dim = model dim
 For unknown model: info dim = dim of density approximation

 Parametric-model driven dimension reduction
 DR by sufficiency, DR by maximum likelihood

 Data-driven dimension reduction
 Manifold learning, structure discovery
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Intuition: how does your brain 
store  these pictures?
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Brain Representation
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Brain Representation

 Every pixel?
 Or perceptually 

meaningful structure?
 Up-down pose
 Left-right pose
 Lighting direction
So, your brain successfully reduced 

the high-dimensional inputs to an 
intrinsically 3-dimensional 
manifold! 
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Manifold Embedding

(Metric) data geometry (Non-metric) information geometry

Domain

are i.i.d. samples from 

Two Geometries to Consider
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 Data-driven projection to lower dimensional subsapce
 Extract low-dim structure from high-dim data
 Data may lie on curved (but locally linear) subspace

[1] Josh .B. Tenenbaum, Vin de Silva, and John C. Langford “A Global Geometric Framework for 
Nonlinear Dimensionality Reduction”  Science, 22 Dec 2000.

[2]    Jose Costa, Neal Patwari and Alfred O. Hero, “Distributed Weighted Multidimensional Scaling for 
Node Localization in Sensor Networks”, IEEE/ACM Trans. Sensor Networks, to appear 2005.

[3] Misha Belkin and Partha Niyogi, “Laplacian eigenmaps for dimensionality reduction and data 
representation,” Neural Computation, 2003. 

Data-driven DR
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What is a Manifold?
 A manifold is a topological space which is locally Euclidean.

 Represents a very useful and challenging unsupervised 
learning problem.

 In general, any object which is nearly "flat" on small 
scales is a manifold.
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Manifold Learning
 Discover low dimensional structures (smooth manifold) for 

data in high dimension.

 Linear Approaches 
 Principal component analysis.
 Multi dimensional scaling.

 Non Linear Approaches
 Local Linear Embedding
 ISOMAP
 Laplacian Eigenmap.
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Principal component analysis
 Areas of variance in data are where items can be best discriminated 

and key underlying phenomena observed

 If two items or dimensions are highly correlated or dependent
 They are likely to represent highly related phenomena
 We want to combine related variables, and focus on uncorrelated or independent ones, 

especially those along which the observations have high variance

 We look for the phenomena underlying the observed covariance/co-
dependence in a set of variables

 These phenomena are called “factors” or “principal components” or 
“independent components,” depending on the methods used
 Factor analysis: based on variance/covariance/correlation
 Independent Component Analysis: based on independence
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An example:
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Principal Component Analysis
 The new variables/dimensions

 Are linear combinations of the original 
ones

 Are uncorrelated with one another
 Orthogonal in original dimension space

 Capture as much of the original 
variance in the data as possible

 Are called Principal Components

 Orthogonal directions of 
greatest variance in data

 Projections along PC1 
discriminate the data most 
along any one axis

 First principal component is the direction of 
greatest variability (covariance) in the data

 Second is the next orthogonal (uncorrelated) 
direction of greatest variability
 So first remove all the variability along the first component, and then 

find the next direction of greatest variability

 And so on …
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Computing the Components
 Projection of vector x onto an axis (dimension) u is uTx
 Direction of greatest variability is that in which the average square of 

the projection is greatest:

Maximize uTXXTu
s.t uTu = 1 

Construct Langrangian uTXXTu – λuTu

Vector of partial derivatives set to zero

xxTu – λu = (xxT – λI) u = 0
As u ≠ 0 then u must be an eigenvector of XXT with eigenvalue λ

 λ is the principal eigenvalue of the correlation matrix C= XXT 

 The eigenvalue denotes the amount of variability captured along that 
dimension
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Computing the Components
 Similarly for the next axis, etc. 
 So, the new axes are the eigenvectors of the matrix of 

correlations of the original variables, which captures the 
similarities of the original variables based on how data 
samples project to them

 Geometrically: centering followed by rotation
 Linear transformation
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 For symmetric matrices, eigenvectors for distinct eigenvalues 
are orthogonal

 All eigenvalues of a real symmetric matrix are real.

 All eigenvalues of a positive semidefinite matrix are non-
negative

ℜ∈⇒==− λλ TSS and 0 if IS

0vSv if then ,0, ≥⇒=≥ℜ∈∀ λλSwww Tn

02121212121 =•⇒≠= vvvSv λλλ  and ,},{},{},{

Eigenvalues & Eigenvectors
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 Let                      be a square matrix with m linearly 
independent eigenvectors (a “non-defective” matrix)

 Theorem: Exists an eigen decomposition

(cf. matrix diagonalization theorem)

 Columns of U are eigenvectors of S

 Diagonal elements of     are eigenvalues of 

Eigen/diagonal Decomposition

diagonal

Unique 
for 

distinct 
eigen-
values
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PCs, Variance and Least-Squares
 The first PC retains the greatest amount of variation in the 

sample

 The kth PC retains the kth greatest fraction of the variation in 
the sample

 The kth largest eigenvalue of the correlation matrix C is the 
variance in the sample along the kth PC

 The least-squares view: PCs are a series of linear least 
squares fits to a sample, each orthogonal to all previous ones 
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How Many PCs?
 For n original dimensions, sample covariance matrix is nxn, and has 

up to n eigenvectors. So n PCs.
 Where does dimensionality reduction come from?

Can ignore the components of lesser significance. 

You do lose some information, but if the eigenvalues are small, you don’t 
lose much
 n dimensions in original data 
 calculate n eigenvectors and eigenvalues
 choose only the first p eigenvectors, based on their eigenvalues
 final data set has only p dimensions
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Application: querying text doc.
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Within .40
threshold

K is the number of singular values used
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Summary:
 Principle

 Linear projection method to reduce the number of parameters 
 Transfer a set of correlated variables into a new set of uncorrelated variables
 Map the data into a space of lower dimensionality
 Form of unsupervised learning

 Properties
 It can be viewed as a rotation of the existing axes to new positions in the space defined by 

original variables
 New axes are orthogonal and represent the directions with maximum variability

 Application: In many settings in pattern recognition and retrieval, we 
have a feature-object matrix.
 For text, the terms are features and the docs are objects.
 Could be opinions and users … 
 This matrix may be redundant in dimensionality.
 Can work with low-rank approximation.
 If entries are missing (e.g., users’ opinions), can recover if dimensionality is low.
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Going beyond
 What is the essence of the C matrix?

 The elements in C captures some kind of affinity between a 
pair of data points in the semantic space

 We can replace it with any reasonable affinity measure 

 E.g., MDS 

 E.g., the geodistance ISOMAP

( ) matrix distance:
2

ijji xxD −=
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 Constructing neighbourhood graph G
 For each pair of points in G, Computing shortest path 

distances ---- geodesic distances.
 Use Dijkstra's or Floyd's algorithm

 Apply kernel PCA for C given by the centred matrix of squared 
geodesic distances.

 Project test points onto principal components as in kernel 
PCA.

Nonlinear DR – Isomap
[Josh. Tenenbaum, Vin de Silva, John langford 2000]
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3D data
2D coord chart

Error vs. dimensionality of coordinate chart

“Swiss Roll” dataset
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PCA, MD vs ISOMAP
 The residual variance of PCA (open triangles), MDS (open 

circles), and Isomap
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ISOMAP algorithm Pros/Cons

Advantages:
 Nonlinear
 Globally optimal 
 Guarantee asymptotically to recover the true 

dimensionality

Drawback:
 May not be stable, dependent on topology of data
 As N increases, pair wise distances provide better 

approximations to geodesics, but cost more computation
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Local Linear Embedding (a.k.a 
LLE)

 LLE is based on simple geometric intuitions.

 Suppose the data consist of N real-valued
vectors Xi, each of dimensionality D.

 Each data point and its neighbors expected to lie on or 
close  to a locally linear patch of the manifold.
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Steps in LLE algorithm
 Assign neighbors to each data point 

 Compute the weights Wij that best linearly
reconstruct the data point from its neighbors, solving the  
constrained least-squares problem.

 Compute the low-dimensional embedding vectors      best 
reconstructed by Wij.

iX


iY

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Fit locally, Think Globally

From Nonlinear 
Dimensionality
Reduction by
Locally Linear 
Embedding

Sam T. Roweis and 
Lawrence K. Saul

∑ ∑−=Φ
i j

jijYWYY 2||)(

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Super-Resolution Through 
Neighbor Embedding [Yeung et al CVPR 2004]

Training Xsi

Training Ysi

Testing Xt

Testing Yt

?
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Training Xsi

Training Ysi
High dimensional Manifold

Low dimensional Manifold

Intuition
 Patches of the image lie on a manifold
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Algorithm

1. Get feature vectors for each low resolution training 
patch.

2. For each test patch feature vector find K nearest 
neighboring feature vectors of training patches.

3. Find optimum weights to express each test  patch vector 
as a weighted sum of its K nearest neighbor vectors.

4. Use these weights for reconstruction of that test patch in 
high resolution. 
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Training Xsi

Training Ysi

Testing Xt

Testing Yt

Results
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Summary:
 Principle

 Linear and nonlinear projection method to reduce the number of parameters 
 Transfer a set of correlated variables into a new set of uncorrelated variables
 Map the data into a space of lower dimensionality
 Form of unsupervised learning

 Applications
 PCA and Latent semantic indexing for text mining 
 Isomap and Nonparametric Models of Image Deformation
 LLE and Isomap Analysis of Spectra and Colour Images
 Image Spaces and Video Trajectories: Using Isomap to Explore Video Sequences
 Mining the structural knowledge of high-dimensional medical data using isomap

Isomap Webpage: http://isomap.stanford.edu/



Applying PCA and LDA:
Eigen-faces and Fisher-faces

L. Fei-Fei

Computer Science Dept.

Stanford University



Machine learning in computer vision

• Aug 13, Lecture 7: Dimensionality reduction, 
Manifold learning
– Eigen- and Fisher- faces

– Applications to object representation
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The Space of Faces

• An image is a point in a high dimensional space
– An N x M image is a point in RNM

– We can define vectors in this space as we did in the 2D case

+=

[Thanks to Chuck Dyer, Steve Seitz, Nishino]



Key Idea

}ˆ{ P
RLx=χ• Images in the possible set                   are highly correlated.

• So, compress them to a low-dimensional subspace that
captures key appearance characteristics of the visual DOFs.

• EIGENFACES: [Turk and Pentland]

USE PCA!



Principal Component Analysis (PCA) 

• PCA is used to determine the most representing 
features among data points. 
– It computes the p-dimensional subspace such that the 

projection of the data points onto the subspace has the 
largest variance among all p-dimensional subspaces. 



Illustration of PCA

One projection                    PCA projection
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Illustration of PCA

x1

x2

1st principal 
component

2rd principal 
component



Mathematical Formulation
Find a transformation, W, 

m-dimensional n-dimensionalOrthonormal

Total scatter matrix:

Wopt corresponds to m eigen-
vectors of ST



Eigenfaces
• PCA extracts the eigenvectors of A

– Gives a set of vectors v1, v2, v3, ...
– Each one of these vectors is a direction in face space

• what do these look like?



Projecting onto the Eigenfaces

• The eigenfaces v1, ..., vK span the space of faces

– A face is converted to eigenface coordinates by



Algorithm

1. Align training images x1, x2, …, xN

2. Compute average face u = 1/N Σ xi

3. Compute the difference image φi = xi – u

Training

Note that each image is formulated into a long vector!



Algorithm

Testing 
1. Projection in Eigenface

Projection ωi = W (X – u), W = {eigenfaces}

2.   Compare projections

ST = 1/NΣ φi φi
T = BBT, B=[φ1, φ2 … φN]

4. Compute the covariance matrix (total scatter matrix)

5. Compute the eigenvectors of the covariance 
matrix , W



Illustration of Eigenfaces

These are the first 4 eigenvectors from a training set of 400 
images (ORL Face Database). They look like faces, hence 
called Eigenface.

The visualization of eigenvectors:



Eigenfaces look somewhat like generic faces.



Eigenvalues



Only selecting the top P eigenfaces reduces the dimensionality.
Fewer eigenfaces result in more information loss, and hence less 
discrimination between faces.

Reconstruction and Errors

P = 4

P = 200

P = 400



Summary for PCA and Eigenface
• Non-iterative, globally optimal solution
• PCA projection is optimal for reconstruction

from a low dimensional basis, but may NOT be 
optimal for discrimination… 



Linear Discriminant Analysis (LDA)
• Using Linear Discriminant Analysis (LDA) or 

Fisher’s Linear Discriminant (FLD) 
• Eigenfaces attempt to maximise the scatter of the 

training images in face space, while Fisherfaces
attempt to maximise the between class scatter, 
while minimising the within class scatter.



Illustration of the Projection

Poor Projection                      Good Projection

x1

x2

x1

x2

 Using two classes as example:



Comparing with PCA



Variables

• N Sample images: 
• c classes:

• Average of each class: 

• Total average:
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Scatters

• Scatter of class i: ( )( )Tik
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• Within class scatter:

• Between class scatter:

• Total scatter:



Illustration
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Mathematical Formulation (1)

After projection:

Between class scatter (of y’s):
Within class scatter (of y’s):

k
T

k xWy =

WSWS B
T

B =~

WSWS W
T

W =~



Mathematical Formulation (2)
• The desired projection:

WSW

WSW

S
S

W
W

T
B

T

W

B
opt WW

max arg~
~

max arg ==

miwSwS iWiiB ,,1            == λ
• How is it found ?  Generalized Eigenvectors

Data dimension is much larger than the 
number of samples
The matrix        is singular: 

Nn >>

( ) cNSRank W −≤
WS



Fisherface (PCA+FLD) 

• Project with FLD to          space

• Project with PCA to          space

1−c k
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Illustration of FisherFace
• Fisherface



Results: Eigenface vs. Fisherface (1)

• Variation in Facial Expression, Eyewear, and Lighting

• Input: 160 images of 16 people
• Train: 159 images
• Test: 1 image

With 
glasses

Without 
glasses

3 Lighting 
conditions

5 expressions



Eigenface vs. Fisherface (2)



discussion
• Removing the first three principal 

components results in better performance 
under variable lighting conditions

• The Firsherface methods had error rates 
lower than the Eigenface method for the 
small datasets tested.



Manifold Learning for 
Object Representation

L. Fei-Fei

Computer Science Dept.

Stanford University



Machine learning in computer vision

• Aug 13, Lecture 7: Dimensionality reduction, Manifold 
learning
– Eigen- and Fisher- faces
– Applications to object representation
(slides courtesy to David Thompson)
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plenoptic function

manifolds in vision



appearance variation

manifolds in vision

images from hormel corp.



deformation

manifolds in vision

images from www.golfswingphotos.com



Find a low-D basis for 
describing high-D data.

X ~= X'  S.T.   
dim(X') << dim(X)

uncovers the intrinsic 
dimensionality 

manifold learning



If we knew all pairwise distances…

Chicago Raleigh Boston Seattle S.F. Austin Orlando

Chicago 0

Raleigh 641 0

Boston 851 608 0

Seattle 1733 2363 2488 0

S.F. 1855 2406 2696 684 0

Austin 972 1167 1691 1764 1495 0

Orlando 994 520 1105 2565 2458 1015 0

Distances calculated with geobytes.com/CityDistanceTool



Multidimensional Scaling (MDS)

For n data points,  and a distance matrix D,

Dij =                      

...we can construct a m-dimensional space to preserve 
inter-point distances by using the top eigenvectors of D 
scaled by their eigenvalues

j

i



MDS result in 2D



Actual plot of cities



Don’t know distances



Don’t know distnaces



1.  data compression

2. “curse of dimensionality”

3.  de-noising

4.  visualization

5.  reasonable distance metrics 

why do manifold learning?



reasonable distance metrics

?



reasonable distance metrics

?

linear interpolation



reasonable distance metrics

?

manifold interpolation



Isomap for images

 Build a data graph G.
 Vertices: images
 (u,v) is an edge iff SSD(u,v) is small
 For any two images, we approximate the 

distance between them with the “shortest path” 
on G



Isomap

1. Build a sparse graph with K-nearest neighbors

Dg =

(distance matrix is
sparse)



Isomap

2. Infer other interpoint distances by finding shortest 
paths on the graph (Dijkstra's
algorithm).

Dg =



Isomap
shortest-distance on a graph is easy to 
compute



Isomap results: hands



- preserves global structure 

- few free parameters

- sensitive to noise, noise edges

- computationally expensive (dense matrix 
eigen-reduction)

Isomap: pro and con



Leakage problem 



Find a mapping to preserve 
local linear relationships 
between neighbors

Locally Linear Embedding



Locally Linear Embedding



1. Find weight matrix W of linear 
coefficients:

Enforce sum-to-one constraint.

LLE: Two key steps



2. Find projected vectors Y to minimize 
reconstruction error

must solve for whole dataset 
simultaneously

LLE: Two key steps



LLE: Result

preserves local 
topology

PCA

LLE



LLE: Result



LLE: Result



LLE: Result



- no local minima, one free parameter

- incremental & fast

- simple linear algebra operations

- can distort global structure

LLE: pro and con
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