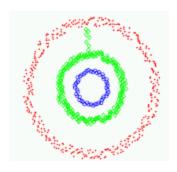
Machine Learning

Spectral Clustering

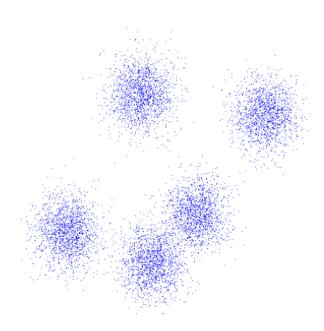
Eric Xing

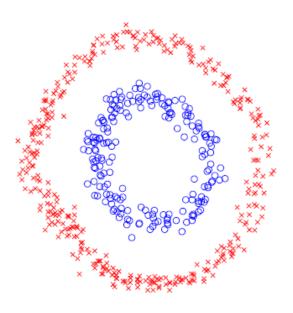
Lecture 8, August 13, 2010

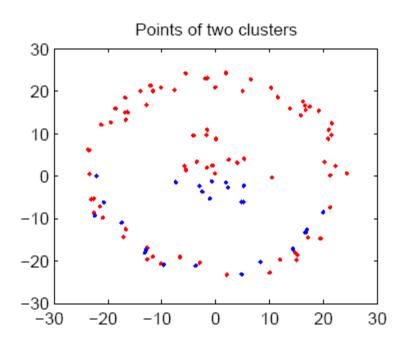


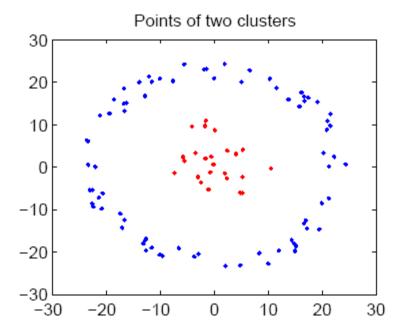
Reading:

Data Clustering



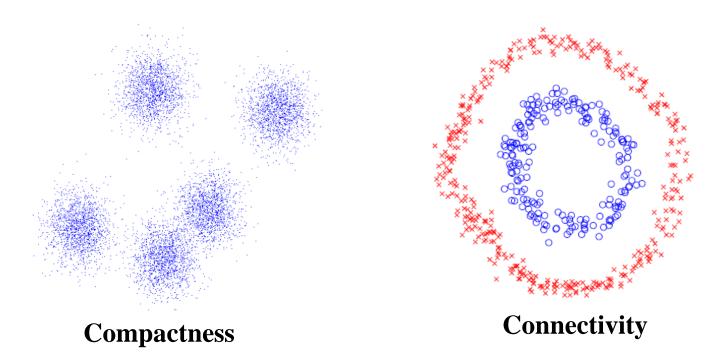




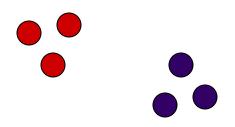


Data Clustering

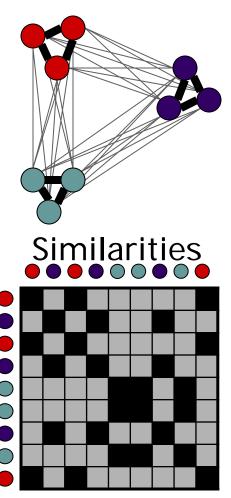
- Two different criteria
 - Compactness, e.g., k-means, mixture models
 - Connectivity, e.g., spectral clustering

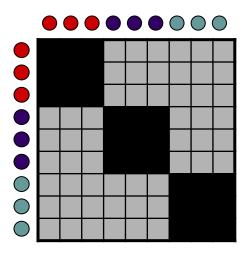


Spectral Clustering



Data



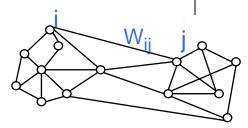


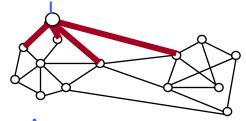
Weighted Graph Partitioning

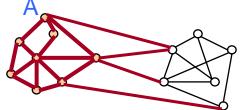
- Some graph terminology
 - Objects (e.g., pixels, data points) $i \in I$ = vertices of graph G
 - Edges (ij) = pixel pairs with $W_{ij} > 0$
 - Similarity matrix $\mathbf{W} = [W_{ij}]$
 - Degree

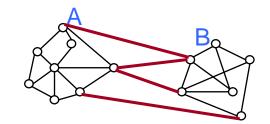
$$\begin{split} &d_i = \Sigma_{j \in G} \; W_{ij} \\ &d_A = \Sigma_{i \in A} \; d_i \; \; \text{degree of A } \subseteq & \mathbf{G} \end{split}$$

• Assoc(A,B) = $\sum_{i \in A} \sum_{j \in B} W_{ij}$









Cuts in a Graph

- (edge) cut = set of edges whose removal makes a graph disconnected
- weight of a cut:

$$\operatorname{cut}(A, B) = \sum_{i \in A} \sum_{j \in B} W_{ij} = \operatorname{Assoc}(A, B)$$

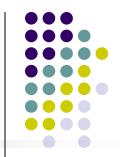
Normalized Cut criteria: minimum cut(A,Ā)

$$Ncut(A, \overline{A}) = \frac{cut(A, \overline{A})}{d_A} + \frac{cut(A, \overline{A})}{d_{\overline{A}}}$$

More generally:

$$Ncut(A_{1}, A_{2}...A_{k}) = \sum_{r=1}^{k} \left(\frac{\sum_{i \in A_{r}, j \in V \setminus A_{r}} W_{ij}}{\sum_{i \in A_{r}, j \in V} W_{ij}} \right) = \sum_{r=1}^{k} \left(\frac{cut(A_{r}, \overline{A}_{r})}{d_{A_{r}}} \right)$$

Graph-based Clustering



Data Grouping

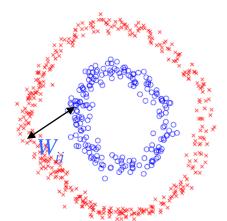
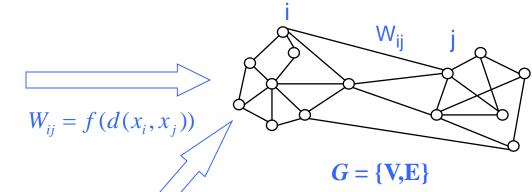


Image sigmentation

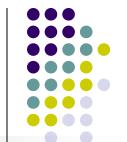


- Affinity matrix: $W = [w_{i,j}]$
- Degree matrix: $D = \operatorname{diag}(d_i)$
- Laplacian matrix: L = D W
- (bipartite) partition vector:

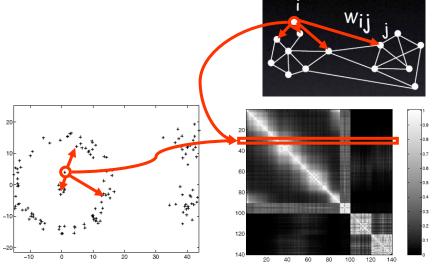
$$x = [x_1,...,x_N]$$

= [1,1,...1,-1,-1,...-1]

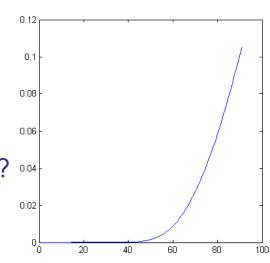
Affinity Function



$$W_{i,j} = e^{\frac{-\|X_i - X_j\|_2^2}{\sigma^2}}$$



- Affinities grow as σ grows →
- How the choice of σ value affects the results?
- What would be the optimal choice for σ?



Clustering via Optimizing Normalized Cut

The normalized cut:

$$Ncut(A, B) = \frac{cut(A, B)}{d_A} + \frac{cut(A, B)}{d_B}$$

- Computing an optimal normalized cut over all possible y (i.e., partition) is NP hard
- Transform Ncut equation to a matrix form (Shi & Malik 2000):

© Eric Xing

$$\min_{x} Ncut(x) = \min_{y} \frac{y^{T}(D - W)y}{y^{T}Dy}$$
Subject to: $y \in \{1, -b\}^{n}$

$$y^{T}D1 = 0$$
Rayleigh quotient

Still an NP hard problem

$$Ncut(A, B) = \frac{cut(A, B)}{\deg(A)} + \frac{cut(A, B)}{\deg(B)}$$

$$= \frac{(1+x)^{T} (D-W)(1+x)}{k1^{T} D1} + \frac{(1-x)^{T} (D-W)(1-x)}{(1-k)1^{T} D1}; \ k = \frac{\sum_{x_{i}>0} D(i, i)}{\sum_{i} D(i, i)}$$

Eric Xing

Relaxation

$$\min_{x} Ncut(x) = \min_{y} \frac{y^{T}(D-W)y}{y^{T}Dy}$$

Rayleigh quotient

Subject to:
$$y \in \{1,-b\}^n$$

 $y^T D1 = 0$

Instead, relax into the continuous domain by solving generalized eigenvalue system:

$$\min_{y} y^{T} (D - W) y, \quad \text{s.t. } y^{T} D y = \mathbf{1}$$

Which gives:

 $(D-W)y = \lambda Dy$ Rayleigh quotient theorem

- Note that $(D-W)\mathbf{1} = \mathbf{0}$ so, the first eigenvector is $y_0=1$ with eigenvalue 0.
- The second smallest eigenvector is the real valued solution to this problem!!

Algorithm

1. Define a similarity function between 2 nodes. i.e.:

$$w_{i,j} = e^{\frac{-\|X_{(i)} - X_{(j)}\|_{2}^{2}}{\sigma_{X}^{2}}}$$

- 2. Compute affinity matrix (W) and degree matrix (D).
- 3. Solve

$$(D - W)y = \lambda Dy$$

• Do singular value decomposition (SVD) of the graph Laplacian L = D - W

$$L = V^T \Lambda V \implies y^*$$

- 4. Use the eigenvector with the second smallest eigenvalue, , to bipartition the graph.
 - For each threshold *k*,

$$A_k = \{i \mid y_i \text{ among } k \text{ largest element of } y^*\}$$

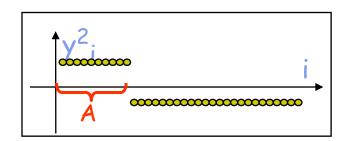
 $B_k = \{i \mid y_i \text{ among } n - k \text{ smallest element of } y^*\}$

- Compute $Ncut(A_k, B_k)$
- Output

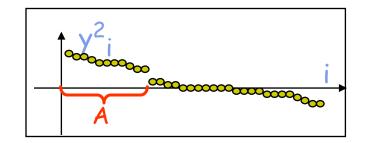
$$k^* = \operatorname{arg\ max\ Ncut}(A_k, B_k)$$
 and A_{k^*}, B_{k^*}

Ideally ...

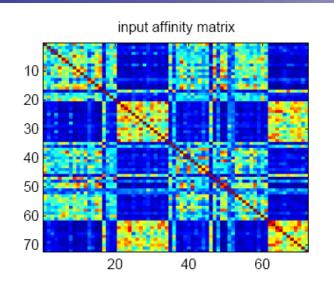
$$Ncut(A, B) = \frac{y^{T}(D - S)y}{y^{T}Dy}$$
, with $y_{i} \in \{1, -b\}, y^{T}D1 = 0$.

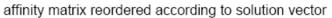


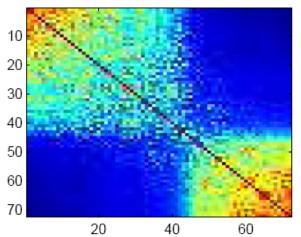
$$(D-S)y = \lambda Dy$$

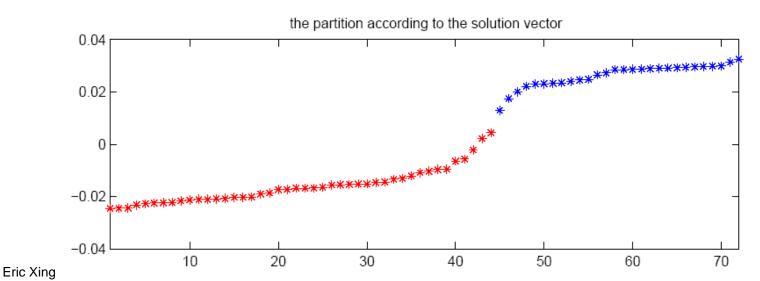


Example (Xing et al, 2001)

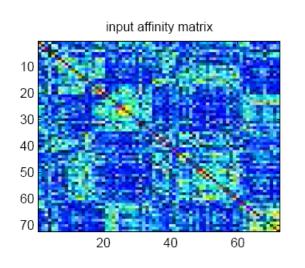


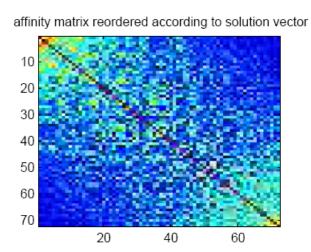


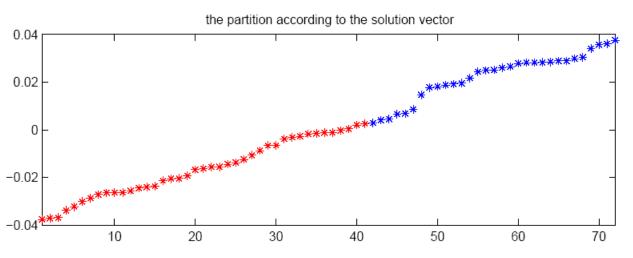




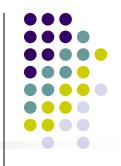
Poor features can lead to poor outcome (Xing et al 2001)





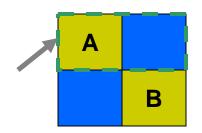


Cluster vs. Block matrix

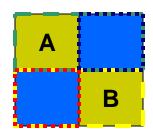


$$Ncut(A, B) = \frac{cut(A, B)}{d_A} + \frac{cut(A, B)}{d_B}$$

$$Degree(A) = \sum\nolimits_{i \in A, j \in V} W_{i,j}$$

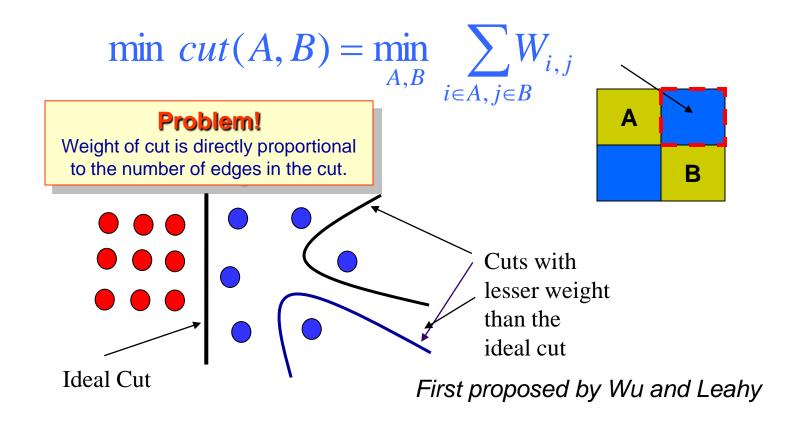


$$Ncut(A, B) = \frac{cut(A, B)}{d_A} + \frac{cut(A, B)}{d_B}$$

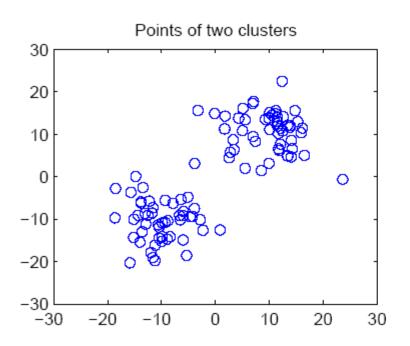


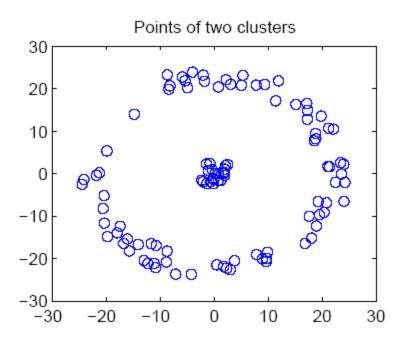
Compare to Minimum cut

Criterion for partition:

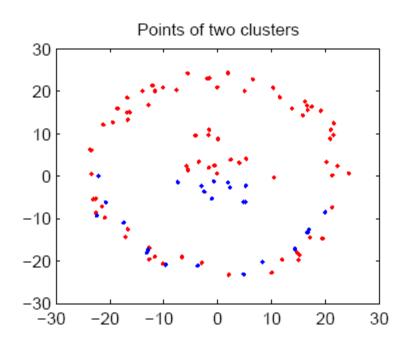


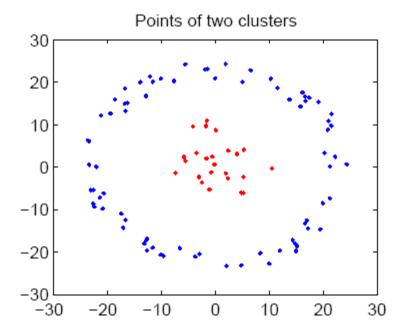
Superior Performance?



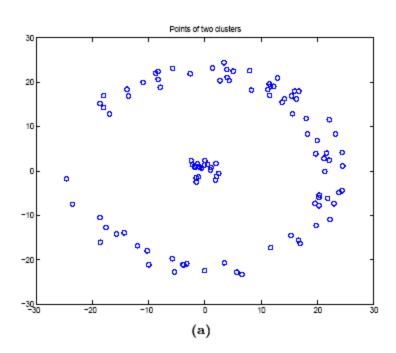


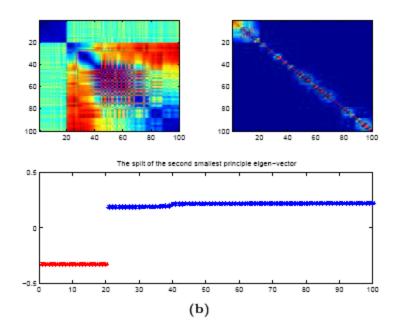
K-means and Gaussian mixture methods are biased toward convex clusters



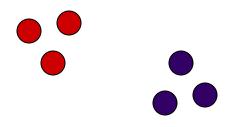


Why?

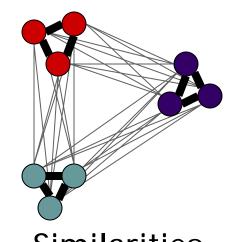


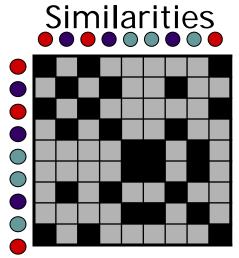


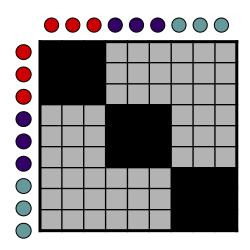
General Spectral Clustering



Data



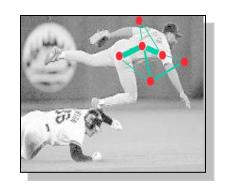


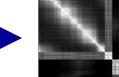


Representation

Partition matrix X:

$$X = \begin{bmatrix} X_1, \dots, X_K \end{bmatrix} \qquad X = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$





- Pair-wise similarity matrix W: W(i, j) = aff(i, j)
- Degree matrix D: $D(i,i) = \sum_{j} w_{i,j}$
- Laplacian matrix L: L = D W

segments

A Spectral Clustering Algorithm

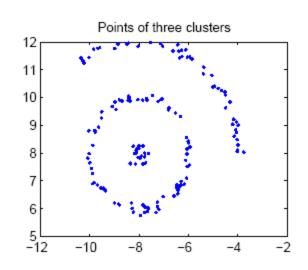
Ng, Jordan, and Weiss 2003

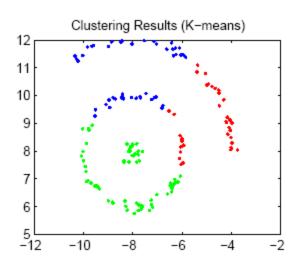
- Given a set of points $S=\{s_1,...s_n\}$
- Form the affinity matrix $w_{i,j} = e^{\frac{-\|S_i S_j\|_2^2}{\sigma^2}}$, $\forall i \neq j$, $w_{i,i} = 0$
- Define diagonal matrix $D_{ii} = \Sigma_{\kappa} a_{ik}$
- Form the matrix $L = D^{-1/2}WD^{-1/2}$
- Stack the k largest eigenvectors of L to for the columns of the new matrix X:

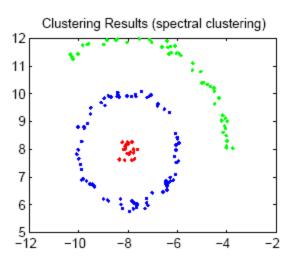
$$X = \begin{vmatrix} 1 & 1 & 1 \\ x_1 & x_2 & \cdots & x_k \\ 1 & 1 & 1 \end{vmatrix}$$

 Renormalize each of X's rows to have unit length and get new matrix Y. Cluster rows of Y as points in R^k

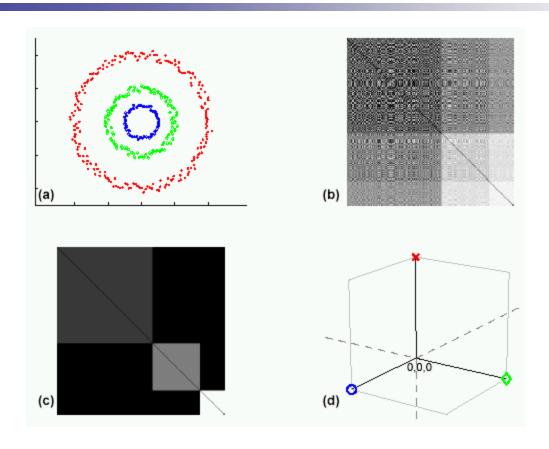
SC vs Kmeans





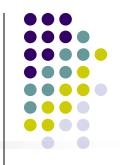


Why it works?



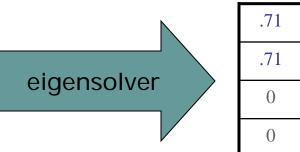
K-means in the spectrum space!

Eigenvectors and blocks



Block matrices have block eigenvectors:

1	1	0	0
1	1	0	0
0	0	1	1
0	0	1	1



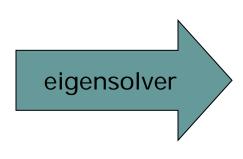
$\lambda_1 = 2$	$\lambda_2 = 2$		
.71	0		
.71	0		
0	.71		
0	.71		

 $\lambda_1 = 2.02$ $\lambda_2 = 2.02$

$$\lambda_4 = 0$$

 $\lambda_3 = 0$

Near-block matrices have near-block eigenvectors:



.71	
.69	
.14	
0	

0
14
.69
.71

$$\lambda_3 = -0.02$$

$$\lambda_4 = -0.02$$

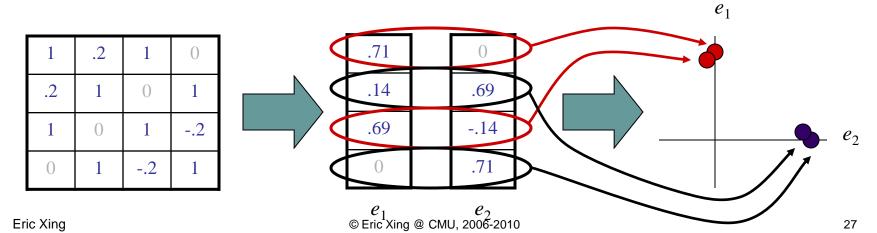
Spectral Space

 e_1

Can put items into blocks by eigenvectors:

	1	1	.2	0	.71 0
Ī	1	1	0	2	.6914
	.2	0	1	1	.14 .69
Ī	0	2	1	1	0 .71
•					$\overline{e_1}$ e_2

• Clusters clear regardless of row ordering:



More formally ...

Recall generalized Ncut

$$Ncut(A_{1}, A_{2}...A_{k}) = \sum_{r=1}^{k} \left(\frac{\sum_{i \in A_{r}, j \in V \setminus A_{r}} W_{ij}}{\sum_{i \in A_{r}, j \in V} W_{ij}} \right) = \sum_{r=1}^{k} \left(\frac{cut(A_{r}, \overline{A}_{r})}{d_{A_{r}}} \right)$$

Minimizing this is equivalent to spectral clustering

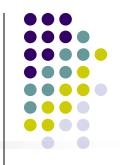
$$\min \operatorname{Ncut}(A_1, A_2 \dots A_k) = \sum_{r=1}^k \left(\frac{\operatorname{cut}(A_r, \overline{A_r})}{d_{A_r}} \right)$$

min
$$Y^{\mathrm{T}}D^{-1/2}WD^{-1/2}Y$$

s.t. $Y^{\mathrm{T}}Y = I$

$$Y = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Spectral Clustering



- Algorithms that cluster points using eigenvectors of matrices derived from the data
- Obtain data representation in the low-dimensional space that can be easily clustered
- Variety of methods that use the eigenvectors differently (we have seen an example)
- Empirically very successful
- Authors disagree:
 - Which eigenvectors to use
 - How to derive clusters from these eigenvectors
- Two general methods

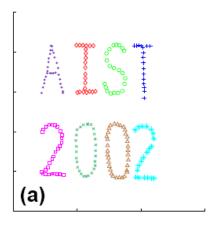
Method #1

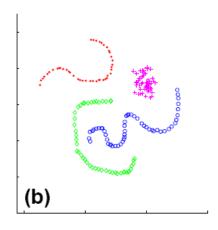
- Partition using only one eigenvector at a time
- Use procedure recursively
- Example: Image Segmentation
 - Uses 2nd (smallest) eigenvector to define optimal cut
 - Recursively generates two clusters with each cut

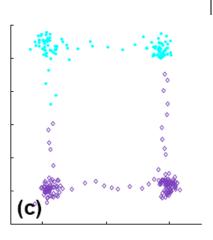
Method #2

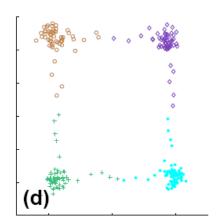
- Use k eigenvectors (k chosen by user)
- Directly compute k-way partitioning
- Experimentally has been seen to be "better"

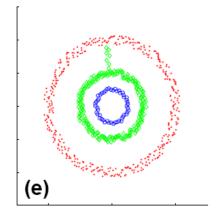
Toy examples

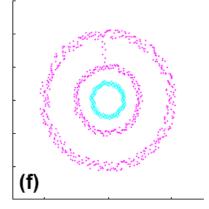












Images from Matthew Brand (TR-2002-42)

User's Prerogative

- Choice of k, the number of clusters
- Choice of scaling factor
 - Realistically, search over σ^2 and pick value that gives the tightest clusters
- Choice of clustering method: k-way or recursive bipartite
- Kernel affinity matrix

$$W_{i,j} = K(S_i, S_j)$$

Conclusions

Good news:

- Simple and powerful methods to segment images.
- Flexible and easy to apply to other clustering problems.

Bad news:

- High memory requirements (use sparse matrices).
- Very dependant on the scale factor for a specific problem.

$$W(i, j) = e^{\frac{-\|X_{(i)} - X_{(j)}\|_{2}^{2}}{\sigma_{X}^{2}}}$$