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A b s t r a c t .  In this paper, we propose a new methodology for decompos- 
ing pattern classification problems based on the class relations among 
training data. We also propose two combination principles for integrat- 
ing individual modules to solve the original problem. By using the de- 
composition methodology, we can divide a K-class classification problem 
into (~) relatively smaller two-class classification problems. If the two- 
class problems are still hard to be learned, we can further break down 
them into a set of smaller and simpler two-class problems. Each of the 
two-class problem can be learned by a modular network independently. 
After learning, we can easily integrate all of the modules according to 
the combination principles to get the solution of the original problem. 
Consequently, a K-class classification problem can be solved effortlessly 
by learning a set of smaller and simpler two-class classification problems 
in parallel. 

1 Introduction 

One of the most impor tant  difficulties in using artificial neural networks for 
solving large-scale, real-world problems is how to divide a problem into smaller 
and simpler subproblems; how to assign a modular network to learn each of the 
subproblems independently; a n d  how to combine the individual modules to get 
the solution of the original problem. In the last several years, many  researchers 
have studied modular  neural network systems for dealing with this problem, for 
example see [8, 3, 2, 1, 7]. Up to now, various problem decomposition methods 
have been developed based on the divide-and-conquer strategy. These methods 
can be roughly classified into three classes as follows. 

E x p l i c i t  d e c o m p o s i t i o n :  Before learning, a problem is divided into a set of 
subproblems by a designer who should have some domain knowledge and deep 
prior knowledge concerning the decomposition of the problem. Several modular  
systems have been developed based on this decomposition method,  see for in- 
stance [10, 4]. The limitation of this method is that  sufficient prior knowledge 

concerning the problem is necessary. 
C l a s s  d e c o m p o s i t i o n :  Before learning, a problem is broken down into a set 

of subproblems according to the inherent relations among training data. Anand 
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et al. [1] first introduced this method for decomposing a/ 'f-class classification 
problem into K two-class problems by using the class relations among the train- 
ing data. In contrast to the explicit decomposition, this method only needs some 
common knowledge concerning the training data, 

A u t o m a t i c  decompos i t ion :  A problem is decomposed into a set of sub- 
problems with the progressing of the learning. Most of the existing decomposition 
methods fall into this category, see for instance [2, 7]. From computational com- 
plexity's point of view, the former two methods are more efficient than this one 
because the problems have been decomposed into subproblems before learning, 
and therefore, they are suitable for solving large-scale and complex problems. 
The advantage of this method is that  it is more general than the former ones 
because it can work when prior knowledge concerning the problem is absent. 

In this paper, we propose a new methodology for decomposing classification 
problems. The basic idea behind this methodology is to use the class relations 
among the training data, similar to the method developed by Anand et al. [1]. In 
comparison with Anand's method, our methodology has two main advantages 
as follows. (a) The two-class problem obtained by our method is to discrimi- 
nate between every pair classes, i.e., class Ci and class Cj for i = 1,---,  K and 
j = i + 1. The existence of the training data of the other K - 2 classes is ignored. 
Therefore, the number of training data for each of the two-class problems is 2N. 
However, the two-class problem obtained by Anand's method has to discriminate 
between one class and the remaining classes. Therefore, the number of training 
data for each of the two-class problems is K �9 N. When K is large, learning 
of the two-class problems obtained by Anand's method may be still problem- 
atic. Here, for simplicity of description, the assumption we made is that  each of 
the classes has the same number of training data N. (b) By using our method, 
the two-class problem can be further divided into Ni . Nj smaller and simpler 
two-class problems, where N~ and Nj are the numbers of training subsets be- 
longing to Ci and Cj, respectively. However, Anand's method can not be applied 
to decomposing two-class problems. Since the two-class problems obtained by 
our method can be much smaller and simpler than those obtained by Anand's 
method, it is easier to assign a smaller modular network to learn each of the 
two-class problems. We also propose two combination principles for integrating 
individual modules to solve the original problem. After training each of the two- 
class problem with a modular network, we can easily integrate all of the modules 
according to the combination principles to create a solution to the original prob- 
lem. Consequently, a K-class classification problem can be solved effortlessly by 
learning a set of smaller and simpler two-class problems in parallel. 

The remainder of the article is organized as follows. In Section 2, we present 
a new decomposition methodology. In Section 3, we introduce three integrating 
units for constructing modular networks and describe two combination princi- 
ples. Section 4 gives several examples and simulation results. Finally, conclusions 
are given in Section 5. 
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2 T h e  T a s k  D e c o m p o s i t i o n  M e t h o d o l o g y  

The decomposition of a task is the first step to implement a modular neural 
network system. In this section, we present a new methodology for decompos- 
ing a K-class classification problem into a set of smaller and simpler two-class 
classification problems. 

2.1 D e c o m p o s i t i o n  o f  K-c lass  p r o b l e m s  

We address K-class (K > 1) classification problems. Suppose that  grandmother 
cells arc used as output representation. Let T be the training set for a K-class 
classification problem: 

~/)}/--1, (1) T = L 

where Xz E R d is the input vector, and Y1 E R K is the desired output. 
A K-class problem can be divided into K two-class problems [1]. The training 

set for each of the two-class problems is defined as follows: 

~/ : {(.~/, y}i))}L=l for i = 1, . - . ,  K (2) 

where Xl e R d and yl i) e R 1. The desired output y}i) is defined as: 

y}i) = { 1 - e if Xz belongs to class Ci 
c if XI belongs to Ci (3) 

where e is a small positive real number, Ji denotes all the classes except Ci. That  
is, s is Ci's complement. 

If the original K-class problem is large and complex, learning of the two-class 
problems as defined in Eq. (2) may be still problematic. One may ask: whether 
can the two-class classification problems be further decomposed into simpler 
two-class problems ? We will give an answer to this question in the remainder 

of the article. 

2.2 D e c o m p o s i t i o n  o f  two-class  p r o b l e m s  

From Eq. (1), the input vectors can be easily partitioned into K sets: 

"~'i ---- {x~i )}f~l  for { z  1, 2, ' ' - ,  ~-~, (4) 

where X} i) C R d is the input vector, all of the X} i) E Xi have the same desired 

outputs, and ~K=I Li = L. Note that this partition is unique. 
We suggest that  the two-class problems as defined in Eq. (2) can be further 

divided into K - 1 smaller two-class problems. The training set for each of the 
smaller two-class problems is defined as follows: 

~ j  = {(X} i), 1--e)}L=~ 1U{(X} j), c)}L~l for j =  1, " " ,  K a n d j ~ s  (5) 
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where X} i) e Xi and X} j) E Xj are the int~g,g~vectors belonging to class Ci and 
class Cj, respectively. For task Tij, the existe'ar the training data belonging 
to the other K - 2 classes is ignored. 

From Eq. (5), we see that partitioning-'c)f the two-class problem as defined 
in Eq. (2) into K - 1 smaller two-class.p~bl~m is simple and straightforward. 
No domain specialists or prior knowledge:r the decomposition of the 
learning problems are required. Consequ~ntlE any designer can perform this 
decomposition easily if he or she knows the:number of training patterns belonging 
to each of the classes. 

From Eq. (5), we see that  a K-class: problem can be broken down into K -  
(K - 1) two-class problems, which are represented as a K x K-matrix as follows: 

"rK] "z;:2 ' r~3.. .  0 j 

where 0 represents empty set. 
In fact, among the the above problems, only (g) two-class problems in the 

upper triangular are different, and other (~) ones in the lower triangular can 
be solved by inverting the former ones by using the INV units (see Section 
3). Therefore, the number of two-class problems that  need to be learned can 
be reduced to (~). Comparing Eq. (5) with Eq. (2), we see that the two-class 
problem defined in Eq. (5) is much smaller than that  defined in Eq. (2) if the K 
is large and the number of patterns for cache.of the K-classes is roughly equal. 

2.3 F ine  d e c o m p o s i t i o n  o f  two-class  p r o b l e m s  

Even though a/(-class  problem can be broken down into (~) relatively smaller 
two-class problems, some of them may be still hard to be learned: for instance, 
the "two-spirals" problem [5]. In order to deal with this problem, we propose a 
method for further decomposing the two-class problem T/j as defined in Eq. (5) 
into a set of smaller and simpler two-class problems. 

Assume that  the input set 32/is further partitioned into Ni (Ni >_ 1) subsets: 

..- L U) 
Xij = {X-}'3)},~1 for j = 1,-- . ,  iV/, (7) 

where X} ij) E R d is the input vector and ~ j ~ l  L} j ) =  Li. This partition is not 
unique in general. One can give a partition randomly or by using prior knowledge 
concerning the decomposition of the learning problems. 

The training set for each of the smaller and simpler two-class problems is 
defined as follows: 

L(~) T(~)  = * ,  {(X} i~')' 1 -  ~)}l~:)U {(X/iv), e)}t=l' (8) 

for u = 1, --.,  Ni, v = l ,  . . . ,N j ,  andjT~i 
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where X} i~) C 2d~ and X} jr) E 2djv are the input vectors belonging to class Ci 
and class C/, respectively. 

3 T h e  M o d u l a r  N e t w o r k  A r c h i t e c t u r e  

After solving each of the smaller two-class problems as defined in Eq. (5) or 
Eq. (8) by a modular network, we need to organize the individual modules and 
construct a modular system to get the solution of the original problem. In this 
section, we will first introduce three integrating units for constructing the mod- 
ular networks, and then we will give two combination principles for integrating 
the individual modules. 

3.1 T h r e e  I n t e g r a t i n g  U n i t s  

Before describing our modular neural network architecture, we introduce three 
integrating units, namely MIN, MAX, and INV respectively. 

The basic function of a MIN unit is to find a minimum value from its multiple 
inputs. The transfer function of a MIN unit is given by 

q = Minimize{p1, ' " ,  Pn} (9) 

where pl, " " ,  pr~ and q are the inputs and output ,  respectively, pi E R 1 for 
i = 1, - . . ,  n, and q E R 1. 

The basic function of a MAX unit is to find a maximum value from its 
multiple inputs. The transfer function of a MAX unit is given by 

q = Maximize {Pl, ' " ,  P,~} (lO) 

where pt,  " " ,  P~ and q are the inputs and output ,  respectively. 
The basic function of an INV unit is to invert its single input. The transfer 

function of an INV unit is given by 

q = b - p (11) 

where b, p and q are the upper limit of its input, input, and output,  respectively. 

3.2 T h e  C o m b i n a t i o n  P r i n c i p l e s  

Suppose that  each of the two-class problems has been learned by a modular 
network completely. One may ask a question: how to combine the outputs of the 
individual modules to get the solution of the whole problem ? In this subsection, 
we will present two combination principles which give the designer a systematic 

method for organizing the modules. 
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M i n i m i z a t i o n  P r inc ip l e :  The modules, which were trained on the same train- 
ing inputs corresponding to the desired outputs 1 - e ,  should be integrated by the 
M I N  unit. 

Consider the two-class problems T/l, T/2, . . - ,  T/K as defined in Eq. (5). These 
problems have the same training inputs corresponding to the desired outputs 
1 - e. Suppose that the K - 1 modules, which are represented as Adil, AAi2, 
�9 . . ,  JV4iK, were trained, respectively, on T/l, T i % - . . ,  T/K. According to the 
minimization principle, we can organize the K �9 (K  - 1) modules into a modu- 
lar network as illustrated in Fig. l(a),  where, for simplicity of illustration, the 
assumption we made is that all of the K - (K - 1) two-class problems as defined 
in Eq. (5) are learned and no INV unit is used. 
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Fig. 1. The organization of the K .  (K - 1) modules by using the MIN units (a) and 
the organization of the Ni .  Nj modules by using the MIN and MAX units (b). 

M a x i m i z a t i o n  P r inc ip l e :  The modules, which were trained on the same train- 
ing inputs corresponding to the desired outputs c, should be integrated by the M A X  
unit. 

Consider the combination of the modules which were trained on the following 
Ni . Nj  two-class problems as defined in Eq. (8). 

~J2:) T/j.22) . . .  TiJ2, Nj) (12) 

According to the decomposition method defined in Eq. (8), the Ny training sets 
in each of row of Eq. (12) have the same training inputs corresponding to the 
desired outputs 1 -  r In contrast, the Ni training sets in each column of Eq. (12) 
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have the same training inputs corresponding to the desired outputs c. Following 
the minimization and maximization principles, the Ni �9 Nj modules that  were 
trained on the Ni. Nj two-class problems can be organized as illustrated in Fig. 
l(b). 

4 E x a m p l e s  a n d  S i m u l a t i o n s  

To evaluate the effectiveness of the proposed decomposition methodology, t h e  
two combination principles, and the modular network architecture, several bench- 
mark learning problems have been simulated in this section. In the following sim- 
ulations, the structure of all the nonmodular and modular networks are chosen 
to be the three-layer quadratic perceptrons with one hidden layer [6]. All of the 
networks are trained by the back-propagation algorithm [9]. The momentums 
are set all to 0.9. The learning rates are selected through practical experiments. 
They are optimal for fast convergence. For each of the nonmodular and modular 
networks, training was stopped when the mean square error for each network 
was reduced to 0.01. A summary of the simulation results is shown in Table 1, 
where "Max." means the maximum CPU time required to train any modular 
network. All of the simulations were performed on a SUN Spare-20 workstation. 

T w o - S p i r a l s  P r o b l e m :  The "two-spirals" problem [5] is chosen as a bench- 
mark for this study because it is an extremely hard two-class problem for the 
conventional backpropagation networks and the mapping from input to output 
formed by each of the modules is visible. 

Fig. 2. The training inputs for the original two-spirals problem (a). The training inputs 
for the nine subproblems (b) through (j), respectively. The black and white points 
represent the desired outputs of "0" and "1", respectively. 
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Fig. 3. Tile responses of the modular network with the 9 modules (a), the modular 
network with the 36 modules (b), and the single network with 40 hidden units (c). 
Black and white represent the outputs of "0" and "1", respectively. 

The 194 training inputs for the original two-spirals problem are shown in 
Fig. 2(a). We performed three comparative simulations on this problem. In the 
first simulation, the original problem was divided into nine subproblems by par- 
titioning the input variable through the axis of abscissas into three overlapping 
intervals. The training inputs for the nine subproblems are shown in Figs. 2(b) 
through 20) , respectively. All of the nine modular networks were selected to be 
five hidden units except that the fifth module was selected to be twenty-five 
hidden units because the fifth task (see Fig. 2(0  ) is the hardest problem to be 
learned in the nine problems. The combination of the outputs of the nine trained 
modules is shown in Fig. 3(a). In the second simulation, the original problem 
was divided into 36 subproblems by partitioning the input variable through the 
axis of abscissas i=to 6 overlapping intervMs. The numbers of hidden units of 
the Ist, the 8th, the 15th, the 22nd and the 29th modules were chosen to be 
10, and the others were chosen to be 1. The response of the modular network 
which consists of 36 trained modules is shown in Fig. 3(b). For comparing with 
the above results, this problem was also learned by a single network with 40 hid- 
den units. After 200,000 iterations, the mean square error was still about 0.57. 
The response of the single network is shown in Fig. 3(c). All of the CPU times 
required to train the single and modular networks are shown in Table 1. 

Table  1. Performance comparison of nonmodular and the proposed modular networks 

Task Network Modules 

Two-spirals Nonmodular 
Modular 9 
Modular 36 

Image Nonmodular 
Modular 
Nonmodular 
Modular 

1 
21 

Max. 
1 105447 

5513 
648 

50828 
350 

1 134971 
6 3456 

Vehicle 

CPU time 
TotM Training data 

105447 99.48~( 
5983 100.00% 
1 4 3 9  100.00% 

50828 99.95~ 
1121  100.00% 

134971 99.76% 
4567 100.00% 

Success rate (%) 
Test data 

91.19% 
90.76% 
72.34% 
73.05% 

I m a g e  S e g m e n t a t i o n :  The image segmentation problem was obtained from 
the University of California at Irvine (UCI) repository of machine learning 
databases. This real problem consists of 210 training data  and 2100 test data. 
The number of attr ibutes is 19 and the number of classes is 7. The original prob- 
lem is decomposed into (7) two-class problems according to the decomposition 
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method defined in Eq. (5). Each of the two-class problems consists of 60 training 
data. Each of the 21 two-class problems was learned by a modular  network with 
3 hidden units. The original problem was also learned by a single network with 
10 hidden units. The simulation results are shown in Table 1. 

Veh i c l e  C la s s i f i ca t i on :  This real classification problem was also obtained 
from UCI repository of machine learning databases. The problem is to clas- 
sify a given silhouette as one of four types o f  vehicle by using a set of features 
extracted f rom the silhouette. We divided the original da ta  set into training and 
test sets. Each of the two sets consists of 423 data. The number of at t r ibutes  is 
18 and the number  of classes is 4. The original problem was decomposed into 
(4) two-class problems. All of the 6 modules were selected to be 4 hidden units, 
except that  the module used to train on T23 was selected to be 8 hidden units. 
The 6 trained modules are organized as illustrated in Fig. 4. This original prob- 
lem was also learned by a single network with 24 hidden units. The simulation 

results are shown in Table 1. 

Fig. 4. The modular network architecture for learning the Vehicle classification prob- 
lem. Corss lines do not represent connections unless there is a dot on the intersection. 

5 C o n c l u s i o n s  

In this paper,  we have proposed a new decomposition methodology, two combina- 
tion principles for integrating modules, and a new modular neural network archi- 
tecture. The basic idea of the methodology is based on the class relations among 
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the training data. Given a K-class classification problem, by using the proposed 
decomposition methodology, we can divide the problem into a set of smaller and 
simpler two-class problems. Several at tractive features of thi~ methodology can 
be summarized as follows: (a) we can break down a problem into a set of smaller 
subproblems even though we are not domain specialists or we have no any prior 
knowledge concerning the decomposition of the problem; (b) training of each of 
the two-class problems can be greatty simplified and achieved independently; and 
(c) different network structures or different learning algorithms can be used to 
learn each of the problems. The two combination principles gives us a systematic 
method for organizing the individual modules. By using three integrating units, 
we can combine the outputs of all the individual modules to create a solution to 
the original problem. The simulation results (see Table 1) indicate that  (a) the 
speedups of up to one order of magnitude can be obtained with our modular net- 
work architecture and (b) the generalizatioa performance of trained single and 
modular networks are about the same. The importance of the proposed decom- 
position methodology lies in the fact that  it provides us a promising approach 
to solving large-scale, real-world pat tern classification problems. 
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