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Abstract. This paper presents a part-of-speech tagging method based on a min-max modular neural-network
model. The method has three main steps. First, a large-scale tagging problem is decomposed into a number of
relatively smaller and simpler subproblems according to the class relations among a given training corpus. Secondly,
all of the subproblems are learned by smaller network modules in parallel. Finally, following two simple module
combination laws, all of the trained network modules are integrated into a modular parallel tagging system that
produces solutions to the original tagging problem. The proposed method has several advantages over existing
tagging systems based on multilayer perceptrons. (1) Training times can be drastically reduced and desired learning
accuracy can be easily achieved; (2) the method can scale up to larger tagging problems; (3) the tagging system has
quick response and facilitates hardware implementation. In order to demonstrate the effectiveness of the proposed
method, we perform simulations on two different language corpora: a Thai corpus and a Chinese corpus, which
have 29,028 and 45,595 ambiguous words, respectively. We also compare our method with several existing tagging
models including hidden Markov models, multilayer perceptrons and neuro-taggers. The results show that both the
learning accuracy and generalization performance of the proposed tagging model are better than statistical models
and multilayer perceptrons, and they are comparable to the most successful tagging models.
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1. Introduction

A remarkable characteristic of natural languages is the
large number of words that have more than one syn-
tactic category. For example, over 42% of the text
in the Chinese corpus [1] used in this paper con-
sists of words that are syntactically ambiguous. There-
fore, how to cope with ambiguity is one of the fun-
damental problems in natural language processing.
Part-of-speech tagging is the task of assigning an ap-
propriate part of speech to each word in a sentence.
In the last several years, many tagging systems for
different languages [1–3] have been developed that
are based on various techniques including probabilis-
tic models [4–7], rule-based methods [2], neural net-
works [8–11], and hybrid systems [12]. Tagging tech-
niques have been applied to various fields of infor-
mation processing such as pre-processing for speech
synthesis, post-processing for continuous speech
recognition, machine translation, and information
retrieval.

Multilayer perceptrons [13] have been applied to
solve part-of-speech tagging problems. Benello et al.
[8] developed a tagging system based on three-layer
perceptrons. They trained the network on the Brown
Corpus with the back-propagation algorithm [14], and
achieved an accuracy of 94.7% on test data including
both ambiguous and unambiguous words.

Ma and Isahara proposed a multiple neuro-tagger
which consists of several three-layer perceptrons [11].
They introduced three techniques to this tagger to im-
prove its generalization performance. (1) Each element
of an input is weighted with information gain [15], a
number expressing the average amount of reduction
of information entropy for the training set; (2) in the
tagging phase, instead of using the original inputs di-
rectly, each of the input elements corresponding to the
left words in a sentence is replaced by its part-of-speech
tag that has already been assigned by the tagging sys-
tem; (3) variant lengths of contexts for tagging are used
based on the longest context priority. Ma and Isahara
have applied successfully the multiple neuro-tagger to
Thai and Chinese, and obtained an accuracy of 94.3%
for a Thai corpus [11] and an accuracy of 91.4% for a
Chinese corpus [1]. Here the accuracy was measured
using only ambiguous words in the test sets. Their
experimental results showed that the multiple neuro-
tagger is superior to all existing tagging methods, such
as rule-based approaches [2], hidden Markov models
[6], and multilayer perceptrons [13].

Up to now, variant multilayer perceptrons have been
one of the most successful tagging techniques used be-
cause of their massively parallel distributed structure,
their ability to learn nonlinearly separable problems,
and their ability to generalize on novel data [13]. For
developing large-scale, practical tagging systems, how-
ever, the multilayer-perceptron based tagging methods
suffer from several deficiencies. (1) It is difficult to
select a suitable network size (e.g., the number of hid-
den units) to achieve satisfactory learning accuracy and
good generalization performance, because there is no
theory or method that can guide this selection; (2) it
is difficult to improve learning accuracy for large-scale
tagging problems even though a very long training time
is used, because there is no efficient algorithm for train-
ing large-scale multilayer perceptrons; (3) it is hard to
implement the tagging systems in hardware because of
their non-modular structure.

In order to overcome the above drawbacks of exist-
ing tagging systems, this paper proposes a new part-
of-speech tagging method based on a min-max mod-
ular (M3) neural-network model [16–18], an efficient
learning framework that is capable of solving large-
scale pattern classification problems. The remainder
of the paper is organized as follows. In Section 2, we
briefly describe the part-of-speech tagging problem.
In Section 3, we introduce the M3 network model. In
Section 4, we demonstrate the performance of the pro-
posed method on two different corpora: a Thai corpus
(ORCHID) [3] and a Chinese corpus1 [1]. In Section 5,
we present comparison studies. Finally, our conclu-
sions are presented in Section 6.

2. The Problem of Part-of-Speech Tagging

Suppose that a lexicon V with V registered words is
given

V = {w1, w2, . . . , wV }, (1)

where all possible part-of-speech tags for each word
are listed up. Let � be a set of part-of-speech tags for
the lexicon V

� = {λ1, λ2, . . . , λM}, (2)

where M is the number of part-of-speech tags.
The problem of part-of-speech tagging is to find a

string of part-of-speech tags R

R = λ1λ2 . . . λS (3)
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for a given sentence W

W = w1w2 . . . wS, (4)

where λi ∈ �, and wi ∈ V for i = 1, . . . , S.
According to the above description, the tagging

problem can be regarded as a pattern classification
problem as follows:

ϕt : W t → λt (5)

where t is the index of the target word (the word to
be tagged), and W t is a word sequence with length
l + 1 + r centered on the target word,

W t = wt−l . . . wt . . . wt+r

for t − l ≥ 1 and t + r ≤ S. (6)

3. Min-Max Modular Neural-Network Model

In this section, we give a brief introduction to the
M3 network model, which is pictured schematically in
Fig. 1. The model has three components: task decompo-
sition, concurrent learning, and module combination.
The central idea underlying the model is to apply the
class relations among training data to both task decom-
position and module combination. The M3 network is
similar to committee machines [13, 19] in structure.
However, the mechanisms of task decomposition and
output combination used in the M3 network are com-
pletely distinct from those of existing committee ma-
chines, such as piecewise linear machines [19] and a
hierarchical mixture of experts [20].

Figure 1. Schematic representation of the min-max modular neural
network model. Note that concurrent learning means that the sub-
problems may be solved either sequentially or in parallel.

3.1. Task Decomposition and Parallel Learning

Breaking up a problem helps human beings deal with
complex issues [21]. It has been shown that breaking up
a problem is also helpful to neural networks to tackle
complex problems [16, 17]. Up to now, various task
decomposition methods have been developed. A short
survey on this topic can be found in [17].

Let T be the training set for a K-class classification
problem,

T = {(Xl , Yl)}L
l=1, (7)

where Xl ∈ X ⊂ Rn is the input vector, Yl ∈ Y ⊂
RK is the desired output, and L is the total number of
training data.

We have suggested that a K -class problem defined by
(7) can be divided into K (K −1) relatively smaller two-
class subproblems based on the class relations among
training data [16, 17]. In these K (K − 1) two-class
subproblems, however, we see that only (K

2) two-class
subproblems need to be learned, and the rest of the
(K

2) two-class subproblems are the same as the former
ones from the point of view of pattern classification
[16, 17]. The training set for each of the (K

2) two-class
subproblems is given by

Ti j = {(
X (i)

l , 1 − ε
)}Li

l=1 ∪ {(
X ( j)

l , ε
)}L j

l=1

for i = 1, . . . , K and j = i + 1, . . . , K (8)

where ε is a small real positive number (e.g., ε is se-
lected as 0.1 in the simulations below), X (i)

l ∈ Xi and
X ( j)

l ∈ X j are the training inputs belonging to class
Ci and class C j , respectively, Xi is the set of training
inputs belonging to class Ci , Li denotes the number
of data in Xi ,

⋃K
i=1 Xi = X , and

∑K
i=1 Li = L . The

two-class subproblems defined by (8) are called pair-
wise classification in machine learning literature [22].
We would like to emphasize that the partition above is
unique for a given set of training data T because of the
uniqueness of Xi .

If some of the two-class problems defined by (8) are
still large and hard to be learned, each of these sub-
problems can be further decomposed into a number of
two-class problems as small as the user needs. Assume
that Xi is partitioned into Ni (1 ≤ Ni ≤ Li ) subsets in
the form

Xi j = {
X (i j)

l

}L ( j)
i

l=1 for j = 1, . . . , Ni

and i = 1, . . . , K , (9)

where
⋃Ni

j=1 Xi j = Xi .
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According to the above partition of Xi , the two-class
problem Ti j defined by (8) can be divided into Ni × N j

much smaller and simpler two-class subproblems. The
training set for each of the two-class subproblems is
given by

T (u,v)
i j = {(

X (iu)
l , 1 − ε

)}L (u)
i

l=1 ∪ {(
X ( jv)

l , ε
)}L (v)

j

l=1

for u = 1, . . . , Ni , v = 1, . . . , N j ,

i = 1, . . . , K , and j = i + 1, . . . , K , (10)

where X (iu)
l ∈ Xiu and X ( jv)

l ∈ X jv are the training
inputs belonging to class Ci and class C j , respectively.

If Xi is partitioned into Li subsets, the training set
T (u,v)

i j has only two different elements in the form

T (u,v)
i j = {(

X (iu)
1 , 1 − ε

) ∪ (
X ( jv)

1 , ε
)}

for u = 1, . . . , Li , v = 1, . . . , L j ,

i = 1, . . . , K , and j = i + 1, . . . , K . (11)

Obviously, this problem is a linearly separable problem
because any two different training data can always be
separated by a hyper-plane.

From (8) and (10), we see that a K -class problem
can be decomposed into

K−1∑
i=1

K∑
j=i+1

Ni × N j (12)

two-class subproblems. The decomposition process is
simple and straightforward, and no domain special-
ists or prior knowledge concerning the decomposition
of the problem are required. Consequently, any large-
scale problem can be easily decomposed into a number
of two-class subproblems as small as the user needs.

Let L be the total number of training data for a K -
class classification problem, then

L = K × J, (13)

where for simplicity of description, the assumption we
made is that each of the classes has the same number
of training data J .

If a K -class problem is decomposed into (K
2) two-

class subproblems, the number of training data for each
of the two-class subproblems is 2 × J . If a K -class
problem is decomposed into

∑K−1
i=1

∑K
j=i+1 Ni × N j

two-class subproblems, the number of training data for
each of the two-class subproblems is about

�J/Ni� + �J/N j�, (14)

where �z� denotes the smallest integer greater than or
equal to z. Since �J/Ni� + �J/N j� � K × J for a
large K , i.e., the number of training data for each of the
two-class subproblems is much less than the original
K -class problem.

An important feature of the proposed task de-
composition method is that each of the two-class
subproblems can be treated as a completely indepen-
dent, non-communicating subproblem in the learning
phase. Consequently, all of the subproblems can be
learned in parallel. This is an ideal case called com-
pletely parallelizable in parallel computing literature
[23], since learning can achieve linear speedup as
processing elements are added.

3.2. Module Combination

After training each of the modules which are assigned
to learn associated subproblems, all of the individual
trained network modules can be easily integrated into
an M3 network by using the MIN, MAX, or/and INV
units according to the following two simple combina-
tion laws [16–18], which are called the minimization
principle and the maximization principle, respectively.

Theorem 1 (Minimization Principle). Suppose a
two-class problemB is divided into P relatively smaller
two-class subproblems, Bi for i = 1, . . . , P, and also
suppose that all the subproblems have the same posi-
tive training data and different negative training data.
If the P subproblems are correctly learned by the
corresponding P individual network modules, Mi for
i = 1, . . . , P, then the combination of the P trained
network modules with a MIN unit produces the correct
output for all the training inputs in B, where the func-
tion of the MIN unit is to find a minimum value from
its multiple inputs.

Theorem 2 (Maximization Principle). Suppose a
two-class problemB is divided into P relatively smaller
two-class subproblems, Bi for i = 1, . . . , P, and also
suppose that all the subproblems have the same nega-
tive training data and different positive training data.
If the P subproblems are correctly learned by the
corresponding P individual network modules, Mi for
i = 1, . . . , P, then the combination of the P trained
network modules with a MAX unit produces the cor-
rect output for all the training input in B, where the
function of the MAX unit is to find a maximum value
from its multiple inputs.
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The proofs of the theorems above are omitted. See
[18] for more details.

Let Y denote the actual output vector of the M3 net-
work for a K -class classification problem, and let g(X )
denote the transfer function of the M3 network. We may
then write

Y = g(X ) = [g1(X ), . . . , gK (X )]T (15)

where Y ∈ RK , and gi (X ) ∈ R is called the discrimi-
nant function, which discriminates the patterns of class
Ci from those of the rest classes.

By replacing the module Mst for s > t with the in-
verse of the output of the module Mts , the discriminant
functions gi (X ) of the M3 network, which is used to
learn the (K

2) two-class subproblems, can be given by

gi (X ) = min

[
K

min
j=i+1

hi j (X ),
i−1
min
r=1

hri (X )

]
(16)

where hi j (X ) is the activation function of the mod-
ule Mi j trained on Ti j defined by (8), and the term
hri (X ) denotes the inverse of hri (X ), which can be im-
plemented by an INV unit.

The function of the INV unit is to invert its single
input. The transfer function of the INV unit is defined
by

q = α + β − p (17)

where α, β, p, and q are the upper and lower limits of
input value, input, and output, respectively.

The relationship among hri (X ), hir (X ) and the INV
unit is given by

hir (X ) = hri (X ) = INV(hri (X )), (18)

Similarly, the discriminant function gi (X ) of the M3

network which is used to learn
∑K−1

i=1

∑K
j=i+1 Ni × N j

Figure 2. Partition of the XOR problem into four linearly separable subproblems. (a) The training inputs for the original XOR problem, (b)
T (1,1), (c) T (1,2), (d) T (2,1), and (e) T (2,2), respectively. The black and white points represent the inputs whose desired outputs are ‘0’ and ‘1’,
respectively, and the grey represents only the background of the figures.

two-class subproblems can be expressed as

gi (X ) = min

[
K

min
j=i+1

[
Ni

max
k=1

[
N j

min
l=1

h(k, l)
i j (X )

]]
,

i−1
min
r=1

Nr
max
k=1

[
Ni

min
l=1

h(k, l)
ri (X )

]]
, (19)

where the term maxNr
k=1 [minNi

l=1 h(k, l)
ri (X )] denotes the

inverse of maxNr
k=1 [minNi

l=1 h(k, l)
ri (X )] and h(k,l)

i j is the
activation function of the module M(k,l)

i j trained onT (k,l)
i j

defined by (10).
In the following, we present a simple example

[18] to illustrate the module combination principles.
Consider the XOR problem. According to the task
decomposition method, this problem (see Fig. 2(a))
was divided into four linearly separable subproblems:
T (1,1), T (1,2), T (2,1), and T (2,2), which are depicted in
Figs. 2(b)–(e), respectively. Four perceptrons repre-
sented as M(1,1), M(1,2), M(2,1), and M(2,2) were selected
to learn T (1,1), T (1,2), T (2,1), and T (2,2), respectively.
The M3 network for the XOR problem is shown in
Fig. 1. The optimal boundaries formed by the four per-
ceptrons are shown in Figs. 3(a)–(d), respectively. The
responses of the combinations of individual modules
and the whole M3 network are shown in Figs. 3(e)–(g),
respectively. Comparing Fig. 2(a) with Fig. 3(g), we
see that the M3 network forms optimal boundaries for
the XOR problem.

4. Tagging Experiments

4.1. Text Data

We use the Thai [3] and Chinese [1] corpora in the
following tagging experiments. Some tagged Thai and
Chinese sentences from these corpora are shown in
Figs. 4(a) and (b), respectively. The Thai corpus con-
tains 10,452 tagged sentences. Among these sentences,
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Figure 3. The responses of (a) M(1,1), (b) M(1,2), (c) M(2,1), (d) M(2,2), (e) the combination of M(1,1) and M(1, 2) with the MIN unit, (f ) the
combination of M(2,1) and M(2,2) with the MIN unit, and (g) the whole M3 network, respectively. The black and white represent the outputs of
‘0’ and ‘1’, respectively.

Figure 4. Examples of tagged sentences in the Thai corpus (a) and the Chinese corpus (b). Here, the strings, such as ‘NPRP’, ‘EAFF’, ‘mx’,
‘qnm’ that follow each word and are separated by the symbol ‘@’ or ‘/’, are all possible part-of-speech tags for the word. The string that follows
the symbol ‘@’ is the correct part-of-speech tag for the word.

38 kinds of part-of-speech tags are used, while the to-
tal number of part-of-speech tags in Thai is 47 [3].
The Chinese corpus contains 5,603 tagged sentences.
The sentences in the training set and the first test set
(Test-1) are collected from articles in the business field,
while the sentences in the second test set (Test-2) are
collected from articles in the military field. The num-
ber of part-of-speech tags used in the Chinese corpus
is 56, while the total number of part-of-speech tags in
Chinese is 65 [24]. The data distributions of these two
corpora are shown in Table 1. In the experiments, only
the ambiguous words in the corpora are used as training
and test data.

4.2. Representations of Inputs and Outputs

Each of the training inputs X is organized as a vector
consisting of seven (l + r +1 = 3+3+1) sub-vectors

as follows:

X = [xt−3, xt−2, xt−1, xt , xt+1, xt+2, xt+3]T , (20)

where xt is the sub-vector associated with the central
word to be tagged, and xt±i for i = 1, 2, and 3 are
the sub-vectors encoding the other six words (three on
either side of the central word) that provide a context
for the tagging decision.

Each of the seven sub-vectors xi for i = t − 3, t −
2, . . . , t + 3 consists of M elements which are used to
represent M different kinds of part-of-speech tags, and
is represented in the form

xi = [xi1, xi2, . . . , xi M ]T . (21)

In the simulations below, M is set to 46 for the
Thai tagging problem and 59 for the Chinese tag-
ging problem according to the actual numbers of input
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Table 1. The Thai and Chinese corpora.

No. of tagged No. of ambiguous Ambiguity
Corpus Data set sentences No. of words words rate (%)

Thai Training 8322 124331 22311 18

Test 2130 34544 6717 19

Chinese Training 2904 70900 30211 43

Test-1 1622 36631 15383 42

Test-2 1077 27192 11098 41

dimensions in the Thai corpus and the Chinese cor-
pus. Thus, the dimensions of the training inputs for
learning the Thai corpus and the Chinese corpus are
46 × 7 = 322 and 59 × 7 = 413, respectively.

The elements of xi for i = t − 3, t − 2, . . . , t + 3
are determined by

xip = Prob(λp | wi ), (22)

where Prob(λp | wi ) is the probability that the part-of-
speech tag λp might be assigned to word wi . It is esti-
mated from the training data as

Prob(λp | wi ) = |λp, wi |
|wi | , (23)

where |λp, wi | is the number of times that λp might be
assigned to wi , and |wi | is the total number of times
that wi might appear in the training set.

If wi is a word that does not appear in the training
set, then each element xip is calculated by

xip =



1

γi
if λp is a candidate

0 otherwise,
(24)

where γi is the total number of part-of-speech tags that
can be assigned to wi .

Suppose that grandmother cells are used as the out-
put representation for M3 networks, that is, K output
units can only represent K + 1 classes of patterns at
most, and one and only one output unit is active at a time
[25]. The actual output of the M3 network is judged by
the following rule. If the position of the largest element
of the actual output is the same as that of the desired
output, then the output is considered to be a correct
output. Otherwise, it is an incorrect output.

4.3. Decomposition of the Tagging Problems

The problem of part-of-speech tagging of Thai can
be regarded as a 38-class pattern classification prob-
lem. The number of training and test data belonging
to each of the classes are shown in Table 2. Accord-
ing to (8), this tagging problem can be divided into
(38

2 ) = 703 two-class subproblems. From Table 2 and
the definition of the two-class subproblems, we see that
the number of training data for the smallest two-class
subproblem T36,38 is only three, while the number of

Table 2. Number of training and test data belonging to each of
38 classes in the Thai corpus.

No. of No. of
ambiguous words ambiguous words

Class Training Test Class Training Test

L1 3,041 962 L20 4 0

L2 72 13 L21 76 17

L3 1,444 385 L22 4 7

L4 2,400 701 L23 9 2

L5 1,582 399 L24 57 15

L6 3,008 1011 L25 32 11

L7 12 0 L26 90 34

L8 3,197 1008 L27 30 5

L9 1,537 475 L28 6 1

L10 481 176 L29 88 23

L11 705 233 L30 2 1

L12 787 226 L31 177 58

L13 601 108 L32 6 0

L14 124 38 L33 8 0

L15 906 328 L34 17 1

L16 90 30 L35 20 3

L17 213 49 L36 2 0

L18 875 214 L37 131 37

L19 476 145 L38 1 0
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training data for the largest two-class subproblem T6,8

is 6,205. Although these two-class subproblems are
smaller than the original problem, they are not ade-
quate for massively parallel computation and efficient
learning with the back-propagation algorithm due to
the following reasons. (1) The two-class subproblems
are rather ‘load imbalanced’. Since the speed of parallel
learning is limited by the speed of the slowest subprob-
lem, the unduly burdening of even a single subproblem
can dramatically degrade the overall performance of
the learning; (2) Some of the two-class subproblems
are still too big for training; (3) Some of the two-class
subproblems are very imbalanced, i.e., the training set
contains many more data of the ‘dominant’ class than
the other ‘subordinate’ class. For example, the two-
class subproblem T8,38 is an imbalanced problem. It has
been shown that the standard back-propagation algo-
rithm converges very slowly for imbalanced problems
[26]. In order to speed-up learning, we should further
decompose each of the bigger two-class subproblems
into a number of relatively smaller and simpler two-
class subproblems.

By using the decomposition method, each of the
training input sets for the bigger two-class sub-
problems is randomly divided into a number of
relatively smaller subsets in the form as defined
by (9). Table 3 shows the number of subsets be-
longing to each of the following larger classes:
C1, C3, C4, C5, C6, C8, C9, C11, C12, C13, C15, andC18. For
example, the training input set for class C4 is randomly
divided into eight subsets, each of which has just 300
pieces of data. Note that the number of subsets belong-
ing to each of the other 26 smaller classes is one.After
performing this partition, the original tagging problem
is divided into

37∑
i=1

38∑
j=i+1

Ni × N j = 3,893 (25)

Table 3. Number of subsets belonging to each of 12 larger classes
in the Thai corpus.

Class No. of subsets Class No. of subsets

N1 10 N9 5

N3 5 N11 2

N4 8 N12 2

N5 5 N13 2

N6 10 N15 3

N8 10 N18 3

much smaller and simpler two-class subproblems. It
should be noted that decomposing the tagging prob-
lem into 3,893 two-class subproblems is not unique in
general because of random partition of the training in-
put sets. Among the 3,893 two-class subproblems, the
number of training data of the largest subproblemT10,19

is only 957. Clearly, it is far smaller than the original
problem.

Following the similar way mentioned above, the
problem of part-of-speech tagging of Chinese can be
regarded as a 56-class pattern classification problem.
Table 4 shows the number of training and test data be-
longing to each of the 56 classes for the Chinese tagging

Table 4. Number of training and test data belonging to each of
56 classes in the Chinese corpus.

No. of ambiguous words No. of ambiguous words

Class Training Test-1 Test-2 Class Training Test-1 Test-2

L1 3712 2015 1574 L29 148 30 73

L2 1642 871 478 L30 131 82 45

L3 4146 2005 1069 L31 3 1 0

L4 61 36 28 L32 94 61 18

L5 3402 1716 1159 L33 29 21 10

L6 1261 521 549 L34 115 83 193

L7 1439 762 611 L35 157 89 126

L8 856 441 258 L36 283 139 137

L9 1973 993 505 L37 183 81 31

L10 2337 1046 1131 L38 49 22 12

L11 1 5 40 L39 190 121 60

L12 898 447 189 L40 250 141 103

L13 382 204 209 L41 690 326 141

L14 14 4 1 L42 4 3 25

L15 340 199 202 L43 203 105 62

L16 145 64 38 L44 78 22 17

L17 758 471 261 L45 12 13 1

L18 1000 538 434 L46 103 48 88

L19 465 274 153 L47 30 17 5

L20 106 67 84 L48 68 33 38

L21 646 343 250 L49 2 1 3

L22 1 0 0 L50 118 65 8

L23 108 57 66 L51 7 3 2

L24 346 170 70 L52 26 19 8

L25 648 283 379 L53 61 17 20

L26 251 154 41 L54 74 44 42

L27 14 7 2 L55 41 23 1

L28 102 75 45 L56 7 5 2
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Table 5. Number of subsets belonging to each of
16 larger classes in the Chinese corpus.

Class No. of subsets Class No. of subsets

N1 12 N10 8

N3 5 N12 3

N4 14 N17 3

N5 11 N18 3

N6 4 N19 2

N7 5 N21 2

N8 3 N25 2

N9 7 N42 2

problem. Each of the training input sets belonging to 16
larger classes is randomly broken down into a number
of smaller subsets, as shown in Table 5. According to
(12), the original Chinese tagging problem is divided
into

55∑
i=1

56∑
j=i+1

Ni × N j = 7,572 (26)

much smaller and simpler two-class subproblems.

4.4. Design of Network Modules

After task decomposition, each of the two-class sub-
problems can be treated as a completely independent
problem. Therefore, any pattern classification tech-
nique can be used to learn the two-class subproblems.
In the experiments, we selected three-layer perceptrons
as network modules to solve the tagging problems.

To achieve satisfactory learning accuracy and good
generalization performance, it is necessary to select a
suitable network architecture. This is because if the
network selected is too small, it cannot learn a given
task with satisfactory accuracy, but if the network is too
large, it will lead to overtraining [11] and poor general-
ization performance. As discussed earlier, for conven-
tional neural networks, such as multilayer perceptrons,
it is difficult for the user to select an appropriate net-
work architecture for a given problem, especially for
large-scale, complex problems.

One of the most important features of the M3 net-
work model is that it allows us to easily design a small
network for a given problem according to the following
procedure.

Step 1: Assign the smallest network modules as initial
network modules to all the two-class subproblems.

Step 2: Train the network modules up to a given number
of epochs.

Step 3: If all of the modules or a prescribed number of
modules satisfy a given error tolerance, then stop the
procedure. Otherwise, perform the following steps.

Step 4: Add one or more hidden units to each of the
unconverged network modules.

Step 5: Retrain the extended network modules up to a
given number of epochs, and go back to Step 3.

It is worth noting that the reason why the design proce-
dure above can work efficiently is that each of the net-
work modules are completely independent each other
in the learning phase and only the unconverged network
modules need to be retrained.

Technically, we can select perceptrons instead of
multilayer perceptrons as initial network modules in
the above procedure because some of the two-class sub-
problems might be linearly separable problems when
each of the subproblems is very small. In the simula-
tions below, as the initial network modules, we choose
three-layer perceptrons with one hidden unit and two
hidden units for the problems of tagging Chinese text
and Thai text, respectively.

4.5. Learning Algorithm

In the experiments, all of the problems were learned
using the back-propagation algorithm [14] in a batch
mode [13]. The momentums were all set to 0.9, and the
learning rates were selected as 0.25 or 0.1. Training is
stopped when a given number of epochs is reached or
the following criterion is satisfied:

1

L

L∑
i=1

K∑
j=1

|di j − yi j | ≤ δ (27)

where di j and yi j are the desired and actual outputs
of the j th output unit associated with the i th training
data, respectively, L is the number of training data, K
is the number of output units, and δ is a real number
which denotes the error tolerance. In the simulations, δ
was selected as 0.005 or 0.002. All of the simulations
were performed on a Fujitsu VPP700E vector parallel
computer.
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Figure 5. Summary of 3,893 trained network modules for learning the Thai corpus. (a) distributions of trained modules measured by epochs,
and (b) distributions of trained modules measured by CPU time in seconds.

4.6. Learning Results

4.6.1. Thai Case. At the beginning of learning, three-
layer perceptrons with 322 input, two hidden, and one
output units were selected as the initial network mod-
ules to learn the corresponding two-class subproblems.
The learning rate was set to 0.25. The error tolerance δ

was set to 0.005 and the maximum number of epochs
was set to 2,000. Figures 5(a) and (b) shows the distri-
butions of the 3,893 trained network modules measured
by the number of epochs and CPU times (s.), respec-
tively. From Fig. 5(b), we see that over 93% of the
network modules converged within 20 seconds, and the
number of unconverged modules was only 52. After the



Efficient Part-of-Speech Tagging 75

Figure 6. The M3 network for tagging Thai text. Note that M1,2 and M1,3 are plotted in detail, and the other modules are roughly illustrated.

learning, the 3,893 individual trained network modules
were integrated into the M3 network shown in Fig. 6.
Looking at Fig. 6, we can see that the proposed tagging
model has two attractive features. (1) The response time
of the system is almost independent from the number

of modules, that is, the system response time is almost
independent of the problem size; (2) The system might
be easily implemented in hardware because of its mod-
ular structure. It should be noted that this integration is
fully guided by two simple module combination laws
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Table 6. Performance of the min-max modular neural networks for tagging Thai.

Accuracy rate (%)

δ

No. of hidden
units

No. of converged
modules

No. of unconverged
modules Training Test

0.005 2 3,841 52 98.4 92.6

0.005 2, 4 3,882 11 98.5 92.9

0.005 2, 4, 6 3,890 3 99.5 93.4

0.002 2 3,738 155 98.7 93.0

0.002 2, 4 3,797 96 99.3 93.1

0.002 2, 4, 6 3,852 41 99.8 94.2

[16, 17] and it is performed automatically. The learn-
ing accuracy and generalization performance of the M3

network, i.e., the success rates on training and test data,
are shown in the first row of Table 6.

To improve the learning accuracy of the M3 net-
work, the 52 unconverged subproblems were learned
again by a bit big three-layer perceptrons, each of which
had four hidden units. After retraining, the number of
unconverged network modules was reduced to eleven.
In this stage, both the learning accuracy and general-
ization performance of the M3 network had been im-
proved slightly. To achieve complete learning, eleven
three-layer perceptrons with six hidden units were se-
lected to learn the unconverged two-class subprob-
lems. After this round of training, the learning accu-
racy reached 99.5% and the tagging accuracy was about
93.4%.

In order to illustrate the ability of the M3 network
model to implement complete learning, the 3,893 sub-
problems were learned again by selecting a smaller
error tolerance. In this simulation, the error tolerance
was set to 0.002, and the other parameters were the
same as those used in the preceding simulation. All of
the results are also shown in Table 6.

4.6.2. Chinese Case. Following the same proce-
dure as mentioned above, three rounds of training
were performed to learn the Chinese corpus. 7,572

Table 7. Performance of min-max modular neural networks for tagging Chinese.

Accuracy rate (%)
Maximum CPU
time (s.)

No. of converged
modules

No. of unconverged
modules

No. of hidden
units Training Test-1 Test-2

344 7274 298 1 97.2 89.0 86.3

373 7338 234 1, 2 98.7 90.3 88.1

437 7386 186 1, 2, 4 98.8 90.4 88.1

three-layer perceptrons were used to learn the corre-
sponding 7,572 two-class subproblems. The error tol-
erance was set to 0.002, and the other parameters used
in this simulation were the same as those in solving the
tagging problem of Thai. Figures 7(a) and (b) show
the convergence of the 7,572 network modules after
the first round of training. All of the learning results
are shown in Table 7, where the maximum CPU time
means the longest time required for training an individ-
ual network module in each round of training. From this
table, we see that only 344 seconds was required for
the complete learning of over 96% of the 7,572 two-
class subproblem, provided that all of the two-class
subproblems are learned in parallel. In addition, the per-
formance of the M3 network also demonstrates that the
overtraining problem in M3 networks can be avoided
by using small network modules.

5. Comparison Studies

In this section, we experimentally compare the pro-
posed method with several existing tagging approaches
including hidden Markov models [7], multilayer per-
ceptrons [8, 13], and neuro-taggers [11, 12, 27]. In
all of the comparison experiments, the same Thai and
Chinese corpora as mentioned in the preceding sections
were used. For neuro-taggers, three-layer perceptrons
with p input, �p/2� hidden, and q output units were
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Figure 7. Summary of 7,572 trained network modules for learning the Chinese corpus. (a) distributions of trained modules measured by epochs,
and (b) distributions of trained modules measured by CPU time in seconds.

used, where p and q were set to 329 and 47 for tagging
Thai text [11], and 441 and 63 for tagging Chinese text
[1], respectively.

5.1. Overtraining

To examine overtraining in multilayer-perceptron
based tagging systems, two basic tagging models were

simulated. One is the conventional three-layer per-
ceptron [13], and the other is the single neuro-tagger
[11], which is a simpler version of the multiple neuro-
tagger and consists of only one multi-layer perceptron.
The difference between the single neuro-tagger and
the three-layer perceptron is that the following tech-
niques, as described earlier are used in the single neuro-
tagger. (1) Each element of the inputs is weighted with
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Table 8. Performance of the single
neuro-tagger for tagging Thai text.

Accuracy rate (%)

δ Training Test

0.005 95.8 93.0

0.004 97.0 92.8

0.003 97.4 92.6

information gain; (2) In tagging phase, instead of using
the original inputs directly, each of the input elements
corresponding to the left words in a sentence is replaced
by its part-of-speech tag that has already been assigned
by the tagging system.

Table 8 shows the generalization performance of the
single neuro-tagger for tagging Thai text under three
different error tolerance values. From this table, we see
that the single neuro-tagger encounters the overtrain-
ing problem because the generalization performance
decreased when the learning accuracy was improved.

Table 9 shows the performance of conventional
three-layer perceptrons with various numbers of hid-
den units for learning the Chinese corpus. Since our
computing source was limited, the maximum num-
ber of epochs was set to 300 for each of the simula-
tions. We can see that the largest network with 413
hidden units beats all the other networks in learning
accuracy. The network with 53 hidden units, however,
had the best generalization performance for both test
sets. This result indicates that the conventional mul-
tilayer perceptrons also encountered the overtraining
problem.

From the above simulation results, we can see that
all of the multilayer-perceptron based tagging systems

Table 9. Performance of three-layer perceptrons for tagging
Chinese text.

Accuracy rate (%)
No. of hidden
units

CPU time
(s.)

Final
error Training Test-1 Test-2

13 6298 0.0073 85.0 80.4 78.0

26 6981 0.0043 93.4 87.6 85.4

53 10056 0.0020 96.7 89.7 87.2

103 26725 0.0013 98.1 88.7 86.2

207 28454 0.0011 98.5 88.4 86.0

310 41239 0.0012 98.6 88.9 86.6

413 59051 0.0012 98.6 89.6 86.5

might encounter this overtraining problem. However,
how to design a suitable network that avoids this over-
training is still an unsettled problem. On the con-
trary, the simulation results shown in Tables 6 and
7 demonstrate that the generalization performance of
the proposed tagging model had been improved grad-
ually with the increase of learning accuracy in all the
simulations. That is, no overtraining occurred. There-
fore, we see that the tagging method based on the
M3 network model might avoid the overtraining prob-
lem by means of the design procedure presented in
Section 4.4.

5.2. Training Time

To demonstrate the merit of parallel learning used in
the proposed tagging method, three-layer perceptrons
with various number of hidden units were simulated on
the Chinese corpus. The number of hidden units, the
training time, the final error, and the performance for
each of the networks are shown in Table 9.

Comparing Table 7 with Table 9, we see that our
method is about 14 times faster than the three-layer
perceptrons in obtaining about the same learning ac-
curacy and generalization performance, providing that
learning in our method was performed in parallel. In
practice, for multilayer-perceptron-based tagging mod-
els, we need to train several networks that have differ-
ent numbers of hidden units in order to obtain a good
generalization performance. Therefore, longer training
time might be required.

It has been shown theoretically that learning in mul-
tilayer perceptrons is NP-complete [28, 29]. That is,
training multilayer perceptrons become intractable as
the problem size becomes larger. Experience has also
shown that the training process for multilayer percep-
trons can be computationally expensive, especially for
larger problems with high-dimensional inputs or large
data sets [13, 17]. In contrast, by using the power
of massively parallel computation, the training time
required by our method will not grow with an in-
crease of problem sizes. The simulation results show
that our method can scale-up to large-scale problems
[18].

5.3. Generalization

To compare the generalization performance of the pro-
posed tagging model with existing tagging systems,
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Table 10. Performance of different methods for
tagging Thai text.

Method Accuracy rate (%)

Base-line 83.6

HMM 89.1

Single neuro-tagger 93.0

Multiple neuro-tagger 94.3

Elastic neuro-tagger 94.4

M3 94.2

Table 11. Performance of different methods for
tagging Chinese text.

Accuracy rate (%)

Method Test-1 Test-2

Base-line 88.1 86.4

HMM 89.9 87.3

MLP 89.7 87.2

Single neuro-tagger 90.1 88.1

Multiple neuro-tagger 91.4 89.2

Elastic neuro-tagger 91.7 89.0

M3 90.4 88.1

several experiments were performed on both the Thai
and Chinese corpora. The simulation results are shown
in Tables 10 and 11. From Table 10, we see that the
generalization performance (94.2%) of our model for
tagging Thai text is better than statistical models and
single neuro-tagger, and approximated the best one
(94.4%) obtained by the elastic neuro-tagger. For the
tagging problem of Chinese, we can obtain the sim-
ilar conclusion by examining the results shown in
Table 11.

It is important to emphasize that the techniques used
in the neuro-taggers were not introduced to our tagging
model in the simulations due to the limited computing
source. From the simulation results, we can see that
the key to increasing the generalization performance of
the multiple neuro-tagger and the elastic neuro-tagger
is the third technique described earlier, i.e., variant
lengths of contexts for tagging are used based on the
longest context priority. It is our conjecture that the
proposed tagging model might beat both the multi-
ple neuro-tagger and the elastic neuro-tagger in gen-
eralization performance when the same techniques are
used.

6. Conclusions

In this paper we have presented a novel tagging method
based on a modular neural-network model. The ad-
vantages of this method over the multilayer-perceptron
based approaches are its high modularity, parallelism,
and scalability. We have demonstrated that the method
is superior to HMM models and multilayer-perceptron-
based systems in both learning accuracy and gener-
alization performance. We believe that the proposed
method might provide us with an efficient framework
for solving large-scale tagging problems. By using the
proposed method, we have began doing experiments on
a big Chinese corpus which contains 13,111 sentences
and 139,397 ambiguous words. As to future work, we
would like to apply our method to tagging English text.
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