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Abstract: 
We have proposed two different methods for training 

support vector machines (SVMs) on large-scale pattern 
classification problems, namely min-max-modular SVM 
(M3-SVM) and cascade SVM (C-SVM). For speeding up the 
training of SVMs with new computing infrastructure such as 
cluster and grid systems, both methods decompose a 
large-scale two-class problem to a number of relatively 
smaller two-class sub-problems which can be implemented in 
a parallel way, but they use different decomposition and 
combination strategies. In this paper, we conduct a 
comprehensive investigation in the two methods to compare 
their generalization performance and training time. Our 
experiments show that M3-SVM needs shorter training time, 
but has a little lower generalization performance than the 
standard SVM and Cascade SVM. The experiments also 
indicate that cascade SVM has the least number of support 
vectors among these three SVMs. 

Keywords: 

decompasitioa; 'module combination; text categorization 
Support vector machines; -parallel learning; problem 

1. Introduction 

In recent years, support vector machines (SVMs) [l], 
[2] have been applied to various pattern classification 
problems, such as handwritten digit recognition [l], text 
classification [3] and face detection [4]. However, how to 
efficiently train support vector machines on problems with 
a large training data set is still an ongoing research issue. 

Given I training data { (x l ,  yl), . . . ,(xl, y J ) ,  where xi E 
R", yi  E [-1, 1}, i=l, ... , 1 ,  the SVM solves the following 
quadratic programming problem[2]: 

max i a T Q a - e T a  
a 

subject to y T a  = 0 (1) 

a i 2 0 ,  i = l ,  ......, 1. 

where e is the vector of all ones, Q is an I by I matrix, Qij 

= Y i y j K ( X i ,  X j ) ,  and K(x~,  ~ j )  is the kernel function. 
For large-scale problems, the difficulties of solving (1) 

result from the matrix Q, which cannot be saved in the 
main memory, so traditional optimization algorithm like 
Newton method can not be directly used. Currently one 
major method for dealing with this problem is to 
decompose the quadratic programming problem to a 
sequence of smaller-sized quadratic programming problems 
which are solved sequentially [5 ] ,  [6]. However, for huge 
problems, especially those with a large number of support 
vectors, this method needs a large number of iterations and 
suffers from slow convergence [7], [SI .  

In many real-world applications such as text 
categorization and geography information classification, 
however, lhe size of training data sets are usually huge. For 
example, the Yomiuri News Corpus used in this paper contains 
2,190,512 documents collected from Yomiuri Newspapers 
dated f" 1987-2001, with 75 unique categories assigned to 
those documents [9]. 

For dealing with large-scale problems, h o  efficient train- 
ing methods [8], [9] were proposed in our previous work. Both 
methods decompose a large-scale problem to a number of 
relatively smaller sub-problems, so we can solve these 
sub-problems in a parallel way by using new computing 
infrastructure such as cluster and grid systems [ 101 to speed up 
the training process. 

In this paper, we conduct a serious and comprehensive in- 
vestigation in the two methods to compare their generalization 
performance with the regular SVM. Moreover, as the training 
efficiency is the main motivation of developing M3-SVMs and 
C-SVMs, we would like to compare their braining time with 
the standard SVM. 

This paper is organized as follows. In Section 2, we 
introduce the M3-SVM reported by [9]. In Section 3, we 
outline the cascade SVM proposed by [8]. Implementation 
issues are described in Section 4. In Section 5, we perform a 
comparative study on a large-scale text categorization problem. 
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Conclusions are outlined in Section 6. 

2. M3-Support Vector Macbine 

We have combined the min-max modular Neural 
Network ill], [12] with SVMs and proposed a min-max 
modular SVM (M3-SVM) [9]. The method decomposes the 
training data set for a large-scale problem to a series of 
smaller subproblems, which are independent from each 
other in training phase. As a result, these sub-problems can 
be leaned parallelly. After training, all the trained SVMs are 
integrated into a M3-SVM following two module 
combmation principles. 

2.1. Task decomposition 

Letx+and x-  be the given positive and negative 
training data set for a two-class problem T, 

x+ = {(xi',+l)}i.+, (2) 

x -  = ((x;,-l));:l (3) 
Where xi ER" is the.input vector, I' and are the total 
numbers of positive training data and negative training data, 
respectively. 

According to [9], x+  can be'randomly partitioned 

into N+ subsets in the form, 

(4) xf = {(xi" ,+l))i=l 1; 

for j = l  ,..., N+ 
where U:!, xi' = x + ,  1 I N+ S 1' andx; nx; = e ,  i # j . 
When N+ = I +  ,each subset only contains one training 
sample. 

Also, x-can be randomly partitioned into N- subsets 
in the form, 

(5)  
. 1- 2; = ((x;' ,-1))L1 

for j=1 ,  ..., N- 
whereuyil x; = x- ,1S N- 51- andx; n x j  = Q  , i # j . 

In practical applications of SVMs, an appropriate 
value of N+andN- might depend on two main factors, 
such as the number of training data belonging to each class 
and the available computational resource [9]. 

After decomposing the positive training data set x+ 
and negative training data set x - ,  the original two-class 

problem T can be divided into N+ x N- relatively smaller 

and more balanced two-class sub-problems q,i as follows: 

(6) 

where (KJ)+ and (Tu)- denote the positive training data set 
and the negative training data set of TiJ, respectively. 

According to above discussions, we know that the task 
decomposition method is simple and straightforward, and 
neither domain specialists nor prior knowledge of the 
problem is required. 

After task decomposition, each of the two-class sub- 
problems can be treated as a completely independent, non- 
communicating problem in learning phase [9], [ 121. There- 
fore, all the two-class sub-problems can be efficiently 
learned in a massively parallel way. 

(q,j)+ = x t  and (q,i)- =xi 

2.2. Combination method 

After training individual SVMs assigned to learn 
associated two-class sub-problems, all the trained SVMs 
are integrated into M3-SVM with the MIN and MAX units 
according to two module combination laws, namely the 
minimization and maximization principle [9], [12]. 

2.2.1. Min unit and Max unit 

We introduce two integrating units, namely MIN and 
MAX units, respectively, which are the elements for 
connecting individual trained SVMs [12]. 

The basic function of a MIN unit is to find a minimum 
value from its multiple inputs. The transfer function of the 
MIN unit is given by 

where P I ,  p2,. . ., p,, are the inputs and-q-is .the .output which 
is the smallest one among the inputs. 

The basic function of a MAX unit is to find a 
maximum value from its multiple inputs. The transfer 
function of the MAX unit is given by 

where pI, p2, ..., p,, are the inputs and q is the output which 
is the largest one among the inputs. 

4=mM-P+p29...,P") (7) 

4 ="(PI, P21..., P,) (8) 

2.23. Module combination laws 

The N+ x N- trained SVMs will be integrated into a 
M3-SVM according to the following two module 
combination principles [9],[12]: 

Minimization Principle: The SVMs, which are trained 
on the data sets which contain the same positive training 
data (Ti$, should be integrated by the MIN unit. 

Maximization Principle: The SVMs, which are trained 
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on the data sets which have the same negative training data 
(T i j j ,  should be integrated by the MAX unit 

According to the above two principles, the N +  x N -  
smaller SVMs are integrated first with N+ MIN units and 
one MAX unit as illustrated in Figure 1, 

N- 

j=1 
~ ( x )  = min(T;,,(x)) for i = I ,  ..., N +  (9) 

T ( x )  = maxT(x) (10) 
N+ 

i=l 

where Ti&) denotes the transfer function of the trained 
SVM corresponding to the two-class sub-problem Tij and 
Ti(x)denotes the transfer function of a combination of N -  
SVMs integrated by the MIN unit. 

Figure 1. Illustration of the integration of N +  x N -  trained 

SVMs with N+ MIN units and one MAX unit in M3-SVM 

3. A cascade method for training SVM 

Recently, we have proposed a cascade training method 
of SVMs based on the essence of support vector (SVs) [8]. 
It is reported that the method not only speeds up the 
training of SVMs but also reduces the number of SVs. 

Differing from M3-SVM, which has only one training 
phase, the cascade training method has threes steps of 
training phase as illustrated in Figure 2. 

First, the positive and negative training data sets of the 
original two-class problem T, x +  and 2- , are divided into 
two subsets by the same ratio r (O<r<l) respectively as 
follows, 

x: = {(x:,+l))Z1, xz' = u x ; * + 1 ) ) ~ 1 *  

SVL2 U sv 34 

Figure 2. Illustration of the process of obtaining a set of support 
vectors as training data from the original training data set by using 
a cascade-pardel way. Note that each frame denotes a problem to 
be trained by an SVM 

Therefore, the original two-class problem Tis divided 
into four two-class sub-problems in the bottom layer as 
follows , 

T l = x : U x ; ,  T , = x l u x ; ,  

T3=x:~x; ,and T4=x;ux; (12) 
Apparently, the four sub-problems are independent 

from each other, so the four two-class sub-problems can be 
learned by standard SVM in a parallel way. After the first 
training step, four sets of support vectors, SVl, SV,, SV3, 
and SV4, are obtained from SVM1, SVM2, SVM3, and SVM4, 
which correspond to sub-problems T l ,  T2, T3. and T4 
respectively. 

Second, we construct two training data sets from the 
SV1, SV2, SV3, and SV4, as follows, 

T12 = SV, uSV, 
T34 =-SV3 U SV4 , (13) 

After collecting T12 and T34, all the sets of support 
vectors, SV,, SVz, SV3, and SV,, can be discarded, that is, all 
the SVMs, SVMl, SVM2, SVM3, and SVM4, can be discarded. 
The reason is that the SVMs generated in the first step are 
just used to filter out the non-support-vector data. 

Since the two problems defined by (13) are in- 
dependent from each other, the two problems can be 
parallelly learned. After the second training step, another 
two new sets of support vectors, SVI2 and SV,, are 
produced. 

Finally, we carry out a union operation between the 
two sets of support vectors, SV12 and SV,, to construct a 
training data set corresponding to the original two-class 
problem as follows, 
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T = SV12 v SV34 (14) 
It should be noted that the two sets of support vectors, 

SV12 and SV34, may contain the same support vectors. 
Following the three steps mentioned above, each of the 
sub- problems defined by (12) can be furthered 
decomposed into four sub-problems in the same way if they 
are too large to solve [8]. 

4. Implementation issues 

Although we have described the two parallel SVMs in 
detail, there are still some issues need to be clarified in 
practical implementation such as the determination of the 
number of the sub-problems in M3-SVM and the 
approaches for the multi-class problems. 

4.1. Determinationof N +  and N -  inM3-SVM 

Paper [9] suggested a method which N +  may be 
different from N -  as follows, 

Step I: Set the desired number of the training data for 
two-class sub-problems, p. 

Step 2: Determine the number of sub training data sets 
N+ and N- . as follows, 

N" ={ 
1 otherwise 

for IC=(+,-} 
Using this method, the number of training data for 

each of sub-problems is about: 

4.2. A Revised version of C-SVM 

We notice that the first step in C-SVM filters out most 
of the non-support-vector data, while the second step only 
filter out a little proportion of the data. 

Therefore, in this paper, we modify the original C-SVM 
with three main training steps to a method with only two 
training steps for further speeding up the training of C-SVMs. 
We combine the last two training steps of C-SVM as 
illustrated in Figure 3. That is, we merge directly the SV sets, 
SV1, SVz, W3, and W4, to construct a final training data set 
corresponding to the original two-class problems as follows, 

(18) 
As a result, we only need to train a SVM on t h ~  

training data set. We name this revised method as C-SVM 
for short. We implement both C-SVM and C-SVM' and 
compare their training time, testing time and generalization 
performance. 

T = SVI u S V ~  u S V ~  USV, 

XI+ U XI- P 
x2+ U x2- 

sv,usv,u 

XI+ U x2- 
I . 

Figure 3. Illustration of the process of obtaining a set of support 
vectors in C-SVM' 

4.3. Multi-class M3-SVM and C-SVM (16) 

The feature of this method is that N +  and N -  are 
determined by the size of positive training data set and. 
negative training data set except for p, the larger the data 
set is, the more sub-sets will be decomposed to, so the 
sub-problems may be more balanced. 

In addition to this method, we implemented another 
method which just simply divides the positive and negative 
training data sets to two data sub-sets as C-SVM does, 
because we would like to use the same condition to 
compare M3-SVM with C-SVM. By using this method, the 
number of training data for each of the sub-problems is 
about: 1-I+ 151 (17) 

Although SVM was originally designed for two-class 
classification problems, several methods have been 
proposed to solve multi-class classification. A major 
method is to decompose the *multi-class problem to a 
number of two-class problems which are learned 
independently [13]. The method in general can also be 
applied to the two parallel SVM. 

There are two popular decomposition approaches: 
one-against-one and one-against-the-rest [ 131, in which a 
K-class problem is decomposed to K two-class 
sub-problems and K(K- 1)/2 two-class sub-problems, 
respectively. One-against-one performs better than one- 
against-the-rest in practice [13], so we use for our 
implementation here. In testing phase, the K(K-1)/2 sub- 
problems are integrated with voting strategy [13]. 

We have known that one-against-one method 
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decomposes a K-class problem to K(K- 1)/2 two-class 
problems, and a two-class problem can be further divided 
into NY x N- two-class sub-problems by using part-versus- 
part method [9]. Therefore the total number of sub- 
problems in M3-SVM, is, 
/ 

i=l j=i+l 

In C-SVM, the numbers of sub-problems for a K-class 
problem in each step can be expressed as K(K-1)/2 X 4 for 
the first step; K(K-l)/2x2 for the second step; K(K-1)/2 for 
the third step. 

5. Experiments and results 

In this section we present experimental results on a 
text categorization problem to compare M3-SVMs and 
C-SVMs with the standard SVMs. We use Yomiuri News 
Corpus for this study. 

Table 1 
Distributions of training and test data of the top ten classes 

in a subset of Yomiuri News Corpus 

# 4 c7 

CP 

Category 

Crime News 
Sport News 
Asian-Pacific News 
North-South American News. 
Health .News 
Accident News 
By-time News 
Society News 
Finance News 

Trainin 
103607 
79726 
41374 
36275 
35932 

33590 
31790 
27972 

ta 
Test 
24374 
17610 
5943 
6109 
7004 
8483 
7702 
6830 
3213 

C,; I PoliticsNews I 27282 I 4465 
I Total I 451592 I 91733 

There are 2,190,512 documents in the full collection 
from the years 1987 to 2001. We used 913,118 documents 
dated 1996-2000 as a training set and 181,863 documents 
dated July-December of 2001 as a test set in this study. In 
the simulations, we selected the top ten classes as shown in 
Table 1. A x 2  statistic (CHI) feature selection method 
was used for preprocessing the documents after the 
morphological analysis was performed with ChaSen. The 
number of features is 5,000. In simulations, C and r of 
Gaussian kemel are selected as 64 and 2 for training all the 
methods. All of the simulations were performed on a 2.5G 
Pentium 4 PC with 500M RAM. 

To compare the performance of the standard SVM, 
M3SVM,  C-SVM, and C-SVM*, We perform six 

experiments, A A 2, A 3, A h  A and Aci, on the ten-class 
text categorization problem as shown in Table 1. A I is 
conducted for the standard SVM. In A 2, A 3r and A the 
text categorization was learned by M3-SVMs whose detail 
information is shown on Table 2. In A 2 and A 3, N+ and 
N- is calculated by using (15), however, the 
decomposition method used in A4 is just simply to divide 
the positive and negative training data set to two data 
subsets directly, that is, the values of N+ and N- were 
set to two. A 5 and A are trained by C-SVM and C-SVM*, 
respectively. 

Table 2 
Three different ways of dividing the trainin data set of the P text categorization problem used in M -SVM 

Table 3 
Performance the four methods 

Method I #, mi =:Yy 1 #sV 

S W  A 6.74 --- 82.09 491166 
A2 2.91 2.32 81.82 614766 

M3-SVM I A, I 2.75 I 2.45 I 81.47 I 663810 

Table 3 presents the results of the six experiments. 
From Table 3, we can see that M3-SVM, C-SVM and 
C-SVM' are faster than the standard SVM in a parallel way, 
and still can remain almost the same generalization ' 

performance. M3-SW in A4 is most fast, and M3-SW can 
achieve more higher W g  speed if the original problem is 
decomposed to much more sub-problems, however, it may 
sacrifice generalization performance. The faster M3-SVM 
trains, the lower generalization it achieves, so one can choose 
the number of sub-problems according to his preference, 
training time or test accuracy. 

Table 3 also shows that both C-SVM and C-SVM* 
have smaller number of support vectors than the standard 
SVM, while M3-SVM has far more number of support 
vectors in comparison with the standard SVM. Although 
the revised method C-SVM* is faster than C-SVM, it has. 
more number of support vectors. So C-SVM has the least 
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number of support vectors. Because test time controlled by the 
number of support vectors, the smaller the number of SVs is, 
the shorter the test time is, so C-SVM may be the fastest in test 
phase among these four methads. 

It should be noted that M3-SVM in A4 shares the same 
sub-problems with C-SVM and C-SVM* in the bottom 
layer, however, the three methods have one, two and three 
training steps respectively. With different steps of training, 
different generalization performance, training time and 
support vectors can be achieved. C-SVM and C-SVM* 
with more training steps is slower in training, but get higher 
performance and smaller number of support vectors. On the 
’contrary, M3SVM in A4 is faster, but achieve a little lower 
test accuracy and more number of support vectors. 

6. Conclusions and discussions 

In this paper, we have investigated the performance, in- 
cluding training time, generalization capability and the number 
of support vectors, of the four methods, namely SVM, M3- 
SVM, C-SVM, and C-SVM*. We draw the following conclu- 
sions: 

a) As reported by [12], the advantages of M3-SVMs are 
its parallelism and scalability. One can decompose a 
large-scale problem to a number of sub-problems as small as 
needed. The method is the fastest among the four approaches, 
however, it may have a little lower generalization performance, 
especially when the original problem is divided into too many 
sub-problems. 

b) C-SVM is faster than SVM, but slower than M3-SVM, 
however, the merit of this approach is that it gets the smallest 
number of support vectors among these four methods after 
training. Therefore, C-SVM may be the fastest in the test 
phase. 
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