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Abstract-This paper presents a part-versus-part decomposi- 
tion method for massively parallel training of multi-class support 
vector machines (SVMs). By using this method, a massive multi- 
class classification problem is decomposed into a number of two- 
class subproblems as small as needed. An important advantage 
of the part-versus-part method over existing popular pairwke- 
classification approach is that a large-scale two-class subproblem 
can be further divided into a number of relatively smaller 
and balanced two-class subproblems, and fast training of SVMs 
on massive multi-class classification problems can he easily 
implemented in a massively parallel way. To demonstrate the 
eITectiveness of the proposed method, we perform simnlations 
on a large-scale text categorization problem. The experimental 
results show that the pmposed method is faster than the 
existing pairwise-classification approach, better generalization 
performance can he achieved, and the method scaler up to 
massive, complex multi-class classification problems. 

I .  lNTRODUCTlON 
In  the last several years, support vector machines (SVMs) 

[21, [I61 have been successfully applied to various pattern 
classification problems. They are clearly recognized as useful 
tools one might use for pattern classification. To apply SVMs 
to multi-class problems, one usually needs to decompose a 
multi-class problem into a series of two-class subproblems, 
since SVMs were originally designed for learning two-class 
classification problems. There are two popular decomposition 
methods in machine learning literature: one-versus-the-rest 
approach [ l ]  and pairwise-classification approach [71, [4], [9], 
[81, in which a K-class problem is decomposed into K two- 
class subproblems and K(K - 1)/2 two-class subproblems, 
respectively. 

In some real-world multi-class problems such as text cat- 
egorization and patent classification, the size of training data 
is usually massive. For example, the Yomiuri News Corpus 
used in this paper contains 2,190,512 documents collected 
from Yomiuri Newspapers dated 1987-2001, with 75 unique 
categories assigned to those documents [IS]. How to learn this 
kind of massive multi-class problems efficiently with SVM 
learning techniques [161, [61, [171, [18] and new computing 
infrastructure such as grid computing [3] is a big challenge 
to researchers in both neural network and machine learning 
fields. 

In our previous work [91, [lo], we have proposed a general 
task decomposition method for pattern classification. An im- 
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pomnt advantage of this method over pairwise-classification 
approach is that a two-class problem can be further decom- 
posed into a series of two-class subproblems as small as 
needed. The painvise-classification approach can be consid- 
ered as a special case of our decomposition method, when a 
K-class problem is just decomposed into K(K - 1)/2 two- 
class subproblems and there is no further decomposition for 
each of the two-class subproblems. Our decomposition method 
has been successfully applied to neural-networks for learning 
large-scale, real-world multi-class problems such as par-of- 
speech tagging [I21 and classification of high-dimensional. 
single-trial electroencephalogram signals [ 131. 

In this paper, we adapt our decomposition method to 
multi-class SVM learning. In Section 11, we introduce our 
decomposition method. In Section 111, we describe how to 
integrate individual trained SVMs into a hierarchical, parallel, 
and modular SVM with two module combination principles. In 
Section IV, we perform a simulation study on a large-scale text 
categorization problem. Conclusions are outlined in Section V. 

11. PART-VERSUS-PART DECOMPOSITION METHOD 
For human beings, the only way to solve a complex problem 

is to divide it into smaller, more manageable subproblems. 
Breaking up a problem helps human beings deal with complex 
issues involved in its solution. This "divide-and-conquer" 
strategy is also helpful to neural networks and SVMs in 
complex learning problems. Our goal in this section is to 
explain a part-versus-part decomposition method for training 
massive multi-class SVMs. 

Let I be the given training data set for a K-class classifi- 
cation problem. 

where Xi E X "c R" is the input vector, X is the set of 
training inputs, Yi E Y C RK is the desired output, Y is the 
set of desired outputs, and L is the total number of training 
data. 

We have suggested that a K-class problem defined by (1) 
can be divided into K ( K  - 1)/2 two-class subproblems [9], 
[IO], each of which is given by 

7 = { (X I ,  fi)}L1, (1) 

(2) I. - { (X?) ,  +1)}f2, U {(X?), -1)}1=1 4 
'3 - 
f o r i = l ,  . . . ,  K a n d j = i + l ,  . . . ,  K 
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X p )  E X ,  and X p )  E X j  are the training inputs belonging 
to class C, and class C j ,  respectively, X ,  is the set of training 
inputs belonging to class C;, L, denotes the number of data 
in Xi, uzlX,  = X, and L; = L. In this paper, the 
training data in  a two-class subproblem are called positive 
training data if their desired outputs are +l. Otherwise, they 
are called negative training data. The two-class subproblems 
defined by (2)  are called painvise classification in the machine 
learning literature [4], [SI. We would like to emphasize that 
decomposition of a K-class problem into K ( K  - 1)/2 two- 
class subproblems defined by (2)  is unique for a given training 
data set because of the uniqueness of X; for i = 1, . . . , K .  

Although the two-class subproblems defined by (2) are 
smaller than the original K-class problem, this partition may 
not be adequate for parallel computation and fast learning 
due to the following reasons. (a) Some of the two-class 
subproblems might fall into a ‘load imbalance’ situation. Since 
the speed of parallel learning is limited by the speed of the 
slowest subproblem, the undue burdening of even a single 
subproblem can.dramatically degrade the overall performance 
of learning. (b) Some of the two-class subproblems might 
still be too large for learning[l8]. (c) Some of the two- 
class subproblems might be imbalanced in terms of types of 
examples in the training set, i.e., the training set contains many 
more data of the ‘dominant’ class than the other ‘subordinate’ 
class. . To speed up learning, all the large and imbalanced 
two-class subproblems should be further divided into relatively 
smaller and more balanced two-class subproblems. 

Assume that X ,  is partitioned into N, subsets in the form 

(3) 
for j = 1 , .  . . , N, and i = 1, . . . , K ,  

where 1 5 N, <_ L, and Uyz,Xij = X,. 
Various methods can be used for partitioning Xi into N, 

subsets [9]. A simple and straightforward approach is to divide 
Xi randomly. The subsets X s j  might be disjoint or joint. 
Without loss of generality and for simplicity of description, we 
assume throughout this paper that the random decomposition 
method is used and the subsets X i j  are disjoint from each 
other, i.e.. ,X,jnX,r, = 4 fo r i  = 1, . . . , K. j, k = 1, . . . , N,, 
and j # k .  

In practical applications of SVMs, an appropriate value of 
Ni might depend on two main factors, such as the number 
of training data belonging to each class and the available 
computational power. In the simulations presented in this 
paper, we randomly divide X ,  into N; subsets Xi?. which are 
roughly the same in size. The number of subsets N; for class 
C, is determined according to the following rule: 

iffmod (%) 5 y and 2L. > p 
(4) 

P 
where p is the desired number of training data for two-class 
subproblems, y is a threshold parameter (0 < y < 1) for fine- 
tuning the number of subsets, 1.1 denotes the largest integer 

less than or equal to t, 1.1 denotes the smallest integer larger 
than or equal to t, the function of f m o d ( t l / z z )  is employed 
to produce the decimal part of tl/tz, and t l  and t z  are two 
positive integers, respectively. 

After partitioning X ,  into N, subsets, every two-class sub- 
problem Zj defined by (2)  can be further divided into N; x Nj 
relatively smaller and more balanced two-class subproblems as 
follows: 

L(”) L?) +”’ I1 = {(X,‘““’, +1)}1:1 U {(XP),  -l)}i=l (5) 
for u = 1, . . . , N;, U = 1, . . . , N j ,  

i = 1, . . . , K, a n d j  = i + I, . . . , K 

where X,‘““) E X;, and X?’) E X j ,  are the training inputs 
belonging to class Ci and class C j ,  respectively, L p )  = 
L,, and L y )  = Lj .  It should be noted that all the two- 
class subproblems have the same number of input dimensions 
as the original K-class problem. Comparing the two-class 
subproblems defined by (5)  with the two-class subproblems 
obtained by the pairwise-classification approach, we can see 
that each of the two-class subproblems defined by (5) contains 
only a part of data of each class. Hence, the decomposition 
method is called part-versus-part method. 

According to the above discussion, the par-versus-pan 
decomposition method can be described as follows. 

Step 1 : Set the values of p and y. 
Step 2 : Divide a K-class problem 7 into (3 two-class 

subproblems ‘2& using (2). 
Step 3 : If the sizes of all Zj are less than p. then stop 

the procedure here. Otherwise, continue with the 
following steps. 

Step 4 : Determine the number of training input subsets N, 
for i = 1, . . . , K using (4). 

Step 5 : Divide the training input set X;  into N, subsets X ,  
using (3). 

Step 6 : Divide the two-class subproblem Xj into N, x N j  
relatively smaller and simpler two-class subproblems 

From the above decomposition procedure, we see that the 
part-versus-part decomposition method is simple and straight- 
forward, and neither domain specialists nor prior knowledge 
of the problem is required. Therefore, any user can perform 
this decomposition and divide a large K-class problem into 
many two-class subproblems as small as needed. 

After task decomposition, each of the two-class subprob- 
lems can be treated as a completely independent, non- 
communicating problem in the learning phase. Therefore, all 
the two-class subproblems can be efficiently learned in a 
massively parallel way. 

From (2) and (3, we see that a K-class problem is divided 
into 

using (5). 

K-1 K 

1 Ni x Nj (6) 
i = l  j = i + l  

two-class subproblems. The number of training data for each. 
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of the two-class subproblems is about 

rLiINi1 + rLj,"jl (7) 
Since' [L;/Ni1 + [L j /N j l  is independent of the number of 
classes K, the size of each of the two-class subproblems is 
much smaller than the original K-class problem for reasonable 
N; and Nj. 

111. MIN-MAX MODULAR SUPPORT VECTOR MACHINES 
After training individual SVMs assigned to learn associated 

two-class subproblems, all the trained SVMs are integrated 
into a min-max modular (M3) SVM with the MIN, MAX, 
or/and lNV units according to the following two module 
combination laws [9], [lo], [ I l l ,  namely the minimization 
principle and the maximization principle. 

Minimization Principle: Suppose a two-class problem B 
were divided into P relatively smaller two-class subproblems, 
U; for i = 1, . . . , P, and also suppose that all the two-class 
subproblems have the same positive training data and different 
negative training data. If the P two-class subproblems are 
correctly learned by the corresponding P individual SVMs, 
M i  for i = 1, . . . , P, then the combination of the P trained 
SVMs with a MIN unit will produce the correct output for all 
the training inputs in B, where the function of the MIN unit is 
to find a minimum value from its multiple inputs. The transfer 
function of the MIN unit is given by 

P 
d z )  = ~1: Mi(=) (8) 

where x denotes the input variable. 
Maximization Principle: Suppose a two-class problem B 

were divided into P relatively smaller two-class subproblems, 
U, for i = 1, . . . , P,  and also suppose that all the two-class 
subproblems have the same negative training data and different 
positive training data. If the P two-class subproblems are 
correctly learned by the corresponding P individual SVMs, 
M, for i = 1, . . . , P,  then the combination of the P trained 
SVMs with a MAX unit will produce the correct output for 
all the training input in U, where the function of the MAX 
unit is to find a maximum value from its multiple inputs. The 
transfer function of the MAX unit is given by 

(9) 
P 

q ( 4  = y: M d z )  

Following the minimization and maximization principles, 
the N; x Ni smaller SVMs are integrated first with Ni MIN 
units and one MAX unit as follows: 

and 

where M$'")(z) denotes the transfer function of the trained 
SVM. corresponding to the two-class subproblem qy'"), and 
Mj,")(z) denotes the transfer function of a combination of Nj 
SVMs integrated by the MIN unit. 

Suppose that a 1-out-of-K scheme were used for output 
representation. Let Y denote the actual output vector of the 
M3-SVM for a K-class classification problem, and let g(z) 
denote the transfer function of the entire M3-SVM. 

We may then write 

y = g ( 4  = [91(z), ' .  ' > 9 K b ) l T  (12) 

According to the minimization and maximization principles, 
the (3 SVMs, M,3(z) for i = 1, ... , K and j = i + 
1, . . . , K, and the corresponding (t) inversions M,,(z) for 
T = 2, . . . , K and s = 1, . . . , T - 1, are integrated as 

Mij(z) ,Zn  m] (13) 
7=l 

where g;(z) for i = 1, . . . , K denotes the discriminant 
function, which discriminates the patterns of+C; from 
those of the remaining classes, and the term M,,(z) denotes 
the inversion of M,;(z). 

It is easy to implement M,;(z) with M,.i(z) and an INV 
unit. The function of the INV unit is to invert its single input; 
the transfer function of the INV unit is given by 

~ 

q = a + P - p  (14) 

where a, 0, p, and q are the upper and lower limits of input 
value, input, and output, respectively. For example, a and P 
are set to + I  and -1, respectively, for support vector classifiers 
in the simulations below. 

The relationship among M,,(z), M,,(z), and the INV unit 
can be expressed as 

(15) 

- 

- 
Mrs(z) = Ms,(z) = INV(Mw(z)) 

f o r s  = 1, . . .  ,K  - 1; T = s +  1, . . .  , K 

Similarly, the discriminant function g;(z) of the Min-Max 
SVM, which consists of C:;'C,"=;+, N; x Nj network 
modules. and the corresponding ( 2 )  inversions can be ex- 
pressed as 

where the term ma,::, [min? M$")(z)] denotes the inver- 

only the inversions of network modules Mij(z) are used for 
constructing the M3-SVMs, and there are no inversions for 
SVMs M$")(z). 

Summarizing the discussion above, the module combination 
procedure can be described as follows: 

Step 1 : If no SVMs Mjy'")(z) exist, go to Step 3. Other- 
wise, perform the following steps. 

Step 2 :  Integrate N, x N~ S V M ~  ~j:'")(z) for u = 
1, ... ,N; ,  v = l , . . .  , N j ,  a = 1, . . . ,  K ,  and 
j = i + 1, . . . , K ,  into a network module M,j(z)  

sion of ma$;., [minz ,  M,; cM (z)]. It should be noted that 
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TABLE 1 

NUMBER OF SVMS A N D  INTEGRATING UNITS REQUIRED TO BUILD THE 

M3-SVM FOR A K-CLASS PROBLEM (K > 2) 

Name I #elements 
I 

# 

K - 1  K 

SVMs I 2c N ,  x N, ,=, j=i+1 

Category #data 
Training I Test 

Ni - 1 K - l  
MAX 1 ZE(K-i ) r - l  

<=I N* 

Cg 

INV I K(K - 1)/2 

Health News 1 35932 I 7004 

with N, MIN units and one MAX unit according to 
(10) and (11). 

Step 3 : Integrate K(K - 1)/2 modules and the corre- 
sponding K ( K  - 1)/2 inversions with K MIN units 
according to (13). 

From the procedure above dealing with module combi- 
nation, we see that individual trained SVMs can be simply 
integrated into a M3-SVM with MIN. MAX and/or INV 
units. Since the module combination procedure is completely 
independent of both the structure of individual trained SVMs 
and their performance, we can easily replace any trained SVMs 
with desired ones to achieve better generalization performance. 
In contrast to the task decomposition procedure mentioned 
earlier, the module combination procedure proceeds in a 
bottom-up manner. The smaller trained SVMs are integrated 
into larger modules first, and then the larger modules are 
integrated into a M3-SVM. 

After finishing module combination, the solutions to the 
original K-class problem can be obtained from the outputs 
of the entire M3-SVM as follows: 

(171 

where C is the class that the M3-SVM assigns to the input z. 
Once the size of each of the SVMs is fixed, the space 

complexity of the entire M3-SVM is determined according 
to (13) and (16). Table I shows the number of SVMs and 
integrating units required to construct a M3-SVM for a K -  
class problem. 

C = arg max{g,(z)} for z = 1, ' '  , K 

IV. EXPERIMENTS 

In this section we present experimental results on a text 
categorization problem to indicate the effectiveness of the pro- 
pnsed part-versus-part-decomposition method. We use Yomiuri 
News Corpus for this study. 

There are 2,190,512 documents in the full collections from 
the years 1987 to 2001. We used 913,118 documents dated 

1996-2000 as a training set and 181,863 documents dated July- 
December of 2001 as a test set in this study. In the simulations, 
we selected the top five classes as shown in Table 11. A xz 
statistic (CHI) feature selection method [I41 was used for 
preprocessing the documents after the morphological analysis 
was performed with ChaSen. The number of features is 5,000. 
i n  the simulations, C and y [5] were selected as 8 and 0.25 
for training all of the standard SVMs and M3-SVMs. All of 
the simulations were performed on a 3.0GHz Pentium 4 PC 
with 2.OGB RAM. 

TABLE II 
DISTRIBUTIONS OF T R A I N I N G  A N D  TEST DATA OF THE TOP F I V E  CLASSES 

IN A SUBSET OF YOMlURl NEWS CORPUS 

Cz Spon News 79726 17610 
C3 Asian-Pacific News 41374 5943 
C, 1 North-South American News 1 36275 I 6109 

TABLE 111 

EIGHT DIFFERENT WAYS OF PARTlTlONlNO THE TRAINING DATA SET OF 

THE TEXT CATEGORIZATION PROBLEM, H E R E  7 IS SET TO 0.5  

ubrets for each class 

N3 Nq Ng #classifiers 

4s 
30 

I I  I 24 
I I 19 

A five-class text categorization problem shown in Table I1 is 
decomposed into a series of two-class subproblems following 
eight different ways. The number of subsets for each of the 
classes is shown in Table 111. By using (6), we calculate the 
total number of classifiers (see the right column of Table 111) 
for constructing M3-SVMs. 

After training all of the individual SVMs assigned to the 
two-class subproblems, we use two combination strategies to 
integrate the trained individual SVMs into a M3-SVM: 1) 
pure min-max combination and 2) min-max-vote combination. 
In pure min-maw combination, all of the trained SVMs are 
integrated according to the module combination procedure 
mentioned in Section 111. For min-max-vote combination, the 
output of the K ( K  ~ 1)/2 SVMs is determined by the highest 
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TABLE 1V TABLE VI 
NINETEEN TWO-CLASS SUBPROBLEMS OBTAINED BY DIVIDING THE 

FIVE-CLASS TEXT CATEGORIZATION PROBLEM 

PERFORMANCE COMPARISON OF M3-SVMS WITH STANDARD SVMS 

81.39 
80.64 
81.86 
80.79 
81.25 
82.30 

#Data II 

83.99 
83.24 
84.29 
83.30 
83.45 
84.65 

- 
~ 

ala Method 
NegvtiW S V M  

41374 
41374 
36275 
36275 M 3 - S V M  
35932 
35932 
36275 

83.95 

35932 
35932 

86.89 0.8458 

number of votes, instead of the MIN unit as in the pure min- 
max combination. Performance comparison of the min-max- 
vote method with the pure min-max method is shown in Table 
V. Here, ‘single’ and ‘multiple’ denote that desired outputs 
are represented in single label and multiple label, respectively. 
From this table, one can see that the performance of the min- 
max-vote method is superior to that of the pure min-max 
method for all of the cases. From Table V, one can also see 
that case Ag has the best performance among eight cases. The 
M3-SVM for case As is depicted in Fig. 1. 

TABLE V 

CORRECT RECOGNITION RATE (%) AND Fi MEASURE ON TEST DATA 

OBTAINED BY THE PURE MIN-MAX A N D  MIN-MAX-VOTE COMBINATION 

STRATEGIES 

Min-max Min-max-vote 
Single Multiple , 79.48 82.16 0.7808 

0.7853 
0.7966 
0.8046 
0.7990 
0.7961 
0.8087 

2lassifiers Max 

I O  8.36 
19 3.15 
24 2.93 
30 1.86 
45 1.05 
86 0.62 

135 0.53 
344 0.21 I 1311 0.05 

- - 
e (h.) 
Tom1 
55.9 
45.7 
4 . 2  
28.2 
47.3 
43.9 
38.0 
4 . 1  
51.5 

- 
- 
- 

- - 

Speedup 
~ - 
COIKCt  

rate (%) 
86.62 
86.89 
84.65 
83.45 
83.30 
84.29 
83.24 
83.99 
82.16 

- 
~ 

- - 

Table VI also indicate that even though all of the individual 
SVMs were trained in serial, the part-versus-part method is 
still faster than the pairwise-classification approach for all 
eight cases. 

The drawback of the par-versus-part method is that more 
number of support vectors are required in comparison with the 
pairwise-classification approach. Table VI1 shows the number 
of support vectors for each of nineteen classifiers. The total 
number of support vectors is 587,333, while the total number 
of support vectors for the pairwise-classification approach is 
414,955: Whether the number of support vectors for the part- 
versus-part method can he reduced is an open problem as to 
future work. 

TABLE VI1 

NUMBER O F  SUPPORT VECTORS FOR EACH OF NINETEEN CLASSIFIERS 

GENERATED BY THE PART-VERSUS-PART METHOD 

- - 
# - 
I 
2 
3 
4 
5 
6 
7 
8 
9 
IO - - 

7;y) 30998 

27826 
,(,.,) 23080 

29098 
q y )  24694 
,( , .I)  30427 
Tp’ 31385 

Total 587333 

To compare the performance of the proposed par-versus- 
part method with the existing pairwise-classification approach, 
the text categorization problem was learned by both M3-SVMs 
and standard SVMs. The simulation results are shown in 
Table VI. From Table VI, one can see that the part-versus- 
part method can obtain better generalization performance 
than the pairwise-classification approach when the original 
problem is decomposed into nineteen two-class subproblems, 
and meanwhile the training time can be reduced. The results in 

V. CONCLUSIONS 

We have presented a general task decomposition method for 
training multi-class support vector machines. The advantages 
of the proposed method over existing approaches are its 
parallelism and scalability. We have demonstrated that this 
method is superior to the pairwise-classification approach in 
both training time and generalization performance. By using 
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Fig. I. The M3-SVM for case As in which a five-class text categorization 
problem is decomposed into nineteen ~ W O - C ~ ~ S S  subproblems. Note that 
M I ' " '  denotes the corresponding SVM module for subproblem ?;:?"'; thin 
lines and arrows represent scalar inputs or outputs and thick lies and arrows 
represent vector inputs. Due to space requirements. note that only module 
MIZ and module  MI^ are plotted in detail, and the other modules are roughly 
illustrated. 

the proposed method, we have began performing simulations 
on the whole Yomiuri News Corpus. A future work is to 
implement the method in a grid computing system and apply 
the method to patent classification. 
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