
An Adjusted Gaussian Skin-Color Model Based
on Principal Component Analysis

Zhi-Gang Fan and Bao-Liang Lu

Department of Computer Science and Engineering, Shanghai Jiao Tong University,
1954 Hua Shan Road, Shanghai 200030, China
zgfan@sjtu.edu.cn, blu@cs.sjtu.edu.cn

Abstract. By combining the two standard paradigms of unsupervised
learning, Principal Component Analysis (PCA) and Gaussian density
estimation, this paper proposes an adjusted Gaussian skin-color model
for skin-color detection. This method is more robust than the standard
Gaussian model because it can weaken the bias caused by noise and
enhance the fitness of the mathematical model. The experiments show
that this method works well for the real-world images with complex
backgrounds.

1 Introduction

Automatic detection of human faces is a very difficult task. Face detection in
color images that begin with skin color modeling has been the topic of extensive
research for the several past decades. In recent years, surveys on face detection
have been made [8], [9], [4]. Some adaptive and unsupervised methods for skin-
color modeling have been introduced in resent years [7], [3], [1]. We propose
an adjusted Gaussian skin-color model based on Principal Component Analysis
(PCA) for skin-color detection. We use single Gaussian model and don’t use
Gaussian mixture models because we find that, in our dataset, the distribution
of skin-color data is unimodal. Some researchers have the same point of view
[7]. We show that our model significantly outperforms the standard Gaussian
model.

2 Adjusted Gaussian Skin-Color Model

2.1 Gaussian Model and PCA

The multivariate Gaussian density is a very important and unique density func-
tion in statistical theory. It may be viewed as the central idea in second-order
statistics. The distribution of an n-dimensional random vector x is Gaussian if
its probability density function has the form:

px(x) =
1

(2π)n/2 |Cx|1/2 exp(−1
2
(x − mx)T C−1

x (x − mx)) (1)

where mx is its mean, and Cx is the covariance matrix of x.
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Principal component analysis (PCA) is a popular method for features ex-
traction and pattern representation. It can find the projection directions that
maximize the total scatter across all variables and remove the mutual corre-
lation between the elements. Denote the training set of m samples by X =
(x1, x2, ..., xm) ⊂ Rn×m , where x is an n-dimensional vector. Define the covari-
ance matrix as follows:

Cx =
1
m

m∑

i=1

(xi − mx)(xi − mx)T (2)

Then, the eigenvalues and eigenvectors of the covariance Cx are calculated. Let
A = (a1, a2, ..., ar) ⊂ Rn×r(r ≤ n) be the r eigenvectors corresponding to the r
largest eigenvalues {λ1, λ2, ..., λr}. Thus, for the original random vector x which
belongs to set X = (x1, x2, ..., xm) ⊂ Rn×m, its corresponding eigenfeature y,
belonging to the set Y = (y1, y2, ..., ym) ⊂ Rr×m, can be obtained by projecting
x into the eigenfeature space as follows:

y = AT (x − mx) (3)

The transformed vector y is a random vector with zero mean and its covari-
ance matrix D is related to that of x by the following equation:

D = AT CxA (4)

where D is a diagonal matrix having the eigenvalues of Cx along its diagonal.
According to equation (4), we can obtain the following equation:

Cx = (AT )−1DA−1 (5)

Then, we can obtain the following equation:

C−1
x = AD−1AT (6)

From equations (3) and (6), we have

(x − mx)T C−1
x (x − mx) = (x − mx)T (AD−1AT )(x − mx)

= ((x − mx)T A)D−1(AT (x − mx))
= yT D−1y

=
r∑

i=1

y2
i

λi
(7)

By using the right part of equation (7), we can change equation (1) into the
following form:

px(x) =
1

(2π)n/2
∏r

i=1 λ
1/2
i

exp(−1
2

r∑

i=1

y2
i

λi
) (8)
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2.2 Adjusted Model

Through PCA, the Gaussian density function can be changed into the form
as equation (8). When r = n, the equation (8) is equal to the original one,
equation (1), but it can transform the coordinate axes into the principal axes
of Gaussian model. Thus, not only we can calculate more feasible, but also,
the more important, we can easily evaluate the fitness of the Gaussian model
along the principal axes directions. In practice, the Gaussian skin-color model
always has considerable bias because of the noise in the sample set. Fig.1 shows
such situation, in which a histogram of the skin-color samples projected on the
second principal axes of the Gaussian skin-color model is illustrated. We denote
the histogram as f(x). The mean is located on the zero point. The bias can
obviously be seen because the main peak of f(x) floats away from the mean.
The reason for the bias is that the noise is inevitably mixed into the sample
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Fig. 1. The histogram f(x)

b

Fig. 2. The bias of the Gaussian
model affected by noise

set when sampling. Usually, the Gaussian model is disturbed by the noise on
one side such as the situation shown in Fig.2, in which the two ellipses denote
two Gaussian models, the small circle denotes the noise, and the parameter b
denotes the bias. The small ellipse is disturbed by the circle on the left side, so,
it is replaced by the big ellipse which produces the bias b. To adjust the bias, we
must move the vertical principal axes to right.

Because of the big bias, we must adjust the model to weaken the bias and
enhance the fitness. According to equation (8), we can effectively adjust the
Gaussian model along the principal axes direction. We can adjust different prin-
cipal axes independently at the same time disregarding relationship among them
because these axes are uncorrelated. On the ith principal axes, we define the bias
as two components, the bias on mean as bi and the bias on variance as ci. Thus,
we can define the adjusted Gaussian skin-color model in the form:

px(x) =
1

(2π)n/2
∏r

i=1(ciλi)1/2 exp(−1
2

r∑

i=1

(yi − bi)2

ciλi
) (9)
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2.3 Measurement of the Biases bi and ci

On the ith principal axes, we can measure the biases bi and ci according to the
histogram of the training samples projected on this principal axes. The histogram
f(x) shown in Fig.1 is just this type of histogram. Obviously, the function f(x)
is a noisy function and should be smoothed. We use a low-pass filter g(x) to
smooth f(x) through convolution operation:

h(x) = f(x) ∗ g(x) (10)

Assume function h(x) reaches its maximum value at point xm: max(f(x)) =
f(xm). Specifically, we begin the convolution operation from the point xm, and
go on along the two sides of this point respectively. The smoothed histogram
h(x) is shown in Fig.3. In order to measure the biases, we have to locate the
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Fig. 3. The smoothed histogram h(x)
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Fig. 4. The h′(x)

main peak of the histogram. Differentiating the function h(x) we can obtain
its derivative h′(x) and produce reliable peaks at the inflection points. Fig.4
shows h′(x). The two mutually perpendicular lines indicate the location of zero
point. We can obviously see the high peak part is on the right side of the mean
point. Assume that the high peak part is in the interval (x1, x2). For this task,
selecting the interval (x1, x2), careful consideration should be made. In practice,
the interval (x1, x2) should include the point xm and cannot include the deep
valleys parts whose bottoms reach the zero line and two sides are high peaks.

High peak part of h′(x) in the interval (x1, x2) indicates the main peak of
h(x). Thus, to adjust the biases, we should move mean point to the central
point of the interval (x1, x2). Assume h(x) > 0 in the interval (xn, xp). On the
ith principal axes, we can measure the biases through the following formulas :

d = (x2 − x1)/2 (11)
d1 = xp − xn (12)
bi = d + x1 (13)
ci = 2d/d1 (14)
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However, in practice, on some principal axes the biases are too small to be
adjusted necessarily. Thus, on the ith principal axes, we change the formulas
(13), and (14) to the following forms:

bi =
{

d + x1 |d + x1| > Qi

0 otherwise (15)

ci =
{

2d/d1 |d + x1| > Qi

1 otherwise (16)

where Qi is a user defined constant threshold on the ith principal axes.

3 Implementation and Experiments

We use the standard Gaussian skin-color model and adjusted Gaussian skin-color
model respectively in our experiments for comparison study. Fig.5 shows the

Fig. 5. (a) A non-face image; (b) Bi-
nary image after segmentation based
on standard Gaussian model; (c) Bi-
nary image after segmentation based
on adjusted Gaussian model

Fig. 6. (a) A face image; (b) Binary im-
age after segmentation based on stan-
dard Gaussian model; (c) Binary image
after segmentation based on adjusted
Gaussian model

detection result on non-face images. The segmentation (Fig.5(b)) based on stan-
dard Gaussian model shows that much non-skin color is misjudged as skin color.
In contrast, the misjudgment rate is very low in the segmentation (Fig.5(c)) by
using our adjusted Gaussian model. Fig.6 shows the detection result on face im-
ages. The segmentation (Fig.6(c) ) obtained through adjusted Gaussian model
is much better than the segmentation (Fig.6(b) ) processed by using standard
Gaussian model.

Table 1 shows the number of skin-color pixels detected by adjusted model
is much larger than that detected by the standard model. Through Table 1, we
can see that the adjusted Gaussian skin-color model outperforms the standard
Gaussian skin-color model.
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Table 1. Result of experiments on face images

No. all pixels No. the pixels Ratio between detected pixels

Methods in test images be detected and all pixels (%)

Standard model 2665872 425007 15.94%

Adjusted model 2665872 669042 25.10%

4 Conclusions

As an improvement to standard Gaussian skin-color model, we analyze the ad-
justed Gaussian skin-color model based on PCA. The experimental results indi-
cate that in face images, our model can detect much more skin-color than the
standard model; while in non-face images, very lower misjudgment rate is ob-
tained with our model. Furthermore, the flexibility of our adjusted model can be
used in many related color-detection system and applied to real-time application.
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