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Abstract. A novel cascade learning strategy for training support vec-
tor machines (SVMs) is proposed to speed up the training of SVMs. The
training procedure consists of three steps which are performed in a cas-
cade way. All the subproblems are processed parallelly in each step, and
non-support-vector data are filtered out step by step. The simulation re-
sults indicate that our method not only speeds up the training procedure
while maintaining the generalization accuracy of SVMs but also reduces
the number of support vectors.

1 Introduction

In many real-world problems such as text categorization and geography infor-
mation classification, the sizes of training data sets are usually massive. For
example, the Yomiuri News Corpus contains 2,190,512 documents dated 1987-
2001. It is necessary to develop efficient methods to deal with these real-world
large-scale problems.

Support vector machines (SVMs) [1] have become a popular tool of machine
learning. There are two kinds of methods for solving large-scale pattern classifi-
cation problems. The first method is the incremental learning approach, in which
a large-scale problem is divided into many small subproblems that are learned
sequently [2]. This approach includes the advanced working set algorithms that
use only a subset of the variables as a working set while freezing the others [3],
[4]. The shortcoming of this kind of method is that a large number of iterations
are required. Therefore, if the training data set is large, the training time will
be very long. The second method is the parallel learning method. The basic idea
behind this method is to divide a large-scale problem into many subproblems
and to parallelly learn these subproblems by many modules. After training, all
the trained modules are integrated into a modular system [5], [6], [7]. This kind
of method has two main advantages over the existing SVM approaches. 1) It can
dramatically reduce training time. 2) It has good scalability and expansibility.
However, this method will lead to increasing the number of support vectors.

Based on the essence of support vector (SV) [8], we proposed a novel cascade
method for training SVMs for pattern classification. Our method not only speeds
up training but also reduces the number of support vectors.
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Fig. 1. Illustration of the cascade
training method for producing a new
smaller training set, SV12 ∪ SV34
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Fig. 2. Combined scatter plot of both
classes in checkerboard problem. Here,
N1, N2, P1 and P2 denote four subsets

The paper is organized as follows: Section 2 will introduce our cascade
method. The experiments are conducted in Section 3. Finally, Section 4 is con-
clusions.

2 A Cascade Training Method

Because the multi-class classification problem can be transformed into a series
of two-class classification problems [5], we only consider two-class classification
problems here. We assume that class C1 includes positive samples and class C2

includes negative samples. Let P = {Xi}Lp

i=1 be the training set of class C1 and
N = {Yi}Ln

i=1 be the training set of class C2. Here, Lp and Ln denote the number
of elements in class C1 and class C2, respectively. Therefore, the training data
set for a two-class problem is given by T = P ∪N . The proposed cascade training
method has three main steps as illustrated in Fig. 1.

In the first step, the original data sets, P and N , are divided into two subsets
by the same ratio r (0 < r ≤ 0.5), respectively, as follows:

P1 = {Xi}Lp1
i=1 , P2 = {Xi}Lp

i=Lp1+1, N1 = {Yi}Ln1
i=1 , and N2 = {Yi}Ln

i=Ln1+1 (1)

where Lp1 = �r ∗ Lp� and Ln1 = �r ∗ Ln�.
According to this decomposition, the original two-class problem T is divided

into four two-class subproblems as follows:

T1 = P1 ∪ N1, T2 = P2 ∪ N2, T3 = P1 ∪ N2, and T4 = P2 ∪ N1 (2)

An important feature of these subproblems is that there are no common training
data between T1 and T2, and also between T3 and T4. Therefore, these subprob-
lems can be handled by conventional SVM method [4] in a completely parallel
way. After training, we can obtain four sets of support vectors, SV1, SV2, SV3,
and SV4, which correspond to T1, T2, T3, and T4 respectively.
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In the second step, we construct two training data sets from SV1, SV2, SV3,
and SV4 as follows:

T12 = SV1 ∪ SV2 and T34 = SV3 ∪ SV4 (3)

It should be noted that SV1 and SV2 are disjunctive each other and SV3 and
SV4 are disjunctive each other too. After handling these two subproblems on
T12 and T34 parallelly by conventional method [4], we obtain two new sets of
support vectors, SV12 and SV34. These two sets might include some common
support vectors because there might be some common training data between
T12 and T34. From SV12 and SV34, we obtain a new smaller training data set as
follows:

Tfinal = SV12 ∪ SV34 (4)

Finally, we train a SVM on Tfinal by conventional SVM method [4]. The final
SVM will be used in recognition phase and all the trained SVMs obtained in the
first and the second steps are discarded and the occupied computing resources
are released.

If the subproblems in the first step is too large to solve, we can recursively
divide it into four subproblems according to the method mentioned above. In
addition, we can extend our method by dividing each class into k (> 2) subsets
and we will discuss this problem later on.

3 Experiments

In order to verify our method, we present three experiments. The first is a
artificial problem and the other two are real world problems. We take the tool
SVMlight [4] for its friendly interface. In all the experiments, “standard method”
means that SVMs are trained with the whole training data together by conven-
tional SVM method [4]. The kernel we used is the radial-basis function. All the
experiments were performed on a 2.4GHz Pentium 4 PC with 512MB RAM.

3.1 The Checkerboard Experiment

A 2D checkerboard problem is depicted in Fig. 2. The checkerboard divides a
200 × 200 square into four quadrants. All the points are uniformly distributed
in the square. The points labelled by plus are positive samples and the points
labelled by dot are negative samples. In this experiment, we randomly gener-
ate four training data sets, each of which includes 5000 positive samples and
5000 negative samples. A common test data set, which includes 10000 positive
samples and 10000 negative samples, is also generated. Therefore, we get four
classification problems, A1, A2, A3, and A4. Every training data set is divided
into four parts, P1 and P2, N1, and N2.

In this experiment, r is fixed on 0.5. The purpose is to see whether the
generalization performance of the SVMs trained by our cascade method is robust
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Table 1. Four runnings over four training data sets and one common test data set
in the checkerboard experiment, where σ = 31.62, c = 1000, and r = 0.5. The row
“Averaging” denotes the average results of the four problems, A1, A2, A3, and A4

Problem Method Accuracy Training Number
Training (%) Test (%) time(s) of SV

A1 Standard method 99.84 99.81 46.39 93
Cascade method 99.78 99.72 13.08 81

A2 Standard method 99.89 99.72 38.00 96
Cascade method 99.85 99.70 15.34 83

A3 Standard method 99.93 99.84 32.44 88
Cascade method 99.86 99.75 13.45 79

A4 Standard method 99.89 99.81 35.50 94
Cascade method 99.92 99.83 19.87 84

Averaging Standard method 99.89 99.80 38.08 93
Cascade method 99.85 99.75 15.44 82

when the training data set varies slightly. From Table 1, we can see that the
generalization performance obtained by our method is almost unchanged with
the different training data. The last row titled “Averaging” in Table 1 indicates
that the generalization accuracy of the SVMs trained by the standard method
and the SVMs trained by our method are almost the same, while our method is
faster than the standard method and reduces the number of support vectors.

3.2 The Forest Covertype Experiment

In the second experiment, we use the Forest Covertype data set from UCI [9].
This data set is designed to predict the forest cover types in undisturbed forests.
The attributes about one instance is 54. In this experiment, we only take all
the instances of the sixth and the seventh classes to construct a two-class clas-
sification problem A5 and all the instances of the fourth and the fifth classes
to construct another two-class classification problem A6. In each data set, we
randomly take one half of instances for training and the other half for test. The
data sets are shown in Table 2.

In this experiment, The training data set are decomposed by r which takes
the values of 0.1 and 0.5, respectively. According to Tables 4 and 5, we can see
that r does not influence classification accuracy and it only affects the training
time. From these two tables, we can conclude that r = 0.5 is suitable for our
method. Table 6 shows the details of the experiment on problem A5. We can
see that the no-support-vector data are filtered out step by step. If the number
of support vectors take only a small proportion of the whole training data set,
our cascade method will be much faster than the standard method. From the
simulation results shown in Table 4 and 5, we can see that our cascade method
can speed up training and reduce the number of support vectors.
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3.3 Text Categorization

In the third experiment, we use the Yomiuri News Corpus. Here, we select the
data of three classes as shown in Table 3 to construct three two-class classification
problems, A7, A8, and A9, by choosing every two classes from these three classes
in Table 3. The number of features is 5,000 and r is set to 0.5. From Table 7,we
can see that our cascade method outperforms the standard method in training
time and reduce the number of support vectors. Because the number of support
vectors might take only a small proportion of the whole training data in text
categorization, we believe the proposed method is appropriate to dealing with
text categorization problems.

Table 2. Distributions of the training and test
data used in the second experiment

Training Test
Problem Positive Negative Positive Negative

samples samples samples samples
A5 8684 10255 8683 10255
A6 1374 4747 1373 4746

Table 3. The training data and test
data used in the third experiment

Category Data
Training Test

Accidents 34044 8483
Health 35932 7004
By-time 33590 7702

Table 4. Experiment results on prob-
lem A5, where σ = 100 and c = 1000

Standard Cascade method
method r = 0.1 r = 0.5

Training time 461.92s 508.04s 268.20s
Number of SV 3943 3827 3778
Training (%) 100 100 100
Test (%) 99.82 99.82 99.82

Table 5. Experiment results on prob-
lem A6, where σ = 100 and c = 1000

Standard Cascade method
method r = 0.1 r = 0.5

Training time 27.02s 36.66s 24.69s
Number of SV 1661 1605 1571
Training (%) 100 100 100
Test (%) 96.93 96.93 96.93

4 Conclusions

In this paper we have presented a cascade method for training SVMs. Several
experimental results indicate that the proposed method has two attractive fea-
tures: the first is that it can speed up training while maintaining the generaliza-
tion accuracy. The second is that the number of support vectors generated by
our cascade method is smaller than that of the SVMs trained by the standard
method, and this will reduce the time for recognition and simplify the design
of classifiers. We believe the proposed method might provide us with a promis-
ing approach to deal with large-scale pattern classification problems, such as
biological data mining and geography information classification.
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Table 6. Details of simulation on problem A5, where σ = 100, c = 1000, and r = 0.5

Number of training samples 9470 9469 9470 9469
Step 1 Number of SV 3121 1630 2453 2291

Training time (s) 131.61 56.03 82.95 84.5
Number of training samples 4751 4744

Step 2 Number of SV 3772 3770
Training time (s) 91.67 91.42
Number of training samples 4276

Step 3 Number of SV 3778
Training time (s) 44.92

Table 7. Simulation results on text categorization, where σ = 2, c = 64, and r = 0.5

Methods A7 A8 A9

Training accuracy (%) Standard method 97.74 97.93 96.67
Cascade method 97.73 97.75 96.67

Test accuracy (%) Standard method 95.81 96.01 93.62
Cascade method 95.83 96.02 93.62

Training time (s) Standard method 12664 7458 18566
Cascade method 9519 4491 15060

Number of SV Standard method 10933 9445 12750
Cascade method 10553 9222 12387
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