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Abstract. According to statistical learning theory, we propose a feature
selection method using support vector machines (SVMs). By exploiting
the power of SVMs, we integrate the two tasks, feature selection and
classifier training, into a single consistent framework and make the fea-
ture selection process more effective. Our experiments show that our
SVM feature selection method can speed up the classification process
and improve the generalization performance of the classifier.

1 Introduction

Pattern classification is a very active research field in recent years. As a result
of statistical learning theory, support vector machines (SVMs) is an effective
classifier for the problems of high dimension and small sample sets. This is a
very meaningful breakthrough for machine learning and pattern classification
because both high dimension and small sample set problems are too difficult to
be solved by classical paradigms. According to the principle of structural risk
minimization, SVMs can guarantee a high level of generalization ability. SVMs
can obtain an optimal separating hyperplane as a trade-off between the quality of
empirical risk and the complexity of the classifier. Furthermore, SVMs can solve
linearly non-separable problems using kernel functions, which map the input
space into a high-dimensional feature space where a maximal margin hyperplane
is constructed [1].

In fact, SVMs are not only a good classification technique but also a good
feature selection method. The problem of feature selection is well known in ma-
chine learning. Data overfitting arises when the number of features is large and
the number of training samples is comparatively small. This case is very com-
mon especially in image classification. Therefore, we must find a way to select
the most informative subset of features that yield best classification performance
for overcoming the risk of overfitting and speeding up the classification process.
By investigating the characteristics of SVMs, it can be found that the optimal
hyperplane and support vectors of SVMs can be used as indicators of the impor-
tant subset of features. Therefore, through these indicators, the most informative
features can be selected effectively.
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2 SVMs and Feature Ranking

2.1 Support Vector Machines

Support vector machine is a machine learning technique that is well-founded in
statistical learning theory. Statistical learning theory is not only a tool for the
theoretical analysis but also a tool for creating practical algorithms for pattern
recognition. This abstract theoretical analysis allows us to discover a general
model of generalization. On the basis of the VC dimension concept, construc-
tive distribution-independent bounds on the rate of convergence of learning pro-
cesses can be obtained and the structural risk minimization principle has been
found. The new understanding of the mechanisms behind generalization not
only changes the theoretical foundation of generalization, but also changes the
algorithmic approaches to pattern recognition.

As an application of the theoretical breakthrough, SVMs have high gener-
alization ability and are capable of learning in high-dimensional spaces with a
small number of training examples. It accomplishes this by minimizing a bound
on the empirical error and the complexity of the classifier, at the same time.
With probability at least 1 − η, the inequality

R(α) ≤ Remp(α) + Φ

(
h

l
,
− log(η)

l

)
(1)

holds true for the set of totally bounded functions. Here, R(α) is the expected
risk, Remp(α) is the empirical risk, l is the number of training examples, h is the
VC dimension of the classifier that is being used, and Φ(·) is the VC confidence
of the classifier.

According to equation (1), we can find that the uniform deviation between
the expected risk and empirical risk decreases with larger amounts of training
data l and increases with the VC dimension h. This leads us directly to the
principle of structural risk minimization, whereby we can attempt to minimize
at the same time both the actual error over the training set and the complexity of
the classifier. This will bound the generalization error as in (1). This controlling
of both the training set error and the classifier’s complexity has allowed SVMs
to be successfully applied to very high dimensional learning tasks.

We are interesting in linear SVMs because of the nature of the data sets
under investigation. Linear SVMs uses the optimal hyperplane

(w · x) + b = 0 (2)

which can separate the training vectors without error and has maximum dis-
tance to the closest vectors. To find the optimal hyperplane one has to solve the
following quadratic programming problem: minimize the functional

Φ(w) =
1
2
(w · w) (3)

under the inequality constraints

yi[(xi · w) + b] ≥ 1, i = 1, 2, . . . , l. (4)
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where yi ∈ {−1, 1} is class label. We can obtain the functional

W (α) =
l∑

i=1

αi − 1
2

l∑
i,j

αiαjyiyjx
T
i xj (5)

It remains to maximize this functional under the constraint

l∑
i=1

αiyi = 0, αi ≥ 0, i = 1, . . . , l (6)

Once the optimization problem has been solved, we can obtain w as follows:

w =
l∑

i=1

αiyixi (7)

It is usually the case that most of the parameters αi are zero. The decision
hyperplane therefore only depends on a smaller number of data points with
non-zero αi; these data points are called support vectors. So we can change the
equation (7) as

w =
∑

i∈SV

αiyixi (8)

As a result, equation (2) can be obtained and the SVM classifier has been built.

2.2 Feature Selection and Classification

According to the hyperplane as shown in equation (2), the linear discriminant
function can be constructed for SVMs classifier as follows:

D(x) = (w · x) + b (9)

The inner product of weight vector w = (w1, w2, . . . , wn) and input vector
x = (x1, x2, . . . , xn) determines the value of D(x). Fig.1 shows that the |wk|
of a SVMs example with R4096 input space has obvious variance. Intuitively, the
input features in a subset of (x1, x2, . . . , xn) that are weighted by the largest
absolute value subset of (w1, w2, . . . , wn) influence most the classification deci-
sion. If the classifier performs well, the input features subset with the largest
weights should correspond to the most informative features [4]. Therefore, the
weights |wk| of the linear discriminant function can be used as feature ranking
coefficients. However, this way for feature ranking is a greedy method and we
should look for more evidences for feature selection. In [7], support vectors have
been used as evidence.

Assume the distance between the optimal hyperplane and the support vectors
is ∆, the optimal hyperplane can be viewed as a kind of ∆-margin separating
hyperplane which is located in the center of margin (−∆, ∆). According to [3],
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Fig. 1. |wi| ordered decreasingly in a linear SVMs example with R4096 input space.

the set of ∆-margin separating hyperplanes has the VC dimension h bounded
by the inequality

h ≤ min
([

R2

∆2

]
, n

)
+ 1 (10)

where R is the radius of a sphere which can bound the training vectors x ∈ X .
Inequality (10) points out the relationship between margin ∆ and VC dimen-

sion: a larger ∆ means a smaller VC dimension. Therefore, in order to obtain
high generalization ability, we should still maintain margin large after feature
selection. However, because the dimensionality of original input space has been
reduced after feature selection, the margin is always to shrink and what we can
do is trying our best to make the shrink small to some extent. Therefore, in
feature selection process, we should preferentially select the features which make
more contribution to maintaining the margin large. This is another evidence for
feature ranking. To realize this idea, we introduce a coefficient given by

ck =

∣∣∣∣∣∣
1
l+

∑
i∈SV+

xi,k − 1
l−

∑
j∈SV−

xj,k

∣∣∣∣∣∣ (11)

where SV+ denotes the support vectors belong to positive samples, SV− denotes
the support vectors belong to negative samples, l+ denotes the number of SV+,
l− denotes the number of SV−, and xi,k denotes the kth feature of support vector
i in input space Rn.

The larger ck indicates that the kth feature of input space can make more
contribution to maintaining the margin large. Therefore, ck can assist |wk| for
feature ranking. The solution is that, combining the two evidences, we can or-
der the features by ranking ck|wk|. We present below an outline of the feature
selection and classifier training algorithm.

• Input:
Training examples

X0 = [x1, x2, . . . xl]T
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• Initialize:
Indices for selected features: s = [1, 2, . . . n]
Train the SVM classifier using samples X0

• For t = 1, . . . , T :
1. Compute the ranking criteria ck|wk| according to the trained SVMs
2. Order the features by decreasing ck|wk|, select the top Mt features, and

eliminate the other features
3. Update s by eliminating the indices which not belong to the selected

features
4. Restrict training examples to selected feature indices

X = X0(:, s)

5. Train the SVM classifier using samples X
• Outputs:

The final SVM classifier and features selected by SVMs

Usually, the iterative loop in the algorithm should be terminated before the
training samples can not be separated by a hyperplane. Clearly, this algorithm
can integrate the two tasks, feature selection and classifier training, into a single
consistent framework and make the feature selection process more effective.

3 Experiments

In order to verify the effect of our SVM feature selection method, we use the
SVMs without feature selection and the SVMs with feature selection respectively
in our experiments for comparison study. Two other feature selection methods
(proposed in [4] , [7]) have been compared with our method. The data set used
in the first experiment has totally 3433 samples which are all industrial images
from a manufacturing company and 2739 samples were selected as training set,
the other 694 samples were selected as test set.

In the second experiment, we use the ORL face database of Cambridge Uni-
versity. The non-face images (negative samples) are obtained from the Ground
Truth database of Washington University and the total sample size is 2551. Ta-
ble 1 and Table 2 show the test results after training. Through these results,
we see that the success rate can be improved and classification speed increases
rapidly at the same time in the test phase using our method.

4 Conclusion and Future Work

On the basis of statistical learning theory, we have presented a feature selection
method using SVMs. Our experiments show that this method can remarkably
speed up the classification process and improve the generalization performance
of the classifier at the same time. In the future work, we will enhance this method
and apply it to face classification.
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Table 1. Test result on industrial images.

Methods No. features Success rate (%) Test time (s) Speedup

No selection 4096 96.83 69.2 -

SVM RFE in [4] 500 97.98 2.5 27.68

Selection method in [7] 500 97.55 1.8 38.44

Our method 500 98.27 2.1 32.95

Table 2. Test result on ORL face database.

Methods No. features Success rate (%) Test time (s) Speedup

No selection 10304 97.43 320.9 -

SVM RFE in [4] 4000 97.62 52.6 6.10

Selection method in [7] 4000 97.33 52.8 6.08

Our method 4000 97.71 51.5 6.23
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