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Abstract

We propose a discriminative feature selection method
utilizing support vector machines for the challenging task
of multi-view face recognition. According to the statisti-
cal relationship between the two tasks, feature selection and
multi-class classification, we integrate the two tasks into a
single consistent framework and effectively realize the goal
of discriminative feature selection. The classification pro-
cess can be made faster without degrading the generaliza-
tion performance through this discriminative feature selec-
tion method. On the UMIST multi-view face database, our
experiments show that this discriminative feature selection
method can speed up the multi-view face recognition pro-
cess without degrading the correct rate and outperform the
traditional kernel subspace methods.

1. Introduction

Multi-view face recognition is a more challenging task
than frontal view face recognition. Face recognition tech-
niques have been developed over the past few decades. But
many of those existing face recognition techniques are only
effective for frontal view faces. The difficulties of multi-
view face recognition is obvious because of the nonlinear
manifolds existing in the data space. How to learn the global
structure of the nonlinear manifolds is the key to solve this
problem.

Subspace methods are classical paradigms for face
recognition [16]. Eigenfaces method [14] is a first break-
through for the subspace techniques. It uses the Prin-
cipal Component Analysis (PCA) to produce a most ex-
pressive subspace for face representation and recognition.
Fisherfaces method [2] is an example of the discriminat-
ing subspace methods. It uses the Linear Discriminant
Analysis (LDA) to seek a set of features best separating
face classes. The Bayesian algorithm using probabilistic
subspace is proposed in [11]. It solves the face recogni-
tion problem through classifying intrapersonal and extrap-

ersonal variations. Independent Component Analysis (ICA)
has been applied into face recognition in [1]. It produces a
nonorthogonal subspace for face representation and recog-
nition. However, all those linear methods mentioned above
are not effective for multi-view face recognition because of
the nonlinear distribution of face patterns. For these non-
linear problems, some kernel subspace methods have been
proposed in recent years. These nonlinear subspace meth-
ods combine the strengths of the traditional subspace meth-
ods and kernel machine algorithms to solve the nonlinear
problems. Kernel PCA [13] combines PCA and kernel ma-
chine to form a nonlinear PCA method. Kernel Direct Dis-
criminant Analysis (KDDA) [10] combines the strengths of
the LDA and kernel machine algorithm for face recogni-
tion. It first nonlinearly maps the original input space to an
implicit high-dimensional feature space,where the distribu-
tion of face patterns is hoped to be linearized and simpli-
fied. Then, a new variant of the LDA method is introduced
to effectively solve the nonlinear problem and derive a set
of optimal discriminant basis vectors in the feature space.
However, these kernel methods still can not solve the small
sample size problems very well. And, at the same time,
their classification processes are very slow due to the vast
calculating time in kernel machines.

In order to speed up the multi-view face recognition pro-
cess and maintain the generalization performance, we pro-
pose a discriminative feature selection method utilizing sup-
port vector machines (SVMs) in this paper. Being differ-
ent from subspace methods, this SVM based Discrimina-
tive Feature Selection (SVM-DFS) method direct selects
most discriminative features without linearly combining the
original features. Motivated by the success that the statis-
tical learning theory [15] possesses for the small sample
size problem, SVM-DFS integrates the two tasks, feature
selection and multi-class classification, into a single con-
sistent framework and effectively realizes the goal of dis-
criminative feature selection according to the statistical re-
lationship between feature selection and multi-class classi-
fication. SVMs are originally designed for binary classifi-
cation and multi-class SVMs always work through combin-
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ing the outputs of multiple binary classifiers [12]. Utiliz-
ing the characteristics of SVMs, we can rank discriminative
features for feature selection. In [5], a SVM based recur-
sive feature elimination method has been proposed to select
features for binary classification problems. Using multi-
class SVMs, SVM-DFS is especially designed for multi-
class classification problems with the fact that face recog-
nition is a classical multi-class classification problem. To
testify SVM-DFS’s advantages over traditional kernel sub-
space methods, we have made experiments using SVM-
DFS and KDDA respectively for comparison studies.

2. SVM based Discriminative Feature Selection
(SVM-DFS)

Using multi-class SVMs, SVM-DFS is designed for
multi-class classification problems.

2.1. Multi-class SVMs

Support vector machine is a machine learning technique
that is well-founded in statistical learning theory. On the ba-
sis of the VC dimension concept, constructive distribution-
independent bounds on the rate of convergence of learning
processes can be obtained and the structural risk minimiza-
tion principle has been found. The new understanding of
the mechanisms behind generalization not only changes the
theoretical foundation of generalization, but also changes
the algorithmic approaches to pattern recognition. As an ap-
plication of the theoretical breakthrough, SVMs have high
generalization ability and are capable of learning in high-
dimensional spaces with a small number of training data. It
accomplishes this by minimizing a bound on the empirical
error and the complexity of the classifier, at the same time
[15]. With probability at least 1 − η, the inequality

R(α) ≤ Remp(α) + Φ
(

h

l
,
− log(η)

l

)
(1)

holds true for the set of totally bounded functions. Here,
R(α) is the expected risk, Remp(α) is the empirical risk, l
is the number of training examples, h is the VC dimension
of the classifier that is being used, and Φ(·) is the VC confi-
dence of the classifier. It will bound the generalization error
as in (1). This controlling of both the training set error and
the classifier’s complexity has allowed SVMs to be success-
fully applied to very high dimensional learning tasks [15].

The SVMs algorithm formulates the training problem as
one that finds, among all possible separating hyperplanes,
the one that maximizes the distance between the closest el-
ements of the two classes. In practice, this is determined
through solving a quadratic programming problem. The
SVMs have the general form of the decision function for

a point x is:

f(x) = sign


 ∑

support vectors
yiαiK(xi, x) − b


 (2)

where αi are Lagrange parameters obtained in the optimiza-
tion step, yi are class labels, and K(·, ·) is the kernel func-
tion. The kernel function can be various type. The linear
kernel function is K(x, y) = x · y; the radial basis function
(RBF) kernel function is K(x, y) = exp

(− 1
2σ2 ‖x − y‖2

)
;

and the polynomial kernel function is K(x, y) = (x·y+1)n.
SVMs are originally designed for binary classification.

Multi-class SVMs are extension of the binary SVMs. Cur-
rently there are two types of approaches for multi-class
SVMs. One is by constructing and combining several bi-
nary classifiers while the other is by directly considering all
data in one optimization formulation [12]. And the multi-
ple binary classifiers combining methods mainly have three
types: “one-versus-all”, “one-versus-one” and “part-versus-
part”[9].

One-versus-all multi-class SVMs construct k SVM mod-
els, where k is the number of classes. The ith SVM is
trained with all of the examples in the ith class with pos-
itive labels, and all other examples with negative labels. It
can be determined that x is in the class which has the largest
value of the decision function

class of x ≡ arg max
i=1,...,k

fi(x) (3)

Another one-versus-one multi-class SVMs constructs
k(k − 1)/2 classifiers where each one is trained on data
from two classes. The decision function for classification
between the ith class and the jth class is fij(x). After all
k(k−1)/2 classifiers are constructed, the future testing usu-
ally uses a strategy of “Max Wins” voting. If fij(x) indi-
cates x is in the ith class, then the vote for the ith class is
added by one. Otherwise, the jth is increased by one. Then
we predict x is in the class with the largest vote.

In [12], all those approaches for multi-class SVMs are
carefully studied and it has been pointed out that one-
versus-all method is as accurate as any other methods. Be-
ing not more accurate, the one optimization formulation
method is generally complicated to implement and slow to
train. When the number k of the classes is large in multi-
classification, the number k(k−1)/2 of the modular classi-
fiers of the one-versus-one method will be very large and the
respond speed of the final classification model will be very
slow. However, the one-versus-all method only has k mod-
ular classifiers and can have faster respond speed than the
one-versus-one method. In this paper, we use one-versus-all
multi-class SVMs considering the classifiers’ respond time.
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2.2. Feature Selection in Binary Classification

In the linear case of binary classification, the decision
function equation (2) can be reformed as:

f(x) = sign (w · x − b) (4)

where w obtained from

w =
∑

support vectors
yiαixi (5)

The inner product of weight vector w = (w1, w2, . . . , wn)
and input vector x = (x1, x2, . . . , xn) determines the value
of f(x). Intuitively, the input features in a subset of
(x1, x2, . . . , xn) that are weighted by the largest absolute
value subset of (w1, w2, . . . , wn) influence most the classi-
fication decision. If the classifier performs well, the input
features subset with the largest weights should correspond
to the most informative features [5]. Therefore, the weights
|wi| of the linear decision function can be used as feature
ranking criterion. According to the feature ranking crite-
rion, we can select the most discriminative features for the
binary classification task.

Furthermore, support vectors can be used as evidence for
feature ranking [6][3]. Assume the distance between the
optimal hyperplane and the support vectors is ∆, the opti-
mal hyperplane can be viewed as a kind of ∆-margin sep-
arating hyperplane which is located in the center of margin
(−∆,∆). According to [15], the set of ∆-margin separat-
ing hyperplanes has the VC dimension h bounded by the
inequality

h ≤ min
([

R2

∆2

]
, n

)
+ 1 (6)

where R is the radius of a sphere which can bound the train-
ing vectors x ∈ X . Inequality (6) points out the relationship
between margin ∆ and VC dimension: a larger ∆ means a
smaller VC dimension. Therefore, in order to obtain high
generalization ability, we should still maintain margin large
after feature selection. However, because the dimensional-
ity of original input space has been reduced after feature se-
lection, the margin is usually to shrink and what we can do
is trying our best to make the shrink small to some extent.
Therefore, in feature selection process, we should preferen-
tially select the features which make more contribution to
maintaining the margin large. This is another evidence for
feature ranking. To realize this idea, a coefficient ck is given
by

ck =

∣∣∣∣∣∣
1
l+

∑
i∈SV+

xi,k − 1
l−

∑
j∈SV−

xj,k

∣∣∣∣∣∣ (7)

where SV+ denotes the support vectors belong to positive
samples, SV− denotes the support vectors belong to nega-
tive samples, l+ denotes the number of SV+, l− denotes the
number of SV−, and xi,k denotes the kth feature of support
vector i in input space Rn. The larger ck indicates that the
kth feature of input space can make more contribution to
maintaining the margin large. Therefore, ck can assist |wk|
for feature ranking. The solution is that, combining the two
evidences, we can order the features by ranking ck|wk|.

In the nonlinear case of binary classification, a cost func-
tion J is computed on training samples for feature ranking.
DJ(i) denotes the change in the cost function J caused by
removing a given feature or, equivalently, by bringing its
weight to zero. DJ(i) can be used as feature ranking crite-
rion. In [5], DJ(i) is computed by expanding J in Taylor
series to second order. At the optimum of J , the first order
term can be neglected, yielding:

DJ(i) =
1
2

∂2J

∂w2
i

(Dwi)2 (8)

where the change in weight Dwi corresponds to removing
feature i.

For the nonlinear SVMs with the nonlinear decision
function f(x), the cost function J being minimized is:

J =
1
2
αT Hα − αT v (9)

where H is the matrix with elements yhykK(xh, xk), α is
Lagrange parameter vector α = (α1, α2, . . . , αn), and v is
a n dimensional vector of ones [5]. To compute the change
in cost function caused by removing input component i, one
leaves the α’s unchanged and one re-computes matrix H .
This corresponds to computing K(xh(−i), xk(−i)), yield-
ing matrix H(−i), where the notation (−i) means that com-
ponent i has been removed. Thus, the feature ranking crite-
rion for nonlinear SVMs is:

DJ(i) =
1
2

(
αT Hα − αT H(−i)α

)
(10)

Computation for DJ(i) is a little more expensive than the
linear case. However, the change in matrix H must be com-
puted for support vectors only, which makes it affordable
for small numbers of support vectors.

For the convenience of representation, in both linear and
nonlinear cases of binary classification, we denote feature
ranking criterion as ri for the ith feature in the input space
Rn. In linear case of binary classification, ri is

ri = ci|wi| (11)

In nonlinear case of binary classification, ri is

ri =
1
2

(
αT Hα − αT H(−i)α

)
(12)

Using feature ranking criterion ri, we can select most dis-
criminative features for binary classification task.
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2.3. Feature Selection in Multi-class Classification

In the case of multi-class classification, we use one-
versus-all method for multi-class SVMs. Because SVMs
are originally designed for binary classification, how to ef-
fectively extend them for multi-class classification is still
an ongoing research issue [12] [7]. In [12], all those ap-
proaches for multi-class SVMs are carefully studied and it
has been pointed out that one-versus-all method is as ac-
curate as any other methods. We choose one-versus-all
method in our work because it can respond faster than one-
versus-one method especially when the number of classes is
very large. Multi-class classification problem is much more
difficult than the binary one especially when the data are of
high dimensionality and the sample size is small. The clas-
sification accuracy appears to degrade very rapidly as the
number of classes increases [8]. Therefore, feature selection
in multi-class classification is more challenging than the one
in binary case. We should be more careful when extending
feature selection from binary case to multi-class case. Us-
ing the statistical relationship between feature ranking and
the multiple sub-models of multi-class SVMs, we propose
the SVM-DFS method for feature selection.

One-versus-all multi-class SVMs constructs k decision
functions where k is the number of classes. The jth decision
function fj(x) is constructed with all of the examples in
the jth class with positive labels, and all other examples
with negative labels. The fj(x) is a binary classification
sub-model for discriminating the jth class from the all other
classes. The rij , calculated from fj(x), denotes the feature
ranking criterion of the ith feature according to the binary
classification sub-model fj(x). There are sure event E and
impossible event Ø in probability theory. Let ωj denote the
event that the jth class is true. According to probability
theory, events ω1, ω2, . . . , ωk constitute a partition of the
sample space

E = ω1 ∪ ω2 ∪ . . . ∪ ωk (13)

and

Ø = ωi ∩ ωj , i �= j. (14)

P (ωj) is the prior probability that the jth class is true. De-
fine a random event Si as “the ith feature is selected as dis-
criminative feature”. Let P (Si|ωj) denote the conditional
probability of Si given that ωj occurred. When event ωj

occur, the jth binary classification sub-model fj(x) is just
effective for determining the final classification result. Un-
der the jth binary classification sub-model fj(x), we can
calculate P (Si|ωj) through the feature ranking criterion rij

P (Si|ωj) =
rij

Σn
t=1rtj

(15)

According to the theorem on the total probability, P (Si)
can be calculated through P (Si|ωj) and P (ωj)

P (Si) = Σk
j=1P (Si|ωj)P (ωj) (16)

Then, P (Si) can be used as feature ranking criterion for
the whole multi-class classification problem. The algorithm
of SVM-DFS is to rank the features by decreasing the value
of P (Si) and select the top M features as discriminative
features. M is the number of the features to be selected. M
can be evaluated by retraining the SVM classifiers with the
M selected features. M should be set to such a value that
the margin ∆i of the each retrained SVM sub-model fi(x)
is large enough

∆i =
1

‖w(i)‖ (17)

where w(i) denotes the weight vector of sub-model fi(x).
According to [15],

‖w(i)‖2 =
∑

support vectors
α

(i)
j (18)

where α
(i)
j denotes Lagrange parameter of sub-model fi(x).

Define a coefficient L

L =
k∑

i=1

P (ωi)


 ∑

support vectors
α

(i)
j


 (19)

We can use coefficient L to evaluate M . M should be set
to such a value that the value of L is small enough. After
the M discriminative features have been selected through
SVM-DFS, the SVM models have to be retrained using the
training data for the subsequent classification tasks.

3. Experiments

We have made two sets of experiments to illustrate the
effectiveness of the SVM-DFS algorithm. In all experi-
ments reported here, we use the UMIST face database [4],
a multi-view database consisting of 575 gray-scale images
of 20 subjects, each covering a wide range of poses from
profile to frontal views as well as race, gender and appear-
ance. All input images are of size 112×92 and the resulting
input vectors are of dimensionality N = 10304. Figure.1
depicts some sample images of one subject in the UMIST
database. The overall database is partitioned into two sub-
sets: the training set and test set. The training set is com-
posed of 240 images: 12 images per person are carefully
chosen according to face poses. The remaining 335 images
are used to form the test set. All of the experiments were
performed on a 3.0GHz Pentium 4 PC with 1.0 GB RAM.
The parameter C = 10000 and σ is set to the optimal values
in the range (10 − 1000) in SVM training.
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Figure 1. Some face samples of one subject
from the UMIST face database.

3.1. Comparison with Kernel Subspace Method

To compare SVM-DFS with the traditional kernel sub-
space method, we use KDDA [10] and our SVM-DFS in
the experiments on the same conditions. The experimen-
tal settings of KDDA method are adjusted according to [10]
and a rbf kernel has been used. In these experiments of
SVM-DFS, the number M of the features selected as dis-
criminative features by SVM-DFS is set to 2000 consider-
ing the value of the coefficient L and the tradeoff between
classifiers’ respond time and accuracy. During feature se-
lection, the kernel which the SVM-DFS used is always the
linear type.

Table 1. Test results in comparison with KDDA

Methods Correct rate (%) Test time (s)

KDDA 95.2239 2.9474

SVM-DFS-1 96.7164 0.0463

SVM-DFS-2 98.2090 1.0431

In Table 1, SVM-DFS-1 denotes that the SVMs of linear
kernel are used for the classification after feature selection;
SVM-DFS-2 denotes that the SVMs of RBF kernel are used
for the classification after feature selection. The test time
denotes the sum of all the test time of every individual test
sample.

3.2. Performance Study under Various Dimension-
ality

This set of experiments consists of two subsets: SVM-
DFS-L and SVM-DFS-R. Those experiments in SVM-DFS-

L use SVMs of linear kernel for classification after SVM-
DFS feature selection. Those experiments in SVM-DFS-R
use SVMs of RBF kernel for classification after SVM-DFS
feature selection. During feature selection, the kernel which
the SVM-DFS used is always the linear type.
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Figure 2. Recognition accuracy under various
dimensionality.

Figure.2 shows the recognition accuracy under various
dimensionality. Dimensionality, in fact, is the number of
the features to be selected. Using SVM-DFS, various num-
ber of features have been selected and the accuracy varieties
due to dimensionality varieties have been studied. Through
Figure.2, We can see that high accuracies are maintained
in a wide range of dimensionality, roughly from 2000 to
10304. Furthermore, SVM-DFS-R is more accurate than
SVM-DFS-L under low dimensionality. The obvious rea-
son is that SVM-DFS-R has used nonlinear kernel and it can
construct complicated nonlinear decision surface for non-
linear classification.
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Figure 3. Test time under various dimension-
ality.
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Figure.3 shows the test time under various dimensional-
ity. The test time denotes the sum of all the test time of
every individual test sample. Through Figure.3, We can
see that the test time is decreasing along with decreasing
dimensionality. Especially for SVM-DFS-R, the test time
decreases rapidly during the dimensionality decreases.

In Table 2, “Linear” denotes SVM-DFS-L and “RBF”
denotes SVM-DFS-R. Table 2 shows the overall test results
under various dimensionality. Through these experimental
results, we can see that SVM-DFS can speed up the classi-
fication process without degrading the correct rate.

Table 2. Test results varying dimensionality

Correct rate (%) Test time (s)

Dimensionality Linear RBF Linear RBF

10304 98.209 98.209 0.23706 5.40881

9000 98.209 98.209 0.20403 4.65001

8000 98.209 98.209 0.18185 4.15786

7000 97.910 98.508 0.15922 3.64945

6000 97.612 98.508 0.13707 3.10010

5000 97.612 98.209 0.11422 2.59109

4000 97.612 98.209 0.09724 2.12712

3000 97.313 98.209 0.07161 1.56305

2000 96.716 98.209 0.04625 1.04305

1000 92.836 97.313 0.01541 0.50737

500 91.343 97.612 0.00711 0.27816

200 80.299 94.030 0.00295 0.11150

100 56.418 82.388 0.00167 0.03569

4. Conclusions and Future Work

We have presented a discriminative feature selection
method SVM-DFS for the challenging task of multi-view
face recognition. We integrate the two tasks, feature selec-
tion and multi-class classification, into a single consistent
framework and effectively realize the goal of discriminative
feature selection. Through the experimental results on the
UMIST database, we can see that SVM-DFS can speed up
the multi-view face recognition process without degrading
the correct rate. And through the comparison with KDDA
method, it can be seen that SVM-DFS has outperformed
the traditional kernel subspace methods. In the future work,
we will use wavelet transform for preprocessing before us-
ing SVM-DFS. We think that using wavelet rather than raw
pixel data can make SVM-DFS more efficient.
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