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Abstract. The min-max modular support vector machine (M3-SVM)
was proposed for dealing with large-scale pattern classification problems.
M3-SVM divides training data to several sub-sets, and combine them to
a series of independent sub-problems, which can be learned in a parallel
way. In this paper, we explore the use of the geometric relation among
training data in task decomposition. The experimental results show that
the proposed task decomposition method leads to faster training and
better generalization accuracy than random task decomposition and tra-
ditional SVMs.

1 Introduction

Support vector machines (SVMs)[1] have been successfully applied to various
pattern classification problems, such as handwritten digit recognition, text cat-
egorization and face detection, due to their powerful learning ability and good
generalization performance. However, SVMs require to solve a quadratic op-
timization problem and cost training time that are at least quadratic to the
number of training samples. Therefore, to learn a large-scale problem by using
traditional SVMs is a hard task.

In our previous work, we have proposed a part-versus-part task decompo-
sition method[2, 3] and developed a new modular SVM for solving large-scale
pattern classification problems[4], which called min-max modular support vec-
tor machines (M3-SVMs). Two main advantage of M3-SVMs over traditional
SVM is that massively parallel training of SVMs can be easily implemented in
cluster systems or grid computing systems, and large-scale pattern classification
problems can be solved efficiently.

In this paper, we explore the use of the geometric relation among training
data in task decomposition, and try to investigate the influence of different task
decomposition methods to the generalization performance and training time.
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2 Min-Max Modular Support Vector Machine

Let X+ and X− be the given positive and negative training data set for a two-
class problem T ,

X+ = {(x+
i , +1}l+

i=1, X− = {(x−
i , −1)}l−

i=1 (1)

where xi ∈ Rn is the input vector, and l+ and l− are the total number of positive
training data and negative training data of the two-class problem, respectively.

According to [4], X+ and X− can be partitioned into N+ and N− subsets
respectively,

X+
j = {(x+j

i , +1)}l+
j

i=1, for j = 1, . . . , N+ (2)

X−
j = {(x−j

i , −1)}l−
j

i=1, for j = 1, . . . , N− (3)

where ∪N+

j=1X+
j = X+, 1 ≤ N+ ≤ l+, and ∪N−

j=1X−
j = X−,1 ≤ N− ≤ l−.

After decomposing the training data sets X+ and X−, the original two-class
problem T is divided into N+ × N−relatively smaller and more balanced two-
class sub-problems T (i,j) as follows:

(T (i,j))+ = X+
i , (T (i,j))− = X−

j (4)

where (T (i,j))+ and (T (i,j))− denote the positive training data set and the neg-
ative training data set of subproblem T (i,j) respectively.

In the learning phase, all the two-class sub-problems are independent from
each other and can be efficiently learned in a massively parallel way.

After training, the N+ × N− smaller SVMs are integrated into a M3-SVM
with N+ MIN units and one MAX unit according to two combination principles
[3, 4] as follows,

T i(x) =
N−

min
j=1

T (i,j)(x) for i = 1, . . . , N+ and T (x) =
N+

max
i=1

T i(x) (5)

where T (i,j)(x) denotes the transfer function of the trained SVM corresponding
to the two-class subproblem T (i,j), and T i(x) denotes the transfer function of a
combination of N− SVMs integrated by the MIN unit.

3 Task Decomposition Using Geometric Relation

M3-SVM needs to divide training data set into several sub-sets in the first step.
How to divide training data set effectively is an issue which needs to investi-
gate furthermore. Although dividing training data set randomly is a simple and
straightforward approach, the geometric relation among the original training
data may be damaged[3]. The data belonging to a cluster may be separated
into different sub-sets, and the data in center of a cluster may be moved to the
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Fig. 1. The two-spirals problem and related sub-problems

(a) (b) (c) (d) (e)

Fig. 2. The response of SVMs and M3-SVM with random task decomposition method

boundary for the new sub-problems. From SVM’s point of view, some data will
become support vectors, so the boundary which is vital to SVM will be changed.

A two dimensional toy problem is depicted in Fig.1(a). The training data
set of each class is randomly divided into two subsets. Four sub-problems shown
in Figs.1(b) through 1(e) are generated by combining these two subsets. The
response of SVMs (Rbf kernel with σ = 0.5, C = 1)corresponding to each of the
four sub-problems are shown in Figs.2(a) through 2(d), and the response of the
M3-SVM is shown in Fig. 2(e). We can see that the final decision boundary is
not very smooth.

On the other hand, the training data set of each class is divided along the
y-axis as shown in Fig.1(f). The response of SVMs corresponding to each of the
four sub-problems are shown in Figs.3(a) through 3(d), respectively. The benefit
of task decomposition using geometric relation is quite obvious. The function of
each SVM is quite clear. The SVMs in Fig.3(b) and Fig.3(c) determine which
part of the space the test data x belongs to. Training these two SVMs is very
easy because the training data are linearly separable. The SVMs in Fig.3(a) and
Fig.3(d) judge which class that test data x belongs to. The response of M3-SVM
is shown in Fig.3(e), and is smoother than that in Fig.2(e). If the training data
near to the y-axis are included in both the two subsets of each class, a smoother
decision boundary will be obtained as shown in Fig.3(f).

(a) (b) (c) (d) (e) (f)

Fig. 3. The response of SVMs and M3-SVM by using space-grid
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For more complicated high-dimensional problems, we divide the input space
using the hyperplanes which are parallel with z1 + z2, . . . , +zn = 0. We never
need to construct hyperplane explicitly by using a trick, so we still keep the
advantage of M3-SVM that don’t need any prior or domain knowledge. Suppose
we divide the training data set of class Ci to Ni subsets. Firstly, We compute
the distance between each training sample x of class Ci and hyperplane H:
z1 + z2, . . . , +zn = 0 as follows,

dist(x, H) =
1 × x1 + 1 × x2, . . . , +1 × xn√

12 + 12, . . . , +12
=

x1 + x2, . . . , +xn√
n

(6)

where xi is the element of sample vector x. Then, we sort the training data ac-
cording to the value of dist(x, H), and divide the reordered sequence of training
data to Ni parts equally to remain the size of sub-sets almost the same. Differ-
ent from the toy problem, the hyperplanes used to divide the training data of
different class is different for more general problems.

4 Experiments

In this section, we present experimental results on the Forest CoverType and
banana data sets from UCI[5] to compare M3-SVMs with traditional SVMs, as
well as M3-SVMs with different task decomposition methods.

Forest CoverType data set has seven classes, including 581012 samples, and
the feature dimension is 54. We firstly normalize the original data in the range
[0,1], and then randomly select 60% of the total data as training data, and the
remainder as test data. Banana data set is a binary problem including 40000
training data and 490000 test data. All the simulations were done on an IBM
p690.

Table 1. Three ways of decomposing
the Forest CoverType problem

Num. of subsets #
# C1 C2 others classifier

A1 2 2 1 27

A2 3 2 1 41

A3 4 3 1 57

Table 2. Three ways of decomposing
the Banana problem

Num. of subsets #
# C1 C2 classifier

B1 2 1 2

B2 2 2 4

B3 3 2 6

We perform seven different experiments on the two data sets, respectively.
The first one uses traditional SVM, the next three use M3-SVM with random task
decomposition method, called M3-SVM(R), and the last three employe M3-SVM
with hyperplane task decomposition, called M3-SVM(H). The original problems
are decomposed according to the parameters shown in Table 1 and Table 2.

Table 3 presents simulation results on Forest CoverType problem. Although
M3-SVM(R) may sacrifice a little generalization accuracy, it reduces the training
time in both serial and parallel ways. From Table 3, we can see M3-SVM(H) can
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Table 3. Results on Forest CoverType problem, where σ = 0.25 and C = 128

# CPU Time(h.) Speed up Correct #SV
Method classifier parallel serial parallel serial rate(%)

SVM 21 122.88 133.10 - - 93.04 82719

27 61.29 128.12 2.00 1.04 92.57 98359
M3-SVM(R) 41 19.94 120.75 6.16 1.10 92.48 118122

57 10.40 117.32 11.82 1.13 92.35 133965

27 33.63 72.31 3.65 1.84 93.09 84272
M3-SVM(H) 41 11.17 38.55 11.00 3.45 93.19 88049

57 5.34 24.10 23.01 5.52 93.17 90579

get a better generalization performance in comparison with traditional SVMs,
costs less training time, especially in a parallel way, and has less number of
support vectors than M3-SVM(R). Table 4 lists the simulation results on banana
problem. From Table 4, we can see that M3-SVM(H) is superior to traditional
SVM and M3-SVM(R) in both generalization accuracy and training time.

Table 4. Results on Banana problem, where σ = 1 and C = 361.2

# CPU Time(s.) Speed up Correct #SV
Method classifier parallel serial parallel serial rate(%)

SVM 1 719.63 719.63 - - 90.64 8430

2 322.34 644.36 2.23 1.12 89.79 8819
M3-SVM(R) 4 155.28 594.55 4.63 1.21 90.67 9225

6 102.58 577.80 7.02 1.25 90.20 8858

2 162.78 264.88 4.42 2.72 90.87 8419
M3-SVM(H) 4 127.69 193.89 5.63 3.71 90.76 8404

6 50.77 136.17 14.17 5.28 90.67 8539

Table 5 reports the performance of six sub-problems which are obtained by
dividing training data sets belonging to class C1 and class C2. T (i,j)

12 denotes
a SVM corresponding to the sub-problem whose training data are from the ith
sub-set of class C1 and the j th sub-set of C2, and T12 is combined from T (i,j)

12 with
three MIN units and one MAX unit. From Table 5, we see that the six problems
in column “Random” are very similar in correct rate, training time, and the
number of SVs. However, the other six problems in the column “Hyperplane”
are quite different in the aspects of correct rate, training time, and the number of
SVs. We can imagine that the 1st sub-set of class C1 and the 2nd sub-set of class
C2 are located in different parts of the input space, and therefore it is easy to
train T (1,2)

12 , and have a small number of SVs. Although the correct rate of each
problem is quite low, the correct rate of whole T12 is high. This phenomenon can
be explained as follows: each SVM in the “Hyperplane” column is responsible
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for one part of the input space and cooperates with each other to predict the
whole input space.

Table 5. Subproblems of C12 of Forest CoverType problem

#data Random Hyperplane
Task #pos. #neg. rate(%) #SV time(h.) rate(%) #SV time(h.)

T (1,1)
12 56660 63552 92.04 27027 19.00 67.04 19519 10.93

T (1,2)
12 56660 63552 92.03 26704 18.32 56.42 2522 0.13

T (2,1)
12 56660 63552 92.08 27163 19.03 66.81 14946 7.56

T (2,2)
12 56660 63552 92.18 26977 18.52 69.35 9557 3.72

T (3,1)
12 56660 63552 92.27 27406 19.34 49.47 2380 0.11

T (3,2)
12 56660 63552 92.29 27214 19.94 64.36 18632 11.17

T12 169980 127104 93.49 83996 114.15 94.19 61458 33.62

5 Conclusions

We have proposed a new task decomposition method using geometric relations
among training data for M3-SVM. We also have compared our method with
random decomposition approach. From experiments results, we can draw the
following conclusions. a) Although M3-SVM have a few more number of support
vectors, training M3-SVM is faster than traditional SVM in both serial and par-
allel way. b) The proposed task decomposition method improves the performance
of M3-SVM in the aspects of training time, the number of support vectors, and
generalization accuracy. It’s worth noting that M3-SVM with our proposed task
decomposition method is superior to traditional SVM in both training time and
generalization performance. As a future work, we will analyze the effectiveness
of the decomposition method based on geometric relation theoretically.
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