
Efficient Classification of Multi-label and Imbalanced Data Using

Min-Max Modular Classifiers

Ken Chen and Bao-Liang Lu

Department of Computer Science and Engineering

Shanghai Jiao Tong University

800 Dong Chuan Rd., Shanghai 200240, China

Email: {chenkennt, bllu}@sjtu.edu.cn

James T. Kwok

Department of Computer Science

Hong Kong University of Science and Technology

Clear Water Bay, Hong Kong

Email: jamesk@cs.ust.hk

Abstract— Many real-world applications, such as text cat-
egorization and subcellular localization of protein sequences,
involve multi-label classification with imbalanced data. In
this paper, we address these problems by using the min-
max modular network. The min-max modular network can
decompose a multi-label problem into a series of small two-
class subproblems, which can then be combined by two simple
principles. We also present several decomposition strategies
to improve the performance of min-max modular networks.
Experimental results on subcellular localization show that our
method has better generalization performance than traditional
SVMs in solving the multi-label and imbalanced data problems.
Moreover, it is also much faster than traditional SVMs.

I. INTRODUCTION

Many real-world applications involve multi-label classifi-

cation. For example, in text categorization, a document can

belong to more than one categories; and in bioinformatics,

a protein may exist in more than one subcellular locations.

Unfortunately, most traditional classifiers can only handle

single-label problems. In recent years, some encouraging

progress have been made with the development of multi-

label text categorization algorithms [1] and kernel methods

[2].

On the other hand, many classification problems also

involve imbalanced data. For example, in subcellular lo-

calization, the “cytoplasmic”, “nuclear” and “plasma mem-

brane” classes are often much larger than the others [10].

Most learning algorithms, like neural networks and support

vector machines, are designed for well-balanced data and

do not work well on imbalanced data. While a classifier can

achieve very high “accuracy” by simply ignoring the minority

samples, this is obviously undesirable and such a classifier

is useless in practice. A number of approaches have been

proposed to address this imbalanced data problem. Examples

include over-sampling of the minority class samples [3] and

adjusting the misclassification costs of the two classes [4].

The min-max modular (M3) network [5] is an efficient

classifier for solving large-scale complex problems. This

network model decomposes a large problem into a series

of smaller subproblems that are independent of each other in

the training phase. These subproblems can then be processed

in a parallel manner, and the outputs of the subproblems are

finally combined using simple principles.

In this paper, we use the M3 network to address the multi-

label and imbalanced data problems. We also propose several

task decomposition strategies to improve the performance

of M3 networks. Experiments show that our method has

better generalization performance, and is also much faster

than traditional classifiers.

This paper is structured as follows. In section II, the min-

max modular network is briefly introduced. In section III, dif-

ferent decomposition strategies are proposed. In section IV,

we perform experiments on subcellular localization problems

and compare our methods with traditional classifiers. Finally,

some conclusions are drawn in section V.

II. MIN-MAX MODULAR NETWORK

Given a K-class multi-label problem T , the training set is

described as follows:

X = {(xk, yk)}l
k=1, and yk = {ym

k }tk

m=1,

where xk ∈ R
n is the kth sample in the training set, yk is

the label set of xk, ym
k is the mth label of xk, l denotes

the number of samples in the training set, and tk denotes

the number of labels of xk. We use the one-versus-rest

decomposition method to decompose the original problem

T into K two-class problems. The positive and negative

samples of subproblem Ti are defined as

X+
i = {(xi+

k ,+1)}
l
+

i

k=1, and X−
i = {(xi−

k ,−1)}
l
−

i

k=1,

where l+i denotes the number of positive samples and l−i
denotes the number of negative ones. The positive training

samples of Ti are those whose label sets contain label i, and

the negative samples are the remaining ones.

Now we have K two-class subproblems, each of which

considers whether a sample should be assigned to a partic-

ular label. All these subproblems can be handled by tradi-

tional methods, such as neural networks or support vector

machines. However, the training data may be imbalanced

because the positive samples are from one class while the

negative samples are from K −1 classes. So we will use the

part-versus-part decomposition strategy [6] to divide Ti into

relatively smaller and more balanced subproblems.

The positive and negative samples of subproblem Ti can

be divided into N+
i and N−

i smaller subsets according to

0-7803-9490-9/06/$20.00/©2006 IEEE

2006 International Joint Conference on Neural Networks
Sheraton Vancouver Wall Centre Hotel, Vancouver, BC, Canada
July 16-21, 2006

1770

the part-versus-part decomposition:

X+
ij = {(xij+

k ,+1)}
l
+

ij

k=1, j = 1, . . . , N+
i ,

X−
ij = {(xij−

k ,−1)}
l
−

ij

k=1, j = 1, . . . , N−
i ,

where l+ij and l−ij denote the number of samples in subset

X+
ij and X−

ij , respectively. The issue on how to divide these

samples will be discussed in section III. By combining the

positive and negative samples of these subsets, we obtain

N+
i ×N−

i subproblems. Each subproblem T
jk
i has a training

set of

X jk
i = X+

ij ∪ X−
ik .

Now, the original problem is divided into a series of

smaller and more balanced subproblems. Moreover, each

subproblem is independent of each other. In the learning

phase, each of these subproblems can be trained by a

traditional learning algorithm to obtain a classifier. In the

classification phase, the outputs of these classifiers are inte-

grated by two combination principles (minimization principle

and maximization principle) [5] to produce a solution to the

original problem. Let T jk
i (x) be the output of the classifier

trained by X jk
i , and T j

i (x) be the output of the classifier

integrated by N− classifiers with the MIN unit. Then,

Ti(x) =
N+

max
j=1

T j
i (x),

and

T j
i (x) =

N−

min
k=1

T jk
i (x).

III. DECOMPOSITION STRATEGIES

A key problem in the M3 networks is how to divide

samples into smaller subsets. Obviously, better performance

can be obtained if samples are decomposed properly. Here,

we present four decomposition strategies.

A. Random Decomposition

This strategy is simple and straightforward. We randomly

divide the samples into smaller subsets, with the only

constraint that these subsets must be of about the same

size. This constraint is very important because we want the

subproblems to be balanced. Other strategies discussed in the

sequel must also follow this basic principle. The advantage of

this method is that it can be easily implemented. However, it

does not make use of any statistical properties of the samples

or prior knowledge on the samples.

B. Hyperplane Decomposition Strategy

Ideally, the decomposition strategy should divide the

samples according to the sample distribution. For example,

samples that are close together in the feature space should be

partitioned into the same subset. Hyperplane decomposition

[7] is one of the methods that is aimed at achieving this. An

illustration is shown in Fig. 1. As can be seen, the samples are

clustered into three groups (as shown by the dashed circles)

by using a series of parallel hyperplanes. Obviously, this

cannot be achieved by random decomposition.

� � � � �� � � � �
� 	
��
 � ��� 	

Fig. 1. Hyperplane decomposition.

On the other hand, the finding of hyperplanes that divide

the samples into balanced subsets is very computationally

expensive. To avoid computing the hyperplanes, we will

use the normal vector of the hyperplane instead. First, we

project the samples onto the direction of the normal vector

by computing the dot product between each sample and

the vector. Then we sort the samples according to their

projections. Finally, we divide the samples equally according

to the sorting result. This method can then be implemented

easily.

C. PCA Hyperplane Decomposition

As an extension of the hyperplane strategy, we consider

the selection of the normal vector. Since we want samples

in the same subset to be close, a good idea is to choose the

normal vector to be the direction of maximum variance. This

direction can, in turn, be obtained by the classical method of

principal component analysis (PCA) (Fig. 2).� � � ���� �� �� � �� ��� ! "#$� #� %� &
Fig. 2. PCA decomposition.

Given a sample set X = {xi}
N
i=1 with xi ∈ R

n, the

sample mean is

µ = E(x)

1771

and the sample covariance matrix is

C = E{(x − µ)(x − µ)T }.

We compute the eigenvalues λ and eigenvectors α of C by

solving

Cα = λα.

The eigenvector with the largest eigenvalue gives the direc-

tion corresponding to the maximum variance of the samples.

D. Equal Clustering Decomposition

Another strategy is to use clustering algorithms, which

group samples that are close together to the same group.

However, most clustering methods cannot guarantee that the

produced clusters are of about the same size, which thus

violates the basic principle of task decomposition.

Equal clustering [8] is a clustering method which produces

subsets of roughly the same size. Its basic idea is to adjust

the size of each subset by moving the center of one subset

towards (or away from) the center of another subset accord-

ing to the sizes of the two subsets. So we can get the subsets

with equal size even if the original data set is not balanced

clustered. Its algorithm is shown in Algorithm 1.

Algorithm 1 Equal clustering.

Input:

Sample set: X = {xi}
N
i=1

Number of subsets: M

Learning rates: α and l

Threshold of error: ǫ

Max number of iterations: maxiter

Output: Clustered subsets: Ci, i = 1, . . . , N

Select M samples as the centers of the subsets Ci: Ci

for i = 1 to maxiter do

Assign each sample to the nearest subset

Count the number of samples in each subset: Wi

Calculate the error function: e = maxM
i=1 |Wi − W |

if e < ǫ then

break

end if

for i = 1 to M do

Calculate δi =
∑M

j=1,j 6=i(
l×Wj

Wj+(l−1)×Wi
−1)(Cj−Ci)

Update Ci = Ci + αδi

end for

end for

IV. EXPERIMENTS

For performance evaluation, we apply the proposed

method to an important problem in bioinformatics, namely

subcellular localization of protein sequences.

A. Data Set

Protein subcellular locations are closely related to its

functions. In 1994, Nakashima and Nishikawa discriminated

intracellular and extracellular proteins successfully by amino

acid composition and residue-pair frequencies [9]. Cai and

Chou first regarded this problem as a multi-label problem

[11]. The data set we use in this paper [12] is collected

from the SWISS-PROT database [13]. Each protein is rep-

resented by a 20-dimensional vector by using its amino acid

composition. We identified eukaryotic proteins with specific

subcellular locations according to the annotation information

in the database. There are 48,535 eukaryotic proteins with

localization information. After using the Hobohm algorithm

[14] to remove similar sequences, about 75% of the proteins

are removed. The data set consists of 11,880 proteins. These

proteins can be classified into 12 subcellular locations [10].

This is a typical multi-label and imbalanced data problem.

About 12% of the proteins exist in more than one subcellular

locations. In general, a protein can exist in at most 5

locations. Some locations, like extracellular and nuclear, are

much larger than the others. The distribution of the data set

is listed in Tables I and II.

TABLE I

NUMBER OF PROTEINS IN EACH LOCATION.

No. Location Protein No.

1 Chloroplast 823

2 Cytoplasmic 1,808

3 Cytoskeleton 126

4 Endoplasmic reticulum 255

5 Extracellular 3,429

6 Golgi apparatus 143

7 Lysosomal 62

8 Mitochondrial 1,067

9 Nuclear 3,671

10 Peroxisomal 132

11 Plasma membrane 1,697

12 Vacuolar 78

Number of labels 13,291

Number of proteins 11,880

TABLE II

NUMBER OF LOCATIONS IN EACH PROTEIN.

Number of locations Number of proteins

1 10,570

2 1,217

3 86

4 6

5 1

Support vector machine (SVM)1 is used as the base clas-

sifier of the M3 network. 5-fold cross-validation is employed

to measure the performance. All experiments are performed

on a 3.0GHz Pentium-4 PC with 2GB RAM.

B. Evaluating the Performance of the Classifier

We use the recall (R), precision (P) and F1 values [16] to

evaluate the performance of the classifiers on a single class.

1We use the LIBSVM implementation [15].

1772

Recall and precision are defined as

R =
TP

TP + FN
,

P =
TP

TP + FP
.

Here TP is the true positives (correctly predicted as positive

samples), FP is the false positives (incorrectly predicted as

positive samples), and FN is the false negatives (incorrectly

predicted as negative samples). The F1 measure is the

harmonic mean of recall and precision. It is defined as

F1 =
2RP

R + P
.

We use the macro-average and micro-average [17] to

evaluate the performance of the classifiers on all classes.

Macro-average is the average of the F1 values from all

classes, while micro-average can be calculated by regarding

all classes as the same class and then calculate its F1 value.

C. Discussion on Different Module Sizes

The module size is the total number of training samples

in each subproblem. It is a very important parameter in the

M3 network. To test its effect, we performed experiments

on different module sizes. We compare our method with the

traditional SVM. The decomposition strategy we use here

is random decomposition. Each experiment is performed 5

times and the mean and standard deviation are reported. The

plots of recall and precision are shown in Figs. 3 and 4

respectively. Results on the F1 values, their micro-average,

macro-average and CPU time, are shown in Table III. The

number in parentheses denotes the module size.

0 2 4 6 8 10 12
0

10

20

30

40

50

60

70

80

90

Location

R
e

c
a

ll
(%

)

SVM

M
3
−SVM(6000)

M
3
−SVM(2000)

M
3
−SVM(400)

Fig. 3. Recall values for different module sizes. Different curves are for
different module sizes. The x-axis shows the subcellular locations, sorted
by size.

From the results, we can draw the following conclusions:

1) : Six classes have the F1 value of zero in the traditional

SVM. This means that they are ignored because they are too

small. When we use task decomposition to divide the original

problem into smaller subproblems, each subproblem is more

0 2 4 6 8 10 12
0

10

20

30

40

50

60

70

80

90

100

P
re

c
is

io
n

 (
%

)

Location

SVM

M
3
−SVM(6000)

M
3
−SVM(2000)

M
3
−SVM(400)

Fig. 4. Precision values for different module sizes. Different curves are for
different module sizes. The x-axis shows the subcellular locations, sorted
by size.

balanced than the original one. So the small classes can be

predicted. When the module size is 2,000, all classes can be

predicted.

2) : The recall value of each class gets higher when

the module size becomes smaller, especially for the small

classes. This means that there are more true positives in the

result. On the other hand, the precision value of each class

decreases as the module size gets smaller, with the exception

of those classes that cannot be predicted. In other words,

there are more false positives in the result.

3) : The M3-SVM is better than the traditional SVM in

terms of the F1 value, with the exception of the extracellular

class. For the large classes, the best performance is usually

achieved with a larger module size. For example, “nuclear”

(the largest class in the sample set) has the highest F1 value

of 74.1% when the module size is 6,000. On the other hand,

small classes like “vacuolar” and “lysosomal” have better

performance when the module size is small. Thus, it may be

a good idea to select the module size according to the size

of each class.

From the macro-averaging and micro-averaging results, we

can see that the M3-SVM is better than the traditional SVM.

The macro-average and micro-average of the M3-SVM are

higher than those of the traditional SVM except the micro-

average at a module size of 400. The highest macro-average

value can be obtained with a module size of 400, while the

highest micro-average value can be obtained with a module

size of 6,000.

4) : The training and testing speeds are also very impor-

tant for a classifier. From the results, we can see that the

M3-SVM is much faster than the traditional SVM. This is

because the original problem has been divided into a series

of smaller subproblems, each of which is much simpler

than the original one. It takes less time to train a simple

problem than a complex one. However, as the module size

gets smaller, the number of subproblems increases, and so

1773

TABLE III

THE F1 VALUES FOR DIFFERENT MODULE SIZES.

F1 (%)

Location SVM M3-SVM (6000) M3-SVM (2000) M3-SVM (400)

Chloroplast 62.5 66.4± 1.1 63.6± 0.2 57.6± 2.1

Cytoplasmic 12.2 45.4± 0.9 46.1± 0.8 44.2± 0.3

Cytoskeleton 0.0 3.1± 1.4 6.5± 2.1 9.5± 1.1

Endoplasmic reticulum 0.0 11.2± 2.8 27.4± 1.5 16.4± 0.9

Extracellular 80.1 80.0± 0.2 78.5± 0.2 76.4± 0.4

Golgi apparatus 0.0 1.9± 1.5 13.0± 3.7 12.6± 0.4

Lysosomal 0.0 0.0± 0.0 4.1± 6.6 15.0± 3.6

Mitochondrial 23.9 44.1± 0.9 43.5± 0.9 41.2± 0.8

Nuclear 72.4 74.1± 0.3 73.3± 0.3 72.6± 0.3

Peroxisomal 0.0 0.0± 0.0 4.6± 4.1 14.1± 2.1

Plasma membrane 73.9 75.4± 0.5 73.9± 0.4 69.7± 0.6

Vacuolar 0.0 0.0± 0.0 2.0± 2.3 10.2± 2.0

Macro-average 27.1 33.2± 0.3 36.4± 0.8 36.6± 0.5

Micro-average 63.5 66.7± 0.3 64.7± 0.2 58.4± 0.1

No. of modules 12 34 146 2,123

CPU time in serial (sec.) 1,624 830 561 792

CPU time in parallel (sec.) 285 118 5.76 0.75

The number in bold denotes the highest F1 value at each location.

the CPU time in serial will also increase. But considering

that these subproblems are independent of each other and

can be processed in a parallel manner, the M3-SVM will be

even faster on massively parallel machines.
5) : In the above experiments, we use the same parameters

(C and γ) in all the subproblems. Obviously, the classifier

cannot achieve its best performance by using the same set of

parameters. We perform parameter selection with a module

size of 6,000 using grid search, which is simple but efficient.

The parameter C is selected from the range 20 to 24, while

γ is from the range 24 to 210. Results are shown in Table IV.

TABLE IV

RESULTS ON PARAMETER SELECTION.

F1 (%)

Location M3-SVM (Before) M3-SVM (After)

Chloroplast 66.4± 1.1 66.4± 0.7

Cytoplasmic 45.4± 0.9 45.7± 0.6

Cytoskeleton 3.1± 1.4 6.5± 3.4

Endoplasmic reticulum 11.2± 2.8 25.3± 1.9

Extracellular 80.0± 0.2 80.4± 0.2

Golgi apparatus 1.9± 1.5 18.7± 0.8

Lysosomal 0.0± 0.0 15.9± 5.1

Mitochondrial 44.1± 0.9 44.1± 0.9

Nuclear 74.1± 0.3 74.4± 0.3

Peroxisomal 0.0± 0.0 11.1± 0.9

Plasma membrane 75.4± 0.5 75.4± 0.5

Vacuolar 0.0± 0.0 10.0± 2.4

From the results, we can see that M3-SVM has better

performance after parameter selection. For example, for the

extracellular location, the traditional SVM is better than the

M3-SVM before parameter selection. Now, after parameter

selection, the M3-SVM becomes better (the traditional SVM

only has a F1 value of 80.3% after parameter selection).

Thus, to achieve the best performance of M3-SVM, it is

better to use different parameters in different subproblems.

D. Comparison of Different Decomposition Strategies

We also perform experiments with different decomposition

strategies. The module size is set to 6,000. The parameters

for each class are adjusted for best performance. Results are

shown in Table V.

From the result, we can draw the following conclusions:

1) : The random strategy has the best performance for

most locations, while the other strategies are better than

the random strategy for locations like “golgi apparatus”,

“lysosomal” and “peroxisomal”. The reason may lie in the

distribution of the sample set. For most situations, the random

strategy is the best choice. But for others, another strategy

should be used. To achieve the best performance of the M3

network, it is better to use different strategies for different

classes.

2) : Although the random strategy is better than the other

strategies in most classes, it is also the slowest. Hyperplane,

PCA and equal-clustering are all faster than the random

strategy. The main reason is that these three strategies make

use of the statistical properties of the sample set so that

samples in one subset are close to each other. Thus, each

subproblem becomes simpler and is easier to classify.

Unfortunately, the equal-clustering procedure is time-

consuming. Hence, if we take clustering time into account,

equal-clustering is slower than the other methods.

1774

TABLE V

THE F1 VALUES FOR DIFFERENT DECOMPOSITION STRATEGIES.

F1 (%)

Location Random Hyperplane PCA Equal clustering

Chloroplast 66.4± 0.7 64.0 65.7 64.5± 1.2

Cytoplasmic 45.7± 0.6 33.9 34.1 34.0± 0.3

Cytoskeleton 6.5± 3.4 6.1 6.3 4.0± 4.1

Endoplasmic reticulum 25.3± 1.9 22.9 22.8 22.4± 4.0

Extracellular 80.4± 0.2 80.1 80.2 80.0± 0.4

Golgi apparatus 18.7± 0.8 18.3 20.5 17.5± 0.5

Lysosomal 15.9± 5.1 12.3 16.2 10.2± 9.0

Mitochondrial 44.1± 0.9 36.7 37.9 34.3± 2.4

Nuclear 74.4± 0.3 73.5 73.7 73.0± 0.6

Peroxisomal 11.1± 0.9 11.3 10.8 11.1± 5.4

Plasma membrane 75.4± 0.5 74.4 74.8 74.4± 0.6

Vacuolar 10.0± 2.4 5.8 9.6 5.4± 2.2

CPU time in serial (sec.) 833 711 704 694 (167)

CPU time in parallel (sec.) 117 101 100 99 (167)

The number in parentheses denotes the clustering time.

V. CONCLUSIONS

We have used the M3 network to address the multi-

label and imbalanced data problems. We also proposed four

decomposition strategies. From the results, we can see that

M3-SVM has better generalization performance than the

traditional SVM. The M3-SVM is also much faster than

the traditional SVM because each subproblem is simpler,

especially when the hyperplane, PCA and equal-clustering

strategies are used. Moreover, in order to achieve the best per-

formance, the module size and classifier parameters should

be selected according to the properties of different classes.

It is also better to use different decomposition strategies

for different classes. In the future, we will analyze the

performance of the M3 network and decomposition strategies

theoretically.

ACKNOWLEDGMENT

This research was partially supported by the National

Natural Science Foundation of China via the grants NSFC

60375022 and NSFC 60473040. The authors thank Mr. Wei-

Ming Liang for his helpful work on data preparation.

REFERENCES

[1] R. E. Schapire and Y. Singer, “Boostexter: a boosting-based system for
text categorization,” Machine Learning, vol. 39, pp. 135–168, 2000.

[2] A. Elisseeff and J. Weston, “A kernel method for multi-labelled classi-
fication,” in Advances in Neural Information Processing Systems, 2001,
pp. 681–687.

[3] N. V. Chawla, K. W. Bowyer, L. O. Hall and W. P. Kegelmeyer,
“SMOTE: synthetic minority over-sampling technique,” Journal of

Artificial Intelligence Research, 16, pp. 341–378, 2002.

[4] N. Japkowicz and S. Stephen, “The class imbalance problem: a sys-
tematic study,” Intelligent Data Analysis Journal, vol. 6, pp. 429–449,
2002.

[5] B. L. Lu and M. Ito, “Task decomposition and module combination
based on class relations: a modular neural network for pattern classifi-
cation,” IEEE Transactions on Neural Networks, vol.10, pp.1244–1256,
1999.

[6] B. L. Lu, K. A. Wang, M. Utiyama and H. Isahara, “A part-versus-
part method for massively parallel training of support vector machines,”
Proc. IEEE International Joint Conference on Neural Networks, Buda-
past, July 25-29, 2004, pp. 735–740.

[7] F. Y. Liu, K. Wu, H. Zhao and B. L. Lu, “Fast text categorization with
min-max modular support vector machines,” Proc. IEEE International

Joint Conference on Neural Networks, Montreal, Quebec, Canada, July
31-Aug. 4, 2005, pp. 570–575.

[8] Y. M. Wen, B. L. Lu and H. Zhao, “Equal clustering makes min-max
modular support vector machine more efficient,” Proc. 12th Interna-

tional Conference on Neural Information Processing, Taipei, Taiwan,
Oct. 30-Nov. 2, 2005, pp. 77–82.

[9] H. Nakashima and K. Nishikawa, “Discrimination of intracellular and
extracellular proteins using amino acid composition and residue-pair
frequencies,” J. Mol. Biol., 238, pp. 54–61, 1994.

[10] K. J. Park and M. Kanehisa, “Prediction of protein subcellular loca-
tions by support vector machines using compositions of amino acids
and amino acid pairs,” Bioinformatics, vol. 19, pp. 1656–1663, 2003.

[11] K. C. Chou and Y. D. Cai, “Prediction of protein subcellular locations
by GO-FunD-PseAA predictor,” Biochemical and Biophysical Research

Communications, vol. 320, pp. 1236–1239, 2004.
[12] K. Chen, W. M. Liang and B. L. Lu, “Data analysis of SWISS-

PROT database,” BCMI Technical Report, BCMI-TR-0501, Shanghai
Jiao Tong University, 2005.

[13] A. Bairoch and R. Apweiler, “The SWISS-PROT protein sequence
data bank and its supplement TrEMBL,” Nucleic Acids Res., 25, pp.
31–36, 1997.

[14] U. Hobohm, M. Scharf, R. Schneider and C. Sander, “Selection of
representative protein data sets,” Protein Science, 1992 Mar, 1(3):409–
417.

[15] C. C. Chang and C. J. Lin, “LIBSVM: a library for support vector ma-
chines,” Software available at http://www.csie.ntu.edu.tw/˜cjlin/libsvm,
2001.

[16] D. D. Lewis, “Evaluating and optimizing autonomous text classi-
fication systems,” Proc. The 18th Annual International ACM SIGIR

Conference on Research and Development in Information Retrieval

(SIGIR 95), pp. 246–254, 1995.
[17] D. D. Lewis, “Evaluating text categorization,” Proc. Speech and

Natural Language Workshop, pp. 312–318, 1991.

1775

