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Abstract— In this paper, we show that the shape, size and
location of the receptive field around each instance are different
and decided by the distribution of training data in a min-max
modular network with Gaussian-zero-crossing functions. Based
on this property, we propose a new supervised clustering algo-
rithm which has the following features: First, the incremental
clustering ability, which means the number of clusters need not
to be predefined, it can grow up automatically, also, the training
data need not to be processed iteratively; Second, attaching
more importance to border instances than non-border instances,
which guarantees the good generalization performance and
training data reduction ratio; Third, outlier removal ability,
which removes noise instances from training data; Last, cluster
combination ability, which reduces the number of clusters
further. Experiments on an artificial problem and several real-
world applications demonstrate these attractive features of our
new clustering algorithm.

I. INTRODUCTION

Cluster analysis aims to organize a collection of data
items into clusters, such that items within a cluster are more
‘similar’ to each other than they are to items in the other
clusters [3]. If there is no information available concerning
the membership of data items to predefined classes, the
corresponding cluster analysis, such as the well-known k-
means [16] or self-organizing map (SOM) [5], is called
unsupervised clustering. But in many cases a small amount of
knowledge is available concerning either pairwise constraints
between data items or class labels for some items. This infor-
mation can be used to ‘guide’ or ‘adjust’ the clustering pro-
cess. The corresponding approach is called semi-supervised
clustering [3], such as semi-supervised clustering by seeding
[1]. If the class labels of all the data item are available,
the cluster analysis belongs to supervised clustering, such
as leaning vector quantization (LVQ) [6] and correlation
clustering [2]. Supervised clustering may be very useful
as a preprocessing to reduce training data set for further
classification, since in real-world applications the training
data set are always too large for traditional classifiers.

In many real-world applications, training data often be-
come available in small and separate batches at different
times. A clustering algorithm must have the incremental
learning ability to deal with this situation. But solving
clustering problems through optimization is NP-complete in
most cases [14], many clustering methods, such as k-means,
SOM and LVQ, have to use heuristic algorithms. They need
predefine the number of clusters and process all the training

data set iteratively, which make the incremental learning
ability unattainable.

A straightforward approach of incrementally clustering
data points is to group a new instance into an existing cluster
that is closest to it or make the new instance as a new cluster.
However, there exists the problem of how to decide in which
circumstance the new instance should be grouped into an
existing cluster and in which circumstance it should be treat
as a new cluster. Li et al. have proposed a supervised cluster-
ing algorithm called Clustering and Classification Algorithm-
Supervised (CCAS) [7], [8] to solve this problem. CCAS
divide input space into some grid cells, only instances in the
same grid cell can be clustered. But the problem of choosing
the number of grid cells is still unsolved.

On the other hand, Lu et al. have proposed min-max mod-
ular network with Gaussian-zero-crossing functions (M3-
GZC) [9], [10] which has locally tuned response character-
istic and emergent incremental learning ability. In this paper,
we analyze the properties of receptive field around each
instance in M3-GZC network. We discover that the shape,
size and location of each receptive field are determined by
the distribution of training data. The receptive field can be
viewed as the ‘grid cells’ in input space and can be used
as a criterion to decide whether the new instance should
be grouped into an existing cluster or should be treat as a
new cluster. Also, we find the receptive fields around border
instances are smaller than that around non-border instances in
M3-GZC network, which means the corresponding clustering
algorithm will generate more clusters near the border and
less clusters far from the border. More clusters near the
border guarantees that the distortion of border instances is
smaller while less clusters far from the border guarantees the
higher reduction ratio of training data. We do not discard
the non-border instances for further reduction because in the
incremental learning process the ‘non-border’ instances may
become ‘border’ instances after more training data available,
discarding them may lead to great and unwanted changes to
the decision boundaries. Since not all the non-border instance
will become border instance in future, we pay less attention
to them than the instances that are already border instances.

The remainder of the paper is organized as follows. In
Section II, M3-GZC network is introduced briefly. In Section
III, we analyze the properties of receptive field in M3-GZC
network. Based on these properties, our supervised clustering
method is proposed in Section IV, post-processing including
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outlier removal and cluster combination are also presented
in this section. Experimental results on an artificial problem
and several real-world applications are listed in Section V.
Finally, conclusions are given in Section VI.

II. MIN-MAX MODULAR NETWORK
WITH GZC FUNCTION

A. Min-Max Modular Network

Let T be the training set for a K-class problem,

T = {(Xl, Dl)}L

l=1 (1)

where Xl ∈ Rn is the input vector, Dl ∈ RK is the desired
output, and L is the total number of training data.

According to the min-max modular network [11], [12],
a K-class problem defined in equation (1) can be divided
into K × (K − 1) two-class problems that are trained
independently. The decomposition process is described as
following. First we divide the input vectors into K subsets
according to class relations.

Xi =
{

X
(i)
l

}Li

l=1
, for i = 1, 2, . . . , K (2)

where Li is the number of data of Xi, all of X(i)
l εXi have the

same desired outputs, and
∑K

i=1 Li = L. Then we combine
Xi and Xj as the training set of a two-class problem Ti,j ,

Tij =
{(

X
(i)
l , 1− e

)}Li

l=1
∪
{(

X
(j)
l , e

)}Lj

l=1

for i, j = 1, . . . , K and j 6= i (3)

After these two-class problems are trained in parallel, they
are integrated according to a module combination rule,
namely the minimization principle.

Ti(x) =
K

min
j=1

Tij(x) (4)

where Tij(x) denotes the transfer function of the trained
network corresponding to the two-class subproblem Tij , and
Ti(x) denotes the transfer function of distinguish class i from
other classes.

If these two-class problems are still in large-scale or
imbalanced, they can be further decomposed into relatively
smaller two-class problems. Suppose the training set Xi

defined in equation (2) is partitioned into Ni (1 ≤ Ni ≤ Li)
subsets in the form

Xij = {X(ij)
l }L

(j)
i

l=1 , for j = 1, . . . , Ni (5)

where L(j)
i is the number of data of Xij , and ∪Ni

j=1Xij = Xi.
The training set of each smaller two-class problem can be
given by

T (u,v)
ij =

{(

X
(iu)
l , 1− e

)}L
(u)
i

l=1
∪
{(

X
(jv)
l , e

)}L
(v)
j

l=1

for u = 1, . . . , Ni, u = 1, . . . , Nj ,

i, j = 1, . . . , K and j 6= i (6)

where X
(iu)
l ∈ Xiu and X

(jv)
l ∈ Xjv are the input vectors

belonging to class Ci and Cj , respectively.

After these smaller two-class problems T (u,v)
ij have been

trained, they will be integrated according to the minimiza-
tion principle and maximization principle, respectively, as
follows:

T (u)
ij (x) =

Nj

min
v=1

T (u,v)
ij (x) (7)

Tij(x) =
Ni

max
u=1

T (u)
ij (x) (8)

B. M3-GZC Network

Suppose the training set of each subproblem has only two
different instances, then they can be separated by a Gaussian
zero-crossing discriminate function [9] defined by

fij (x) = exp

[

−
(‖x− ci‖

σ

)2
]

−exp
[

−
(‖x− cj‖

σ

)2
]

(9)

where x is the input vector, ci and cj are the given training
inputs belonging to class Ci and class Cj (i 6= j), respec-
tively, σ = λ‖ci − cj‖, and λ is a user-defined constant.

The output of M3-GZC network is defined as follows:

gi(x) =







1 if yi(x) > θi

Unknown if −θj ≤ yi(x) ≤ θi

−1 if yi(x) < −θj

(10)

where θi and θj are the threshold limits of class Ci and Cj ,
respectively, and yi denotes the transfer function of the M3

network for class Ci, which discriminates the pattern of the
M3 network for class Ci from those of the rest of the classes.

From equations (9) and (10), we can see that the interpo-
lation and extrapolation capabilities can be easily controlled
by selecting different values of threshold limits, as shown in
Fig.1. And in the next section, we will further analyze the re-
lationship between threshold limits and decision boundaries.

III. PROPERTIES OF RECEPTIVE FIELD
IN M3-GZC NETWORK

Definition 1) Receptive Field: the input space that can be
classified to one class in a M3-GZC network.

RF = {x|xεRn,∃i, gi(x) = 1} (11)

Lemma 1: Suppose there are only two instances ci and
cj , and we only concentrate on the receptive field around
ci. Then the relationship between the longest receptive field
radius rmax and the distance between ci and cj can be
expressed as

rmax = k1‖ci − cj‖ (12)

where k1 is only correlated with λ and θi.
Proof: According to the axiom of norm, the following

equation is satisfied.

‖ci−cj‖−‖x−ci‖ ≤ ‖x−cj‖ ≤ ‖ci−cj‖+‖x−ci‖ (13)
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(a) (b)

(c) (d)

Fig. 1. Decision boundaries at different threshold limits. (a) θi = θj = 0.8;
(b) θi = θj = 0.4; (b) θi = θj = 0.1; (d) θi = θj = 0; The red area
denotes the ‘Unknown’ decision regions.

So the longest receptive field radius rmax can be achieved
when ‖x− cj‖ = ‖ci − cj‖+ ‖x− ci‖. From equations (9)
and (12), we get

θi = exp

[

−
(

k1‖ci − cj‖
λ‖ci − cj‖

)2
]

− exp

[

−
(

k1‖ci − cj‖+ ‖ci − cj‖
λ‖ci − cj‖

)2
]

= exp

[

−
(

k1

λ

)2
]

− exp

[

−
(

k1 + 1

λ

)2
]

(14)

which means k1 is a function of λ and θi. This completes
the proof.

Also, we can prove that the relationship between the
shortest receptive field radius rmin and ‖ci − cj‖ can be
expressed as:

rmin = k2‖ci − cj‖ (15)

where k2 satisfies the following equation

θi = exp

[

−
(

k2

λ

)2
]

− exp

[

−
(

1− k2

λ

)2
]

(16)

Theorem 1: Suppose instance cj is the nearest instance
to instance ci, cj and ci belong to different classes, RFi is
the receptive field around ci, then the radius ri of RFi is
between ri

min and ri
max, where

ri
min = k2‖ci − cj‖
ri
max = k1‖ci − cj‖ (17)

Proof: Suppose RFi,j is the receptive field around instance
ci based on ci and cj , according to Lemma 1, the radius rj

of RFi,j satisfies the following inequality

k2‖ci − cj‖ ≤ rj ≤ k1‖ci − cj‖ (18)

Suppose ck1, ck2, . . . are other instances that belong to dif-
ferent classes from the class of instance ci, RFi,k1, RFi,k2,
. . . are the receptive fields around instance ci based on ci and
ck1, ck2, . . ., rk1, rk2, . . . are the radius of RFi,k1, RFi,k2,
. . ., respectively. According to Lemma 1, rk1, rk2, . . . satisfy
the following inequalities

k2‖ci − ck1‖ ≤ rk1 ≤ k1‖ci − ck1‖
k2‖ci − ck2‖ ≤ rk2 ≤ k1‖ci − ck2‖

. . .
(19)

Since cj is the nearest neighbor in different class to instance
ci, ‖ci−ck1‖ and ‖ci−ck2‖ satisfy the following inequalities

‖ci − ck1‖ ≥ ‖ci − cj‖
‖ci − ck2‖ ≥ ‖ci − cj‖

. . .
(20)

Since the role of minimization principle is similar to the
logical AND [11], the final receptive field RFi around ci

satisfies the following equation

RFi = RFi,j ∩RFi,k1 ∩RFi,k2 ∩ . . . (21)

So

ri ≥min (k2‖ci − cj‖, k2‖ci − ck1‖, k2‖ci − ck2‖, . . .)
=k2‖ci − cj‖ (22)

and

ri ≤min (k1‖ci − cj‖, k1‖ci − ck1‖, k1‖ci − ck2‖, . . .)
=k1‖ci − cj‖ (23)

This completes the proof.
From the analysis above, we can conclude that the recep-

tive field around every instance has the following attribute:
1) The size, shape and location of receptive field around

each instance are only correlated with λ, θ and the
neighbors in different classes around this instance. The
receptive field is local and its size is mainly determined
by the nearest neighbor in different classes around it
(as depicted in Fig.1).

2) Receptive fields around border instances are smaller
than that around non-border instances since the dis-
tance between border instances are smaller than that
between non-border instances (as depicted in Fig.1).

3) The radius of receptive field is decreased with the
increase of threshold limits (as depicted in Fig.1).

IV. CLUSTERING ALGORITHM BASED ON
M3-GZC NETWORK

A. C-M3-GZC

Since the receptive field of every instance is the local area
around it, we can view a new instances that locates in the
area belongs to the same cluster as this instance. Since the
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receptive field of every instance may be overlapped, we only
consider the nearest instance to the new instances. When
a new instance (x, d) is available, we can find its nearest
neighbor (x′, d) in the same class as (x, d). If the output
of the MIN unit around (x′, d) is 1 (we say that (x, d) is
accepted by the MIN unit around (x′, d)), the final output
of the M3-GZC network will be d, which means that (x, d)
locates in the receptive field around (x′, d). So we treat (x, d)
and (x′, d) belong to a same cluster. If the output of the MIN
unit around (x′, d) is ′Unknown′ or −1, the final output of
the M3-GZC network will be ′Unknown′ or incorrect, we
treat (x, d) as a new cluster center.

Also, since the radius of receptive field is decreased with
the increase of threshold limits, if a test sample is accepted
by a M3-GZC network with high values of threshold limits,
it will be accepted by the same network with lower values
of threshold limits. The threshold limits can be viewed as
a degree of confidence of correct classification. Since the
confidence of correct classification will become higher and
higher with more and more instances available, we can adjust
the threshold limits during clustering process. At the begin-
ning of clustering, there are only few instances available,
they distribute sparsely and it is difficult to classify new
instance correctly according to them. The distance between
each instance may be very large, and the receptive field of
each instance may be large, too. We can set a large value of θ
to decrease the size of receptive field. With more and more
instances available, the confidence of correct classification
becomes higher and we can set a smaller value of θ. The
time varying threshold limits can guarantee a more robust
incremental clustering algorithm.

According to the above analysis, our clustering algorithm
based on M3-GZC network (C-M3-GZC) is presented in
Algorithm 1, where S is the clustering set, and it can start
from scratch or have some members trained before. The
items of S can be expressed as (x, d, n), where x is the
centroid coordinates of the cluster, d is the class ID of this
cluster, and n is the total number of instances in this cluster.

A simple illustration of the proposed clustering process is
depicted in Fig.2. Here the time varying function of threshold
limits is defined by

θ = (θmax − θmin)exp

[

− t2

2σ2

]

+ θmin (24)

We chose θmax = 1.0, θmin = 0.2, σ = 1/2
√

2, and
t = i/n, where i indicates the ith instances that presented to
the M3-GZC network, and n indicates the total number of
training data.

Fig.2 (a) is the distribution of training data that belong to
two classes labelled by plus and circle, respectively. Fig.2 (b)
shows the decision boundaries of M3-GZC network after two
instances have been presented. The third instance labelled by
triangle locates in the ’Unknown’ area, so it will be treated
as a new cluster center. But the forth instance locates in the
receptive field of the third instance, and they belong to the

Algorithm 1 C-M3-GZC
Input:
Training set: Snew

Previously trained cluster set: S
Parameter of M3-GZC network: λ
Time varying function of threshold limits: f(t)
Output:
New cluster set: S

for each data (x, d) in Snew do
Find its nearest neighbor (x′, d′, n) in S;
if d = d′ and (x, d) can be accepted by the MIN unit
based on (x′, d′) then

Update the centroid coordinates of (x′, d′, n): x′ =
(nx′ + x)/(n+ 1);
Update the number of points in this cluster: n=n+1;

else
Treat (x, d) as a new cluster center: S = S∪(x, d, 1);

end if
Update the threshold limits: θ = f(t);

end for

(a) (b)

(c) (d)

(e) (f)
Fig. 2. A simple illustration of the proposed clustering process. The red area
denotes the ‘Unknown’ decision regions. (a) Original training data; (b)-(e)
Decision boundaries of M3-GZC network after more and more instances are
learned, the triangles denote the instances waiting to be processed; (f) The
final clusters.
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same class, so they will be clustered as shown in Fig.2 (d).
Fig.2 (f) shows the final results of three clusters as we have
expected.

B. Post-Processing

In this subsection, we propose an outlier removal algorithm
and a cluster combination algorithm for post-processing of
C-M3-GZC.

A cluster that has few instances may locate on border or
be noise instances. If it is a border instance, it will have some
neighbor clusters that belong to the same class as it. But if it
a noise instance, its neighbor clusters will belong to different
classes. So our noise removal or ‘outlier removal’ algorithm
works as Algorithm 2.

Algorithm 2 Outlier Removal
Input:
Cluster set: S
Limit of instance number: n1

Number of neighbor clusters to be considered: n2

Output:
New cluster set: S

for each cluster (x, d, n) in S do
if n ≤ n1 then

find its n2 nearest neighbor clusters in S;
if all the n2 neighbors belong to different classes of
(x, d, n) then

Remove (x, d, n) form S: S = S\(x, d, n);
end if

end if
end for

After the outlier removal, some clusters that are divided by
noise can be combined. Also, since the threshold limits are
decreasing with time, some clusters that are divided under
high threshold limits can be combined under low threshold
limits. And with more training data available, some clusters
that are divided under few training data can be combined
under more training data. So we need a cluster combination
algorithm to reduce cluster number for further compression.

If a cluster can be accepted by its nearest neighbor cluster,
we treat the two clusters are similar and combine them
into one cluster. Based on this idea, our cluster combination
algorithm works as Algorithm 3. The cluster combination
process can be implemented only once or repeated for many
times, until a certain cluster number is reached.

C. Complexity Analysis

Let M be the final number of clusters, and N be the
number of training data. In the clustering process, the time
complexity of finding the nearest neighbor for one train-
ing instance is O(M), deciding whether it is accepted by
the corresponding MIN unit is O(M). So the total time
complexity is O(MN). In the outlier removal process, the
time complexity of finding the nearest neighbor for one
cluster is O(M). The total time complexity is O(M 2). In the

Algorithm 3 Cluster Combination
Input:
Cluster set: S
Parameter of M3-GZC network: λ
Threshold limits of M3-GZC network: θcom

Output:
New cluster set: S

for each cluster (x, d, n) in S do
Find its nearest neighbor (x′, d′, n′) in S\(x, d, n);
if d = d′ and (x, d) can be accepted by the MIN unit
based on (x′, d′) then

Update the centroid coordinates of cluster (x′, d′, n′):
x′ = (n′x′ + nx)/(n′ + n);
Update the number of points in this cluster: n′ =
n′ + n;
Remove (x, d, n) from S: S = S\(x, d, n).

end if
end for

cluster combination process, the time complexity of finding
the nearest neighbor for one training instance is O(M),
deciding whether it is accepted by the corresponding MIN
unit is O(M). The total time complexity is O(M 2). If we
use some searching techniques (such as k-dimensional trees
[15]) the time complexity of finding the nearest neighbor
for one instance can be reduced to O(logM). The total
time complexity of C-M3-GZC, outlier removal and clus-
ter combination algorithms can be reduced to O(NlogM),
O(MlogM) and O(MlogM), respectively.

V. EXPERIMENTAL RESULTS

In order to verify our method, we present three experi-
ments. The first is an artificial problem and the other two are
real-world problems. All the experiments were performed on
a 2.8GHz Pentium 4 PC with 1GB RAM. The time varying
function of threshold limits we used in theses experiments is
the same as the simple illustration we presented in Fig.2.

A. Checkerboard Problem

A checkerboard problem is depicted in Fig.3 (a). The
checkerboard divides a square into four quadrants. The points
labelled by dot and plus are positive and negative instances,
respectively. In this experiment, we randomly generate 1000
instances as shown in Fig.3 (a). We use the C-M3-GZC
algorithm to find clusters at different threshold limits on this
data set. Since there is no noise in the training data, we just
use the cluster combination process as the post processing.
The cluster centers at different threshold limits are shown in
Figs.3 (b), and (c). Results of LVQ are also shown in Fig.3
(d) for comparison.

We also randomly generate 10000 instances as training
data set, and another 10000 instances as test data set. We
use the C-M3-GZC algorithm and the cluster combination
process on the training data set, and then classify the test
instances to the same class of their nearest clusters. Two
ways of using cluster combination are listed in Table I. One
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TABLE I
RESULTS AT DIFFERENT THRESHOLD LIMITS ON CHECKERBOARD PROBLEM.

θmin C1-M3-GZC LVQ C2-M3-GZC LVQ
Number Accuracy Time Accuracy Time Number Accuracy Time Accuracy Time

0.00 112 96.66% 5.3 95.37% 25037 4 99.43% 5.3 92.70% 29411
0.01 324 99.55% 5.4 99.24% 24492 309 99.55% 5.4 99.22% 32181
0.1 470 99.64% 6.3 99.24% 37676 460 99.67% 6.3 99.12% 37049
0.2 591 99.74% 5.9 99.31% 45995 576 99.72% 6.0 99.28% 41956
0.3 684 99.76% 6.5 99.15% 46322 672 99.76% 6.6 99.07% 49082
0.4 799 99.76% 7.2 99.30% 52045 786 99.76% 7.3 99.23% 51397
0.5 912 99.76% 8.0 99.20% 53956 902 99.76% 8.1 99.22% 53173

(a) (b)

(c) (d)

Fig. 3. A checkerboard problem and its clustering result at different
threshold limits. The points labelled by dot and plus are positive and
negative instances, respectively. The points labelled by dot with circle
and plus with circle are cluster centers. (a) A checkerboard problem; (b)
θmin = θcom = 0.01, θmax = 1.0; (c) θmin = θcom = 0.5,
θmax = 1.0; (d) Results of LVQ with same cluster number as (b).

is using cluster combination only once, the other is repeating
it until the cluster number is stable. They are indicated as
C1-M3-GZC and C2-M3-GZC in Table I, respectively. The
results of using LVQ are also listed for comparison. Since
the cluster number of LVQ is defined by user, we do the
experiments of each data set twice, which have the same
cluster number as that of C1-M3-GZC and the that of C2-
M3-GZC, respectively.

From Fig.3 and Table I, we can draw the following
conclusions.

1) The number of training data can be greatly reduced
by C-M3-GZC, and it is determined by the threshold
limits. The higher the threshold limits are, the more

clusters are generated. We also find that if we set
θmin = 0 and use the cluster combination process until
a stable cluster number is reached, the final cluster
number is 4, which is just the same as the minimum
cluster number as we have expected;

2) Using higher threshold limits can obtain higher classi-
fication accuracy;

3) As shown in Fig.3 (b) and (c), clusters near the border
are distributed more densely than that far away from
border. That is because the receptive fields around bor-
der instances are smaller than that around non-border
instances. More clusters around border can obtain a
better generalization performance, and fewer clusters
around non-border can obtain a higher data reduction
rate. We do not discard the non-border instances for
further reduction because in the incremental learning
process the ‘non-border’ instances may become ‘bor-
der’ instances after more training data available, dis-
carding them may lead to great and unwanted changes
to the decision boundaries. Since not all the non-border
instance will become border instance in future, we pay
less attention to them than the instances that are already
border instances. Attaching more importance to border
instances is a balance between data reduction rate and
generalization performance. Compared with Fig.3 (d),
we can see that clusters distribute evenly in LVQ. And
if the cluster numbers of LVQ and C-M3-GZC are
same, the generalization performance of the latter is
better than the former, as shown in Table I.

4) Compared with LVQ, our algorithm spend less time,
only 0.016% of that of LVQ on average. That is
because LVQ will process all the training data set
iteratively to achieve a good result, while our method
will only treat each input once.

To test our noise removal program, we randomly generate
10000 instances with different ratio of noise instances among
them. The parameters of each experiments is θmin = θcom =
0.2, θmax = 1.0, n1 = 2, and n2 = 2. The result are
shown in Fig.4. Compared with Table I, the number of
clusters are larger at the same parameters, that is because the
noise instances separate some clusters into smaller clusters.
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Fig. 4. Clustering result of checkerboard problem with noise instances. (a)
Accuracy; (b)Number of clusters.

The results show that after noise removal programm, the
classification accuracy can be improved greatly, and is better
than the original training data set.

B. UCI Database

In this experiment, our algorithm is tested on three
benchmark data sets from the Machine Learning Database
Repository [13]. The parameters of each experiments are
θmax = 1.0, θmin = 0.2, and θcom = 0.2. The results are
listed in Table II, where C-M3-GZC denotes our clustering
method without post-processing and CP-M3-GZC denotes
our clustering method with post-processing. Experiments
results of using LVQ with the same cluster number as that of
C-M3-GZC and CP-M3-GZC are also listed for comparison.
From Table II, we can see that the accuracy of our methods is
comparative or better than original data set while maintaining
small size of instances. The size ratio of each data set
are different because each data set has different redundant
training data. The accuracy of our method is also better than
LVQ and the training time is much faster than that of LVQ.

(a) (b)

Fig. 5. Glass-board images in the industry image classification project. (a)
A good glass-board; (b) A fault glass-board.

C. Industry Image Classification

We also use our clustering method on an industry image
classification project [4]. The purpose of this project is to
distinguish fault glass-boards from good glass-boards in an
industrial product line, as shown in Fig.5. The ability of
incremental clustering is urgently needed in this project since
the glass-board images can be obtained everyday and vary
with the changes of circumstances.

In our experiment, each glass-board image is converted
into a 4096 dimension vector, and we divided the glass-
board images into eight groups according to the time that
they were collected. The number of images in each group
is 1133, 1227, 1149, 1160, 1138, 1147, 1088, and 1197,
respectively. We use the first to the seventh groups as the
training set and the eighth group as the test set. At first, we
use C-M3-GZC to obtain the cluster C1 on the first training
set. Then we presented the second training set to C1 and use
C-M3-GZC to obtain the cluster C2. After all the training
set have been presented, we use outlier removal and cluster
combination algorithm on C7 to get the final clusters. The
classification accuracy and the number of clusters are shown
in Fig.6. We also show the result of not using clustering
method for comparison. Since LVQ has not the ability of
incremental learning, experiments of using LVQ are not done
for comparison.

From Fig.6, we can see that the size of training data
can be greatly reduced while maintaining the generalization
performance by using C-M3-GZC algorithm. Also, after the
post-processing, the noise can be removed, the generalization
performance becomes better, and the number of clusters can
be decreased further.

VI. CONCLUSIONS

In this paper we have analyzed the properties of receptive
field in M3-GZC network. Based on these properties, we
propose a new supervised clustering algorithm. It has the
following attractive features.

• The incremental cluster ability. Unlike traditional clus-
tering method, it need not retreat training instances.
The number of cluster need not be predefined, it grows
automatically and is determined by the distribution of
training data.
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TABLE II
RESULTS ON UCI DATABASE. PARAMETERS OF EACH NET: λ = 0.5; θmax = 1.0; θmin = thetacom = 0.2; n1 = 2; n2 = 2. THE LEFT COLUMNS IN

’ACCURACY’ AND ’TIME’ INDICATE THE RESULTS OF C-M3-GZC OR CP-M3-GZC WHILE THE RIGHT COLUMNS INDICATE THE RESULTS OF LVQ.

Data set C-M3-GZC / LVQ CP-M3-GZC / LVQ No Cluster
Size Accuracy Time Size Accuracy Time Accuracy

balance 92.0% 84.00% 87.20% 0.016 186 65.0% 88.00% 86.40% 0.048 110 84.00%
iris 16.0% 97.33% 90.67% 0.001 14 13.3% 97.33% 90.67% 0.002 13 94.67%
optdigits 77.8% 97.94% 75.63% 6.4 26638 38.8% 98.11% 75.85% 21 11092 98.00%
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Fig. 6. Clustering result of industry image classification problem. The solid
lines and dashdot lines represent the results of using our clustering method
and not using clustering method, respectively. (a) Accuracy; (b) Number of
clusters.

• It attach different attention to border and non-border
instances.

• The post processing of outlier removal make the algo-
rithm robust and cluster combination reduce the size of
cluster further.

Experimental results on the artificial checkerboard problem
and several real-world applications verify the validity of our
algorithm. But in our experiments, we simply set n1 = 2 and
n2 = 2 for all the data base. How to choose the optimum

values of n1 and n2 for real-world applications needs to be
analyzed in the future work.
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