
Soft Comput (2008) 12:647–655
DOI 10.1007/s00500-007-0242-3

FOCUS

An empirical comparison of min–max-modular k-NN with different
voting methods to large-scale text categorization

Ke Wu · Bao-Liang Lu · Masao Utiyama ·
Hitoshi Isahara

Published online: 16 October 2007
© Springer-Verlag 2007

Abstract Text categorization refers to the task of assigning
the pre-defined classes to text documents based on their
content. k-NN algorithm is one of top performing classi-
fiers on text data. However, there is little research work on
the use of different voting methods over text data. Also,
when a huge number of training data is available online,
the response speed slows down, since a test document has to
obtain the distance with each training data. On the other hand,
min–max-modular k-NN (M3-k-NN) has been applied to
large-scale text categorization. M3-k-NN achieves a good
performance and has faster response speed in a parallel com-
puting environment. In this paper, we investigate five dif-
ferent voting methods for k-NN and M3-k-NN. The
experimental results and analysis show that the Gaussian
voting method can achieve the best performance among all
voting methods for both k-NN and M3-k-NN. In addition,

The work of K. Wu and B. L. Lu was supported in part by the National
Natural Science Foundation of China under the grants NSFC
60375022 and NSFC 60473040, and the Microsoft Laboratory for
Intelligent Computing and Intelligent Systems of Shanghai Jiao Tong
University.

K. Wu · B.-L. Lu (B)
Department of Computer Science and Engineering,
Shanghai Jiao Tong University, 800 Dong Chuan Road,
Shanghai, 200240, China
e-mail: wuke@sjtu.edu.cn

B.-L. Lu
e-mail: bllu@sjtu.edu.cn

M. Utiyama · H. Isahara
Knowledge Creating Communication Research Center,
National Institute of Information and Communications Technology,
3-5 Hilaridai, Seika-cho, Soraku-gun, Kyoto, 619-0289, Japan
e-mail: mutiyama@nict.go.jp

H. Isahara
e-mail: isahara@nict.go.jp

M3-k-NN uses less k-value to achieve the better performance
than k-NN, and thus is faster than k-NN in a parallel compu-
ting environment.

Keywords Text categorization · k-NN algorithm ·
Min–max-modular k-NN · Parallel computing

1 Introduction

The ever-increasing Web documents are available over Inter-
net, which makes it difficult to manage these documents and
to retrieve useful information from these documents. Text
categorization has become one of the most important tech-
niques to handle the problem. Text categorization aims to
automatically assign documents into some predefined cate-
gories. Many machine learning methods (Yang and Chute
1994; Joachims 1997; Joachims 1998; Nigam et al. 1999;
Yang and Liu 1999; Sebastiani 2002) have been proposed to
this end. Among these methods, k-NN algorithm has been
widely used as a basic algorithm for text categorization,
since it is simple yet efficient. In Yang (1999), Bergo (2007),
Sebastiani(2002), it shows that although not perfect, k-NN is
the best overall performing system on diverse sets. Despite its
good performance, k-NN, however, has not been employed
as widely in applications where very large high-dimensional
data are involved. One main reason is the computational com-
plexity of distance computation in high-dimensional space,
often regarded as prohibitive.

On the other hand, parallel processing is an effective tech-
nique for scaling up the learning algorithm. Lu and Ito (1999)
proposed a min–max-modular (M3) network for solving
large-scale and complex multi-class classification problems
effortlessly and efficiently. And the network model has been

123

648 K. Wu et al.

applied to learning large-scale, real world multi-class
problems such as part-of-speech tagging and classification of
high-dimensional, single-trial electroencephalogram signals
(Lu et al. 2004b). Recently, Lu et al. (2004a) have propo-
sed a part-versus-part task decomposition method and a new
modular support vector machine, called min–max-modular
support vector machine (M3-SVM), which was developed
for solving large-scale pattern classification problems (Wang
et al. 2005; Fan and Lu 2005; Liu et al. 2005a; Lian et al.
2005; Yang and Lu 2006; Luo and Lu 2006). Meanwhile,
Zhao and Lu (2004, 2006) combined k-NN with M3-network
and obtained a comparable yet efficient performance to k-NN
based on the Euclidean distance metric.

The k-NN classifier tries to estimate the conditional class
probabilities from samples in a local region of the data space.
Usually, the majority voting method and Euclidean distance
metric is used. However, majority voting method simply
assumes the k nearest neighbors of a data point to be contai-
ned in a region of relatively small volume, so that sufficiently
good resolution in the estimation of different conditional den-
sities can be obtained. Unfortunately, this is not the case. To
estimate different conditional densities, some other voting
methods need to be explored. To our best knowledge, few
literature investigates k-NN with different voting methods
on the text data, which are high-dimensional and sparse. In
addition, M3-k-NN is a parallel ensemble of multiple k-NN
classifiers, which boost the test speed in parallel computing
environments. Therefore, we are interested in application
of different voting methods to M3-k-NN. In the paper, we
introduce some voting techniques other than majority voting
method into M3-k-NN to investigate the effect of perfor-
mance on M3-k-NN.

The remainder of this paper is organized as follows. Sec-
tion 2 gives a brief introduction to min–max-modular k-
NN. Section 3 introduces k-NN classifier and four voting
methods in detail. Experiments and discussions are presen-
ted in Sect. 4. Section 5 concludes this paper.

2 Min–max-modular k-NN

In this section, we give a brief introduction to the min–
max-modular k-Nearest Neighbor (M3-k-NN). M3-k-NN is
a framework that divides a complex classification problem
into many relatively smaller independent two-class subpro-
blems, construct sub-classifers by k-NN algorithm, and then
integrates these smaller k-NN classifiers according to two
module combination rules, namely the minimization prin-
ciple and the maximization principle (Lu and Ito 1997; Lu
and Ito 1999). The model has three basic components: task
decomposition, concurrent learning, and module combina-
tion. Since k-NN is an algorithm with little learning, we only
focus on task decomposition and module combination.

2.1 Task decomposition

Let T be the training set for an M-class classification pro-
blem,

T = (Xl , Yl)
L
l=1, (1)

where Xl ∈ X ⊂ Rn is the input vector, Yl ∈ Y ⊂ RM is
the desired output, and L is the total number of training data.

It has been suggested that an M-class problem can be divi-
ded into M(M −1) relatively smaller two-class subproblems
based on the class relations among training data (Lu and Ito
1997). However, in these M(M −1) two-class subproblems,
we can observe that half of subproblems need to be learned
and another half of subproblems are the same as the previous
ones from the point of view of pattern classification. The
training set for each of the two-class subproblems is given
by

Ti j = {(X (i)
l ,+1)}Li

l=1 ∪ {(X (j)
l ,−1)}L j

l=1

for i = 1, 2, . . . , M and j = i + 1, . . . , M (2)

where X (i)
l ∈ Xi and X (j)

l ∈ X j are the training inputs
belonging to class Ci and class C j respectively, Xi is the
set of training inputs belonging to class Ci , X j is the set of
training inputs belonging to class C j , Li and L j denotes the
numbers of data in Xi and X j , respectively,

⋃M
i=1 Xi = X ,

and
∑M

i=1 Li = L .
If some of the two-class problems defined by Eq. 2 are still

large and hard to be learned, such problems can be further
broke into many two-class problems as small as the user
expects (Lu and Ito 1999). Assume that Xi is partitioned into
Ni (1 ≤ Ni ≤ Li) subsets in the form

Xi j =
{

X (i j)
l

}L(j)
i

l=1
for j = 1, . . . , Ni

and i = 1, . . . , M, (3)

where
⋃Ni

j=1 Xi j = Xi .

According to the above partition of Xi , the two-class pro-
blem Ti j defined by Eq. 2 can be divided into Ni × N j relati-
vely smaller and simpler two-class subproblems. The training
set for each of the two-class subproblems is given by

T (u,v)
i j =

{(
X (iu)

l ,+1
)}L(u)

i

l=1
∪

{(
X (jv)

l ,−1
)}L(v)

j

l=1

for u = 1, . . . , Ni , v = 1, . . . , N j ,

i = 1, . . . , M and j = i + 1, . . . , M. (4)

where X (iu)
l ∈ Xiu and X jv

l ∈ X jv are the training inputs
belonging to class Ci and class C j

123

An empirical comparison of min–max-modular k-NN with different voting methods to large-scale TC 649

From Eqs. 2 and 3, we see that an M-class problem can
be decomposed into

∑M−1
i=1

∑M
j=i+1 Ni × N j two-class

subproblems. This decomposition process is simple and
domain-specific knowledge concerning the problem decom-
position is not required. Therefore, any large-scale problem
can be easily decomposed into a number of two-class sub-
problems as small as a user needs.

For ease of description, we assume that each class has the
same number of training data J . Let L be the total number
of training data for an M-class classification problem, and
L = M × J . If an M-class problem is decomposed into

(M
2

)

two-class subproblems, the number of training data for each
of the two-class subproblems is 2 × J .

If an M-class problem is decomposed into
∑M−1

i=1∑M
j=i+1 Ni × N j two-class subproblems, the number of trai-

ning data for each of the two-class subproblems is about

�J/Ni� + �J/N j� (5)

where �z� denotes the smallest integer greater than or equal
to z.

Since each of the two-class subproblems can be treated as
completely independent problems in the training phase, all
of the problems can be learned in parallel.

2.2 Module combination

These completely independent modules need to be combined
in a reasonable and elegant way. Consequently, M3 model has
proposed a simple yet effective way to perform it. After trai-
ning each module which is assigned to learn associated sub-
problems, all of the individual trained modules can be easily
integrated into an M3 network according to the minimization
principle and the maximization principle.

Specifically, these submodules are integrated into a M3-
network with L(u)

i MIN units and one MAX unit according
to two combination principles (Lu and Ito 1997; Lu and Ito
1999; Lu and Ichikawa 2000) as follows:

Bu
i j (x) =

L(v)
i

min
v=1

B(u,v)
i j (x)

and

Bi j (x) = L(u)
i

max
u=1

Bu
i j (x) (6)

where B(u,v)
i j (x) denotes the output function of the classifier

corresponding to the two-class subproblem T (u,v)
i j , Bu

i j (x)

denotes the transfer function of a combination of multiple
classifiers integrated by the MIN unit and Bi j (x) denotes the
resulting output of a combination of multiple MIN units by
MAX principle.

3 Voting methods for k-NN

3.1 k-NN algorithm

The k-NN algorithm has been introduced by Fix and Hodges
(Fix and Hodges 1951) and has since become well-known
in the pattern recognition literature. Also, it is one of top
performing methods of automatic text categorization (Yang
and Liu 1999; Sebastiani 2002; Lewis et al. 2004; Liu et al.
2005b). In text categorization, k-NN algorithm typically is
used as follows. Given a test document d, the system finds the
k nearest neighbors among training documents, and exploit
their classes to weight class candidates. The similarity score
of each nearest neighbor document to the test document is
used as the weight of the classes of the neighbor document.
If more than one of k nearest neighbors share a class, these
weights of that class are added together, and the resulting
weighted sum is used as the likelihood score of that class
regarding the test document. Consequently, a ranked class
list is obtained for the test document by sorting the scores of
each possible classes. The decision rule can be formulated
as follows:

score(d, ci) =
∑

d j ∈kNN(d)

Sim(d, d j)δ(d j , ci) (7)

where kNN(d) indicates the set of k nearest neighbors of
document d; δ(d j , ci) is 1 if document d j belongs to class ci

and 0 otherwise and Sim(d, d j) denotes the similarity metric
between d and d j . For test document d, it is assigned the class
with the highest score.

3.2 Different voting methods

A k-NN classifier tries to estimate the conditional class pro-
babilities from samples in a local region of the data space.
Typically, we apply a majority voting method to k-NN, which
regards each neighbor in its neighbors equally. However, we
might want to weight nearer neighbors more heavily. Cover
and Hart (1967) have proved that as the number N of samples
and k tend to infinity in such a manner that k/N → 0, the
error rate of the k-NN rule approaches the optimal Bayes
error rate. However, in the finite sample case, the majority-
voting k-NN rule is not guaranteed to be optimal way of
exploited the information provided by the neighborhood of
unclassified patterns, since it simply assume that the suffi-
ciently good resolution in the estimated different conditional
densities in a region of relatively small volume. In practice,
since the number of samples is finite, the closest neighbors
do not provide the sufficient information about the different
conditional densities. Thus, the distance between x and one
of its closest neighbors may provide more clues for the esti-
mation of the conditional densities.

123

650 K. Wu et al.

Dudani (1976) proposed three different methods. The first
is referred to linear voting method, in which the nearest
neighbor gets a weight of 1, the furthest neighbor a weight
of 0, and the other weights are scaled linearly to the interval
in between. The method can be formalized as follows:

w j =
{

dk−d j
dk−d1

, if dk �= d1

1, if dk = d1
(8)

where d j is the distance to the query of the j th nearest neigh-
bor, d1 is the nearest neighbor, and dk is the furthest (or kth)
neighbor.

The second is the inverse distance, that is, the neighbors of
a query are assigned the weight reciprocally to the distance to
vote for the predicted class. In text categorization, this voting
policy is the variant of the method, since a similarity measure
is the converse of a distance function. In pattern recognition
community, the distances between a query and samples in
training set are calculated, while in text categorization, simi-
larities between a query and samples in training set are used.
Usually, similarity metric is the reciprocal of distance metric.
For clarity, we use distance metric in this paper. The inverse
distance method can be formulated as follows:

w j = 1

d j
if d j �= 0 (9)

The third is the rank voting method. Its basic idea is to
consider the ranking position according to the ranked list of
the distances between a query and samples in training set and
then to weight more the sample with high rank. We formulate
the method as follows.

w j = k − j + 1 (10)

In this paper, Gaussian voting method was also investiga-
ted, since a lot of events conform to Gaussian distribution. It
is also based on the same idea as three aforementioned voting
methods that a training sample closer to the test sample will
have a higher influence on the final classification compared
to a sample that is further away from the test sample. Howe-
ver, various methods employ difference descending function.
Gaussian voting method uses the following equation:

w j = 1√
2πδ

exp−d2
j /2δ2

(11)

Now, to generalize k-NN algorithm with different voting
methods, we reformulate Eq. 7 as follows:

score(d, ci) =
∑

d j ∈kNN(d)

W(dis(d, d j)δ(d j , ci)) (12)

where dis(d, d j) denotes the distance between document d
and document d j , and W denotes the weight function.

Table 1 Distributions of training and test data of the extracted subset
from Yomiuri news corpus

Category # data

Training # of subsets Test

c1 Events 31354 98 2714

c2 Core industry 39608 124 3363

c3 Environment 21247 67 1371

c4 Culture 3344 11 357

c5 Food 19645 62 1992

c6 Labor 5757 18 317

c7 Fishery 320 1 17

c8 Diplomacy 767 3 43

c9 Music 2274 8 164

c10 Social security 3654 12 226

total 127970 404 10564

Here ‘# of subsets’ indicates the number of sub-modules randomly
divided by M3-k-NN when the size of a module is 320

4 Experiments

4.1 Experimental setup

In the section, we present our results on Yomiuri News Cor-
pus, which is the largest corpus currently consisting of
2,190,512 documents in the full collections from the years
1987 to 2001. Since the simulations are conducted on a PC
machine with Pentium D 2.8 GHz CPU and 2.0 GB memory,
time spent on a very large amount of corpus is large and thus
we extract one subset of the corpus, which contains 127,970
training samples and 10,564 test samples. The details are
described in Table 1.

In all the experiments, we use 5000 features for which
χ2 statistical method was applied and adopt tf-idf weigh-
ting scheme to weight each feature. Additionally, each vector
representation is L2-normalized to a unit vector. In the simu-
lations, according to Eq. 2, the text categorization problem is
divided into

(10
2

)
= 45 two-class subproblems. From Table 1

and the definition of the two-class subproblems, we see that
the number of training data for the smallest two-class subpro-
blem T78 is 1,087, while the largest two-class subproblem T12

is 71,062. Although these two-class subproblems are smaller
than the original problem, they are not adequate for massi-
vely parallel computation. In order to speed-up response of
k-NN algorithm during recognition phase, we should further
decompose each of the bigger two-class subproblems into a
number of relatively smaller and simpler two-class subpro-
blems. By using the decomposition method, each of the trai-
ning sets for the bigger two-class subproblems is randomly
divided into a number of relatively smaller subsets according
to Eq. 4.

123

An empirical comparison of min–max-modular k-NN with different voting methods to large-scale TC 651

0 5 10 15 20
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

K Value

M
ic

ro
−

F
1

majority
linear
inverse
rank
Gaussian

majority
linear
inverse
rank
Gaussian

majority
linear
inverse
rank
Gaussian

majority
linear
inverse
rank
Gaussian

0 5 10 15 20
0.48

0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

K Value

M
ac

ro
−

F
1

0 5 10 15 20
0.76

0.765

0.77

0.775

0.78

0.785

0.79

0.795

0.8

0.805

0.81

K Value

M
ic

ro
−

F
1

0 5 10 15 20
0.6

0.61

0.62

0.63

0.64

0.65

0.66

0.67

0.68

K Value

M
ac

ro
−

F
1

Fig. 1 Micro-F1 and Macro-F1 results of different weighted-distance methods with Euclidean distance. The first row shows the results of
M3-k-NN, and the second row shows the results of k-NN

In the simulation, the size of the modular is taken as
320, since the number of the smallest class in training set
is 320. The samples in each class are divided approxima-
tely equally. In addition, two distance metrics were used.
One is Euclidean distance metric, which is a common metric
used in pattern recognition community. Another is cosine
distance metric, which is typically used to measure the simi-
larity between documents. However, for a voting method, it
is typically based on distance metric, which is dissimilarity
between documents. Therefore, for a uniform presentation,
we used angular distance metric as another metric in our
experiments. Specifically, the angular distance corresponds
to the arc cosine between two documents.

4.2 Performance measure

To evaluate the effectiveness of a text categorization system,
we use the standard recall, precision and F1 measure. Recall
is defined to be the ration of the number of the correctly assi-
gned documents to the number of positive samples. Precision
is the ratio of the number of the correct documents in the
positively assigned documents. The F1 measure combines

recall and precision in the following way:

F1 = 2 × Recall × Precision

Recall + Precision

For convenience, we summarize the F1 scores over the
different categories by the macro-average of F1 scores and
over all the samples by the micro-average F1 scores. The two
measures are called Macro-F1 and Micro-F1, respectively.
Macro-F1 emphasizes the performance of the system on rare
categories, while Micro-F1 embody the performance of the
system on major categories since they contain more samples.

In addition, Macro-recall is defined to be average recall
over categories and Macro-precision is defined to be average
precision over categories.

4.3 Results and discussion

The experimental results of k-NN and M3-k-NN using
Euclidean distance metric are shown in Figs. 1 and 2. The
results of k-NN and M3-k-NN using angular distance metric
are shown in Figs. 3 and 4. When Gaussian voting method
is used for k-NN and M3-k-NN based on Euclidean distance

123

652 K. Wu et al.

0 5 10 15 20
0.65

0.66

0.67

0.68

0.69

0.7

0.71

K value

M
ac

ro
 P

re
ci

si
on

majority
linear
inverse
rank
Gaussian

majority
linear
inverse
rank
Gaussian

majority
linear
inverse
rank
Gaussian

majority
linear
inverse
rank
Gaussian

0 5 10 15 20
0.45

0.5

0.55

0.6

0.65

K value

M
ac

ro
 R

ec
al

l

0 5 10 15 20
0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

K value

M
ac

ro
 P

re
ci

si
on

0 5 10 15 20
0.55

0.56

0.57

0.58

0.59

0.6

0.61

0.62

0.63

0.64

K value

M
ac

ro
 R

ec
al

l

Fig. 2 Micro-precision and Macro-recall results of different weighted-distance methods with Euclidean distance. The first row shows the results
of M3-k-NN, and the second row shows the results of k-NN

metric, δ value was taken 1.0 empirically. In addition, when
angular distance metric was used, δ value was set to 0.4
empirically.

• We can observe that M3-k-NN and k-NN can achieve
almost the same best performance on both Micro-F1 and
Macro-F1 . It is worthwhile to notice that the Macro-F1
of M3-k-NN is higher than k-NN, when angular distance
metric is applied. Although data decomposition makes
data more sparse, M3-network structure results in a com-
paratively good performance.

• M3-k-NN uses less k value to achieve its peak perfor-
mance on both Micro-F1 and Macro-F1 than traditional
k-NN. Multiple parallel modules lead to more samples
involved in the final decision and thus a small k value is
needed to achieve the optimal performance.

• When we use Euclidean distance metric, Macro-precision
is raised with k value increasing. However, an opposite
case occurs when angular distance metric is used. This
may be because angular distance metric is more appro-
priate for text data than Euclidean distance.

• Linear voting method is superior to the other methods at
larger values of k and its best performance is better than
other methods.

In order to have a close look to the five different voting
methods, these methods are depicted in Fig. 5. The linear
voting method is an adaptive voting method which adapt
the effective size of the neighborhood to the local proper-
ties of the data and thus often can achieve a good perfor-
mance in all experiments. In contrast, inverse distance voting
method makes a global assumption about the relevance gra-
dient, which leads to a comparatively poor performance. In
addtion, since 1√

2πδ
is a constant after δ is assigned, Guassian

voting function just uses exp−d2
j /2δ2

with δ=1 for illustration.
For Guassian voting method, an assumption is made that the
relation between a distance and its voting weight conforms to
Guassian distribution. In Euclidean space, sparse and high-
dimensional characteristics of text data results in large dis-
tance between a query and training samples and thus its prac-
tical performance is similar to the majority voting method.

From Fig. 5, we can see that the weight is a number close
0 when the distance is greater than 2. That is, the nearest

123

An empirical comparison of min–max-modular k-NN with different voting methods to large-scale TC 653

0 5 10 15 20
0.83

0.835

0.84

0.845

0.85

0.855

0.86

0.865

0.87

K Value

M
ic

ro
−

F
1

majority
linear
inverse
rank
Gaussian

0 5 10 15 20
0.67

0.68

0.69

0.7

0.71

0.72

0.73

0.74

0.75

0.76

K Value

M
ac

ro
−

F
1

major
linear
inverse
rank
Gaussian

majority
linear
inverse
rank
Gaussian

majority
linear
inverse
rank
Gaussian

0 5 10 15 20
0.84

0.845

0.85

0.855

0.86

0.865

0.87

0.875

K Value

M
ic

ro
−

F
1

0 2 4 6 8 10 12 14 16 18
0.71

0.715

0.72

0.725

0.73

0.735

0.74

0.745

0.75

0.755

K Value

M
ac

ro
−

F
1

Fig. 3 Micro-F1 and Macro-F1 results of different weighted-distance methods with the angular distance metric. The first row shows the results
of M3-k-NN, and the second row shows the results of k-NN

0 5 10 15 20
0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

K Value

M
ac

ro
 P

re
ci

si
on

majority
inverse
linear
rank
Gaussian

majority
inverse
linear
rank
Gaussian

majority
inverse
linear
rank
Gaussian

majority
inverse
linear
rank
Gaussian

0 5 10 15 20
0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

K Value

M
ac

ro
 R

ec
al

l

0 5 10 15 20
0.685

0.69

0.695

0.7

0.705

0.71

0.715

0.72

0.725

0.73

K Value

M
ac

ro
 P

re
ci

si
on

0 5 10 15 20
0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

K Value

M
ac

ro
 R

ec
al

l

Fig. 4 Micro-precision and Macro-recall results of different weighted-distance methods with the angular distance metric. The first row shows the
results of M3-k-NN, and the second row shows the results of k-NN

123

654 K. Wu et al.

Fig. 5 Illustration of four
different voting methods. Left
top is linear voting method;
right top is inverse distance
voting method; left bottom is
Gaussian voting method; and
right bottom is rank voting
method. Here d1 denotes the
distance of the nearest neighbor
and dk denotes the distance of
the furthest (kth) nearest
neighbor, and red line indicates
majority voting method

0 2 4 6 8
0

0.5

1

1.5

distance
w

ei
gh

t
0 2 4 6 8

0

0.5

1

1.5

distance

w
ei

gh
t

0 2 4 6 8
0

0.5

1

1.5

distance

w
ei

gh
t

0 1 2 3 4
0

1

2

3

4

K Value

w
ei

gh
t

d d1 k

neighbors with the distance greater than 2 are treated equally.
However, its overall performance is the best over micro-F1
measure among the five methods in a comparatively compact
distance space. It benefits from the narrow interval of angular
distance ([0, π/2]). In addition, rank voting method is also an
adaptive method, but it ignores the length of the distance and
focuses on the rank of the distance. Therefore, it does not
produce an expected performance. As for majority voting
method, it is a common method for voting. Although for
k-NN, a comparatively poor performance is produced, for
M3-k-NN based on the angular method, the best macro-F1
value is generated.

To compare M3-k-NN with k-NN, the best performance
for each voting method is summarized in Table 2. From
this table, we can see that Guassian voting method based
on angular distance achieves the best micro-F1 performance
over both k-NN and M3-k-NN. In addition, for k-NN, linear
voting method obtains the best macro-F1 performance, while
for M3-k-NN, simple majority voting method gets the best
macro-F1 performance.

4.4 Time complexity analysis

For an M-class problem, we suppose that the number of all
training samples is N . Predication for one new query will
be done in O(N), since k-NN needs to retrieval all training
samples to acquire k nearest neighbors. When M3-k-NN is

Table 2 The best performance and the corresponding k value of dif-
ferent voting methods based on two distance metrics

Voting k-NN (%) M3-k-NN (%)
method

Micro-F1 k Macro-F1 k Micro-F1 k Macro-F1 k

Majority 79.31 13 66.20 3 78.59 1 64.72 1
86.53 11 73.61 3 86.31 3 76.04 3

Linear 79.94 17 67.53 7 79.20 5 66.56 5
87.07 17 74.53 11 86.53 7 75.04 5

Inverse 78.99 13 66.20 3 78.59 1 64.72 1
86.79 13 74.35 5 84.51 5 72.50 1

Rank 79.17 17 65.58 5 79.09 3 65.01 3
87.00 15 74.50 5 84.77 7 72.12 5

Gaussian 78.92 13 66.20 3 78.59 1 64.72 1
87.13 13 74.50 5 87.02 5 75.44 5

For each voting method, the data in the first row is based on Euclidean
distance metric, and the data in the second row is based on angular
distance metric

used in the simulations for an M-class problem, the M-class
problem is first decomposed into M(M − 1)/2 two-class
problem and then each two-class problem is handled via M3-
k-NN. Although it seems to increase computational load, the
computation can be done in a parallel way. When M3-k-NN
is not used in a parallel environment, the computation can
be done in about 2N/M . If we apply M3-k-NN to each two-
class problem in a parallel way, the computational time will
be sharply down with the decrease of each modular size. In
the extreme case, if the number of positive samples is M1

123

An empirical comparison of min–max-modular k-NN with different voting methods to large-scale TC 655

and the number of negative samples is M2 in each smaller
modular classifier, the computation will be done in 2N/(M×
M1 × M2).

5 Conclusion

In this paper, we have compared several voting methods for
k-NN and M3-k-NN. The experimental results show that the
majority voting method can achieve the best macro-F1 per-
formance when M3-k-NN is applied to text categorization,
while linear voting method can obtain the best macro-F1
performance when k-NN is used. In addition, the Gaussian
voting method can achieve the best micro-F1 performance
for both k-NN and M3-k-NN. From the experiment results,
we can see that M3-k-NN has two important advantages over
traditional k-NN. 1) M3-k-NN can use less k value to achieve
peak performance than k-NN, and 2) M3-k-NN can spend less
time to complete prediction than k-NN in a parallel compu-
ting environment. As to future work, we will use a combi-
nation of several distance-weighted policies for M3-k-NN,
since different methods have complementary performance
when k value is small, and improve the Gaussian voting
method by automatically adjusting its δ parameter.

References

Bergo A (2007) Text categorization and prototypes. (In: http://www.illc.
uva.nl/Publications/ResearchReports/MoL-2001-08.text.pdf)

Cover T, Hart P (1967) Nearest neighbor pattern classification. IEEE
Trans Inform Theory IT-13(1):21–27

Dudani S (1976) The distance-weighted k-nearest-neighbor rule. IEEE
Trans Syst Man Cybern SMC-6:325–327

Fan ZG, Lu BL (2005) Multi-view face recognition with min–max
modular svms. In: ICNC (2), pp 396–399

Fix E, Hodges J (1951) Discriminatory analysis, nonparametric discri-
mination: consistency properties. Technical report, USAF Scholl
of aviation and medicine, Randolph Field 4

Joachims T (1997) A probabilistic analysis of the Rocchio algorithm
with TFIDF for text categorization. In: Fisher DH (ed) Proceedings
of ICML-97, 14th international conference on machine learning,
Morgan Kaufmann Publishers, San Francisco, USA, pp 143–151

Joachims T (1998) Text categorization with support vector machines:
learning with many relevant features. In: Nédellec C, Rouveirol C
(eds) Proceedings of ECML-98, 10th European conference
on machine learning, Springer, Heidelberg, DE, pp 137–142
(Published in the “Lecture Notes in Computer Science” series,
number 1398)

Lian HC, Lu BL, Takikawa E, Hosoi S (2005) Gender recognition using
a min–max modular support vector machine. In: ICNC (2), pp 438–
441

Lewis DD, Yang Y, Rose TG, Li F (2004) Rcv1: A new benchmark col-
lection for text categorization research. J Mach Learn Res 5:361–
397

Liu FY, Wu K, Zhao H, Lu BL (2005a) Fast text categorization with
min–max modular support vector machines. In: IEEE international
joint conference on neural networks, vol 1, pp 570–575

Liu TY, Yang Y, Wan H, Zhou Q, Gao B, Zeng HJ, Chen Z, Ma WY
(2005b) An experimental study on large-scale web categorization.
In: WWW ’05: special interest tracks and posters of the 14th inter-
national conference on World Wide Web, ACM Press, New York,
NY, USA, pp 1106–1107

Lu BL, Ichikawa M (2000) A Gaussian zero-crossing discriminat func-
tion for min–max modular neural networks. In: Proceedings of
5th international conference on knowledge-based intelligent infor-
mation engineering systems and allied technologies (KES’01),
pp 298–302

Lu BL, Ito M (1997) Task decomposition based on class relations: a
modular neural network architecture for pattern classification. In:
Mira J, Moreno-Diaz R, Cabestany J (eds) Biological and artificial
computation: from neuroscience to technology, Lecture Notes in
Computer Science, vol 1240. Springer, Heidelberg, pp 330–339

Lu BL, Ito M (1999) Task decomposition and module combination
based on class relations: A modular neural network for pattern
classification. IEEE Trans Neural Netw 10(5):1244–1256

Lu BL, Wang KA, Utiyama M, Isahara H (2004a) A part-versus-part
method for massively parallel training of support vector machines.
In: Proceedings of 2004 IEEE international joint conference on
neural networks, pp 735–740

Lu BL, Shin J, Ichikawa M (2004b) Massively parallel classification of
single-trial EEG signals using a min–max-modular neural network.
IEEE Trans Biomed Eng 3(51):551–558

Luo J, Lu BL (2006) Gender recognition using a min–max modular
support vector machine with equal clustering. In: ISNN (2), pp
210–215

Nigam K, Lafferty J, McCallum A (1999) Using maximum entropy for
text classification. In: IJCAI-99 workshop on machine learning for
information filtering, pp 61–67

Sebastiani F (2002) Machine learning in automated text categorization.
ACM Comput Surv 34(1):1–47

Wang K, Zhao H, Lu BL (2005) Task decomposition using geometric
relation for min–max-modular svms. In: ISNN (1), pp 887–892

Yang Y (1999) An evaluation of statistical approaches to text categori-
zation. Inf Retrieval 1(1/2):69–90

Yang Y, Chute CG (1994) An example-based mapping method for text
categorization and retrieval. ACM Trans Inf Syst 12(3):252–277

Yang Y, Liu X (1999) A re-examination of text categorization methods.
In: Hearst MA, Gey F, Tong R (eds) Proceedings of SIGIR-99,
22nd ACM international conference on research and development
in information retrieval, ACM Press, New York, USA, pp 42–49

Yang Y, Lu BL (2006) Prediction of protein subcellular multi-locations
with a min–max modular support vector machine. In: ISNN (2),
pp 667–673

Zhao H, Lu BL (2004) A modular k-nearest neighbor classification
method for massively parallel text categorization. In: International
symposium on computational and information sciences (CIS’04),
LNCS, vol 3314, pp 867–872

Zhao H, Lu BL (2006) A modular reduction method for k-nn algorithm
with self-recombination learning. In: ISNN (1), pp 537–544

123

http://www.illc.uva.nl/Publications/ResearchReports/MoL-2001-08.text.pdf
http://www.illc.uva.nl/Publications/ResearchReports/MoL-2001-08.text.pdf

	An empirical comparison of min--max-modular k-NN with different voting methods to large-scale text categorization
	Abstract
	Introduction
	Min--max-modular k-NN
	Task decomposition
	Module combination
	Voting methods for k-NN
	k-NN algorithm
	Different voting methods
	Experiments
	Experimental setup
	Performance measure
	Results and discussion
	Time complexity analysis
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

